MPDG - Mobile Profile based Distributed Grouping

Christian Seitz, Michael Berger
Siemens AG, Corporate Technology, Information and Communications
D-81730 Munich, Germany
christian.seitz@mchp.siemens.de, m.berger @siemens.com

Bernhard Bauer
Institute of Computer Science, University of Augsburg
86150 Augsburg, Germany
bernhard.bauer @informatik.uni-augsburg.de

Abstract

We present a new kind of mobile ad hoc application,

which we call Mobile Profile based Distributed Grouping
(MPDG), which is a combination of mobile clustering and
data clustering. In MPDG each mobile host is endowed with
a user profile and while the users move around, hosts with
similar profiles are to be found and a robust mobile group is
formed. The members of a group are able to cooperate or at-
tain a goal together.
In this paper MPDG is defined and it is compared with re-
lated approaches. Furthermore, a modular architecture and
algorithms are presented to build arbitrary MPDG applica-
tions.

1. Introduction

Tomorrow’s world will be intrinsically ubiquitous and
mobile. Ubiquitous computing is a new trend in compu-
tation and communication. It is an intersection of several
technologies, including embedded devices, service dis-
covery, wireless networking and personal computing tech-
nologies. In an ad hoc network, mobile devices can detach
completely from the fixed infrastructure and establish tran-
sient and opportunistic connections with other devices that
are in communication range. The structure of an ad hoc mo-
bile network could be highly dynamic.

We present a new mobile ad hoc network application area,
which we call Mobile Profile based Distributed Group-
ing (MPDG). In MPDG each mobile host is endowed with
a user profile. A user profile (short: profile) is a compre-
hensive data collection belonging to a specific object (e. g.
a person). A profile consists of a set of parameters defin-
ing the configuration of a user specific application. While

the users move around, mobile hosts with similar pro-
files are to be found and a mobile group is formed.
The participants of a group are able to cooperate or at-
tain a goal together.

The paper is organized as follows. Section 2 gives an
overview of related work of other clustering or group-
ing problems. The next section presents the architecture of
a MPDG application. Section 4 describes the used algo-
rithms and presents simulation results. Finally, section 5
concludes the paper with a summary.

2. Problem Classification and Related Work

In this section we classify with which problems a Mo-
bile Profile based Distributed Grouping application is con-
fronted. Furthermore, we show which other research areas
are related and how this new problem has already been dis-
cussed in literature.

2.1. Problem Classification

In Mobile Profile based Distributed Grouping mobile
hosts are equipped with wireless transmitters, receivers, and
a user profile. They are moving in a geographical area and
are forming an ad hoc network. In this environment hosts
with similar profiles have to be found. Mobile Profile based
Distributed Grouping in ad hoc environments comprises
three main problems which have to be solved to accomplish
a MPDG application. The first problem is the dynamic be-
havior of an ad hoc network, where the number of mobile
hosts and communication links permanently changes. Sec-
ondly, a data structure for the user profile has to be defined
and a mechanism must be created to compare profile in-
stances. Finally, similar profiles have to be found in the ad
hoc network and the corresponding host form a group.

Domain Description Unit
Domain Group Profile
Definition Definition Definition
MPDG Unit
MPDG Meta Descriptions
LAADG Meta Group| |Meta Profile
Algorithms Gons P
Description | | Description

Middleware (Agent Platform, JXTA, etc.)

Figure 1. Components of a MPDG application

2.2. Related Research Areas

Grouping algorithms and their applications appear very
often in literature. There are mainly two different research
areas associated with it, namely mobile networks, databases
and data mining. Grouping in mobile networks describes
the partitioning of a mobile network in several, mostly dis-
joint, clusters [1, 2]. This clustering takes place at the net-
work layer and is used for routing purposes.

Clustering is also known in the database or data mining
area. A huge amount of data is scanned with the goal to
find similar data sets. This research is also known as un-
supervised learning. In the surveys of Fasulo [4] or Fraley
and Raftery [5] an overview of many algorithms for that do-
main can be found.

