
Extending context models for privacy in pervasive computing environments∗

Karen Henricksen1, Ryan Wishart2, Ted McFadden1 and Jadwiga Indulska2

1 CRC for Enterprise Distributed Systems Technology
{kmh, mcfadden}@dstc.edu.au

2 School of Information Technology and Electrical Engineering,
The University of Queensland
{wishart, jaga}@itee.uq.edu.au

Abstract

Privacy is widely recognised as a significant obstacle in-
hibiting the adoption of context-aware applications. In or-
der to remove this obstacle, advances are required in many
areas of context-awareness research. In this paper, we ad-
dress the incorporation of privacy support into context mod-
els. In particular, we present extensions to our context mod-
elling approach that address the challenges of assigning
ownership to context information and enabling users to ex-
press privacy preferences for their own information.

1. Motivation

Context-awareness is receiving increasing interest as a
software design approach that is appropriate for pervasive
computing. Context-aware software relies on various types
of context information in order to make decisions about how
to dynamically adapt to meet user requirements. This infor-
mation is usually derived from a range of sources, including
user profiles, applications, and sensors. Some types of con-
text information are inherently sensitive and must be pro-
tected in order to satisfy users’ privacy requirements.

Unfortunately, providing adequate protection for context
information is extremely challenging. Context-aware sys-
tems typically contain collections of heterogeneous infor-
mation with variable privacy requirements resulting from
(i) differences in the sensitivity of the information, (ii) dif-
ferences in users’ individual privacy preferences, and (iii)
changes in users’ privacy preferences over time and in re-
sponse to context changes. The problem of controlling ac-
cess to context information is further complicated by the
fact that pervasive computing environments permit looser
and more dynamic couplings between people and resources,

∗The work reported in this paper has been funded in part by the Co-
operative Research Centre for Enterprise Distributed Systems Technology
(DSTC) through the Australian Federal Government’s CRC Programme
(Department of Education, Science, and Training).

thereby invalidating the usual approaches to ownership and
control of resources. In traditional computing systems, re-
sources such as files are often assigned ownership accord-