MPDG combines the two aforementioned clustering ap-
proaches. The problems, arising by means of the motion of
the hosts could be solved by methods used in the mobile
network area. Searching for similar profiles is based on al-
gorithms of data clustering. Both methods must be adapted
to MPDG, e. g. while in the database area millions of data
sets must be scanned, in the MPDG application at the ut-
most one hundred other hosts are present. In contrast to data
sets in databases ad hoc hosts move around and are active,
i. e. they can publish their profile by their own.

3. MPDG Application Architecture

In this section the architecture of a MPDG application is
presented. Finally, some assumptions to the application are
made.

3.1. Architecture

The architecture of MPDC applications is depicted in
figure 1. A MPDG application consists of three essential
parts: the middleware, the MPDG unit, and the Domain De-
scription unit.

The middleware establishes the basis for a MPDG applica-
tion. It is in charge of detecting other hosts in the mobile

environment and provides a mechanism for sending and re-
ceiving messages to other hosts, which are within transmis-
sion range. The central element of a MPDG application is
the MPDG unit. It is made up of a MPDG algorithm en-
tity and a MPDG Description entity.

As the MPDG unit is totally domain independent, the struc-
ture of a profile or a group definition must be defined. This
is done by the Meta Profile Description and the Meta Group
Description which are elements of the MPDG Description
entity. The Meta Group and Meta Profile Description de-
fine the content of a group or profile definition and specify
optional and mandatory elements of a group or profile defi-
nition. In both meta descriptions, there is a mandatory gen-
eral part, defining the name of the profile or group. The meta
profile description encompasses a set of tags for profile en-
try definitions, and specifies the structure of rules, that can
be declared in the profile definition in the Domain Descrip-
tion Unit. The meta group description comprises abstract
tag definitions for the size of a group, the profile elements
a group consists of, and the properties to become a group
member.

On top of the MPDG unit, the Domain Description unit is
located. This unit adjusts the MPDG unit to a specific appli-
cation domain. In the Domain Definition entity, domain de-
pendent knowledge is described and in the profile and group
definition entities the domain specific profiles and group
properties are defined. The Profile Definition specifies the
structure of the profile for the domain, in accordance with
the Meta Profile description.

The Group term varies from application to application. A
group can be a few people with similar properties (the same
hobby, profession, age etc.) but also a set of machines with
totally different capabilities. For that reason the Group Def-
inition comprises the characteristics of the group ought to
be found.

In this paper, we concentrate on describing the MPDG al-
gorithm entity (see section 4).

3.2. Assumptions
In the following the assumptions with which we are cur-
rently working are mentioned.

e We do not rely on any central component.

e There is no location information available, e. g. GPS-
data or cell-info.

e The transmission range of all hosts is r;.

4. MPDG Algorithms

In this section the architecture of the algorithm entity is
presented, the used network model is defined and the algo-
rithms for each layer are shown. The algorithm entity has a

MPDG Algorithms

Grouping Layer
Local Decentralized
Grouping Grouping

’ Virtual Topology Layer ‘

’ Initiator Determination Layer ‘

Figure 2. MPDG Algorithm Entity

layered architecture and encompasses algorithms for initia-
tor determination, virtual topology creation, local grouping
and decentralized grouping. Finally, we show some simu-
lation results, in order to indicate how stable the generated
groups are.

4.1. MPDG Algorithm Entity

The most important part of a MPDG application is the
Algorithm Entity (AE). The design of this essential entity is
shown in figure 2. The lowest layer of the AE is the Initia-
tor Detection Layer, which assigns the initiator role to some
hosts. Initiators are needed in order to guarantee, that the al-
gorithm of the next layer is not started by each host of the
network. This layer does not determine one single initiator
for the whole ad hoc network. It is sufficient, if the num-
ber of initiator nodes is only reduced.

The Virtual Topology Layer is responsible for covering a
given ad hoc topology with another topology, e. g. a tree
or a logical ring. This virtual topology is necessary to re-
duce the number of messages, that are sent by the mobile
hosts while the grouping process. First experiences show,
that a tree is the most suitable virtual topology and there-
fore we will only address the tree approach in this paper.
The next layer, the Grouping Layer, is the most important
one. The MPDG algorithms entity distinguishes between
Local Grouping and Global Grouping. In order to obtain a
decentralized group a two-tiered process is started. At first,
each host selects from its neighbor hosts, the subset of sim-
ilar hosts which ought to be in the group. This set of hosts is
called a Local Group. After each host has determined its lo-
cal group, these groups are exchanged in a second step and
a unique Global group is acquired.

In the next subsections each layer is described in detail.

4.2. Initiator Determination

Before the spanning tree is created, the initiators must be
determined who are allowed to send the first creation-
messages. Without initiators all hosts start randomly send-
ing messages with the result that a tree will never be cre-
ated. We are not in search of one single initiator, we only
want to guarantee, that not all hosts start the initiation.

There are two ways to determine the initiator, an active
and a passive one. The active approach starts an election
algorithm (see Malpani et al. [7]). These algorithms are
rather complex, i. e. a lot of messages are sent which is
very time consuming. They guarantee that only one initia-
tor is elected and in case of link failures that another host
takes the initiator role. Such a procedure is not appropri-
ate and not necessary for MPDG, because the initiator is
only needed once and it matters little if more than one ini-
tiator is present. Therefore, we decided for the passive de-
termination method, which is similar to Gafni and Bertsekas
[6]. By applying the passive method no message is sent in
the beginning to determine an initiator. Each host has an ID
and knows all neighbor IDs. The IDs are provided by the
the middleware when mobile devices come into transmis-
sion range. We only allow a host being an initiator, if its
ID is larger than all IDs of its neighbors. The initiator is in
charge of starting the virtual topology algorithm, described
in the next section.

4.3. Virtual Topology Creation

Having confined the number of initiators, a ad hoc net-
work can be covered with a virtual topology (VT) with the
algorithm described below. Simulations showed that a span-
ning tree is a promising approach for a VT and therefore we
will only describe the spanning tree VT in this paper.

The Algorithm

Each host keeps a spanning tree sender list (STSL). The
STSL contains the subset of a host’s neighbors belonging
to the spanning tree. The initiator, determined in the pre-
vious section, sends a create-message furnished with its
ID to all its neighbors. If a neighbor receives a create-
message for the first time, this message is forwarded to all
neighbors except for the sender of the create-message.
The host adds each receiver to the STSL. If a host receives
a message from a host which is already in the STSL, it is re-
moved from the list.

To identify a tree, the ID of the initiator is always added to
each message. It may occur that a host already belongs to
another tree. Under these circumstances the message is not
forwarded any more and the corresponding host belongs to
two (more are also possible) trees. The host decides to a tree
later, while the grouping process.

In order to limit the tree size a hop-counter ¢;, is enclosed
to cach message and is cach time decremented, the mes-
sage is forwarded. If the counter is equal to zero, the for-
warding process stops. Note, with an increasing cy, the time
for building a group also increases, because ¢, is equiva-
lent to the half diameter d of a ad hoc network.

By using a hop-counter it may occur that a single host does
not belong to any spanning tree, because all trees around are
large enough, i. e. ¢y, is reached. The affiliation of that host

is not possible, because tree nodes do not send messages
in case the hop-counter’s value is zero. When time elapses
and a node does notice it does still not belong to a tree,
an initiator determination is started by this host. Two cases
must be distinguished. Either one the host is surrounded
only by tree nodes, or several isolated hosts are existing.
In both cases, the isolated host contacts all its neighbors
by sending an init-message, and if a neighbor node al-
ready belongs to a tree it answers with a join-message.
If no non-tree node is around, the single node chooses ar-
bitrarily one of the neighbors and joins the tree by sending
an join-agree-message, to the other tree hosts a join-
refuse-message is sent. If another isolated host gets the
init-message, a init-agree-message is returned and
the host, sending the init-messagem becomes the initia-
tor starts creating a new tree.

The obtained tree will be needed in subsection 4.5 for the
global grouping process.

4.4. Local Grouping - Optimizing the Local View

In this section an algorithm is presented that determines
a subset of neighbor hosts with similar profiles. Such a sub-
set of neighbors is called a local group. In order to guar-
antee, that groups are not formed arbitrarily, but bring ben-
efit to its members a Profit Function is defined. Hosts are
only added to a group if the profit increases.
The algorithm adds in each step exactly one new local group
member. Initially, a host scans all known profiles and selects
that one, with the smallest distance to him. This profile is
now tested for a profit increase. If the group with two mem-
ber will bring a greater benefit, the profile is added to the lo-
cal group. In this way the other profiles are either added to
the local group or rejected. The local group has the shape of
a line.
It may only one profile be added in a step, because else
the shape of a group gets beyond control. A host H 4 can
add another host H g in the exactly opposite direction than
a host Hp is added by host H¢. If more than one points
should be added, coordination is needed.
In order to sustain the line-shape, we only allow the two
endpoints to add new points. To coordinate these two points,
the endpoints of the line may add new points, alternately. If
the right end has added a new point in step n, in step (n+1)
the left side is on turn to add a point. The alternating proce-
dure stops, when one side is not able to find a new point. In
such a case, only the other side continues to add points, un-
til no new point is found. Figure 3 contains the pscudocode
of the algorithm.

firstReferenceNode := currentPoint;
secondReferenceNode := currentPoint;
nextPoint := null;

localGroup := currentPoint;

currentProfit = profit_ function(localGroup) ;
while ((nextPoint :=
getNearestProfilePoint (firstReferenceNode)) !=null)
futureProfit:=profit_function (localGroup+nextPoint) ;
if (futureProfit > currentProfit) then
localGroup += nextPoint;

neighbors -= nextPoint;
currentProfit = futureProfit;
firstReferenceNode := secondReferenceNode;
secondReferenceNode := nextPoint;
fi;

elihw;

Figure 3. Local Grouping Algorithm

4.5. Global Grouping

In the previous section each host has identified its neigh-
bor hosts that belong to its local group g;. These local
groups must be combined in order to achieve a global group.
The algorithm presupposes no special initiator role. Each
host may start the algorithm and it can even be initiated
by more than one host contemporaneously. The core of the
used algorithm is an echo-algorithm, see [3].

Initially, a arbitrary host sends a EXPLORER-message with
its local-group information enclosed to its neighbors which
are element of the spanning tree (the STSL, see section 4.3).
If a message arrives, the enclosed local-group is taken and
it is merged with its current local view of the host to get
a new local view. The merging function tries to maximize
the group profit function, i. e. if two groups are merged,
from each group these members become a member of the
new group which together draw more profit than each sin-
gle group.

The new local view is forwarded to all neighbors except for
the sender of the received message. If a node has no other
outgoing edges and the algorithm has not terminated, the
message is sent back to the sender. If more than one host ini-
tiate the algorithm and a host receives several EXPLORER-
messages, then only the EXPLORER-messages from that
host are forwarded, which has the highest ID (message ex-
tinction). The pseudocode of the group distribution is shown
in figure 4. But if the algorithm in figure 4 has terminated,
it is still not yet guaranteed, that each node has the same
global view. In the worst case only the initiator node has a
global view. For that reason, the echo algorithm has to be
executed once more. In order to save messages, in the sec-
ond run, the echo messages need not to be sent, because no
further information gain is achieved.

A critical point is to determine the termination of the global
grouping process. The algorithm terminates in at most 2 -
d = 4 - ¢y, steps and because the echo messages in the sec-
ond run are not sent, this is reduced to 3 - ¢p. If a host re-
ceives this amount of messages, the grouping is finished.

Receipt of an ECHO message:
N := N+1;
localGroup:=merge (localGroup, ECHO.getLocalGroup());
if N = |STSL| then

ENGAGED := false;
if (initiator) then finish;
else

ECHO.setLocalGroup (localGroup) ;
send ECHO to PRED;
fi;
fi;

An EXPLORER message from host p is received:

if (not ENGAGED) then
ENGAGED := true;
N := 0; PRED := p;

localGroup:=getLocalGroup ()
localGroup:=merge (localGroup, EXPLORER.getLocalGroup ()) ;
EXPLORER. setLocalGroup (localGroup) ;

send EXPLORER to STSL-PRED;

fi;

N := N+1;

if (N = |STSL|) then
ENGAGED := false;

if(initiator) then finish;
else

localGroup:=merge (localGroup, EXPLORER.getLocalGroup ()) ;

ECHO. setLocalGroup (localGroup) ;
send ECHO to PRED;

fi;

fi;

Figure 4. Echo Algorithm and Group merging

But, due to the mobility, nodes come and go. Currently, the
algorithms stops, if a node gets the same local group infor-
mation from all its neighbors. This local group information
is supposed to be the global group information.

4.6. Group Stability

In this subsection the stability of the groups is evaluated.
With stability we mean the time a group does not change,
i. e. no host is added or no group member leaves the group.
This duration is very important for our algorithms, because
in this stability time the group formation must be finished.
We developed a simulation tool to test, how long the groups
are stable. The velocity of the mobile hosts is uniformly dis-
tributed in the interval [0;5.2], the average velocity of the
mobile hosts is 2.6 ’“}—T This speed seems to be the prevail-
ing speed in pedestrian areas. Moreover we assume a radio
transmission radius of each mobile device of 50 meters.
Figure 5 shows this dependency. It shows, that the time a
group is stable, decreases rapidly with the increasing num-
ber of group members. A group with 2 people exists on the
average 30 seconds, whereas a group with 5 people is only
stable for 9 seconds. Nevertheless, a group that is stable for
9 seconds is still sufficient for our algorithms.

time in's

.
.8
20 o o

g
10 A “"’:

-
Wy 00y se0 g o

0 1 2 3 4 5 6 group
size

Figure 5. Group stability

5. Conclusion

In this paper we presented a kind of ad hoc applications
called Mobile Profile based Distributed Grouping (MPDG).
Each mobile host is endowed with its user’s profile and
while the user walks around groups are to be found, which
are composed of hosts with similar profiles.

The architecture of a MPDG application is shown. The al-
gorithm entity is responsible for local and global grouping.
At first, each host has to find its local group, which consists
of all neighbor hosts with similar profiles. Finally, the lo-
cal groups are exchanged and a global group is achieved.
We simulated a first MPDG application, which is a taxi-
sharing scenario, where potential passenger with similar
destinations form a group. For the future we will apply the
MPDG idea to other domains, e. g. the manufacturing or
lifestyle area.

References

[1] S.Banerjee and S. Khuller. A clustering scheme for hierarchi-
cal control in multi-hop wireless networks. Technical report,
University of Maryland, 2000.

[2] S. Basagni. Distributed clustering for ad hoc networks. In
Proceedings of the IEEE Int. Symposium on Parallel Archi-
tectures, Algorithms, and Networks, 1999.

[3] E.J. H. Chang. Echo algorithms: Depth parallel operations on
general graphs. IEEE Transactions on Software Engineering,
SE-8(4):391-401, July 1982.

[4] D. Fasulo. An analysis of recent work on clustering algo-
rithms. Technical report, University of Washington, 1999.

[5] C. Fraley and A. E. Raftery. How many clusters ? Which
clustering method ? Answers via model-based cluster analy-
sis. The Computer Journal, 41(8), 1998.

[6] E. M. Gafni and D. P. Bertsekas. Distributed algorithms
for generating loop-free routes in networks with frequently
changing topology. IEEE Transactions on Communications,
COM-29(1):11-18, January 1981.

[7]1 N. Malpani, J. Welch, and N. Vaidya. Leader election algo-
rithms for mobile ad hoc networks. In Proceedings of the
Fourth International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, 2000.

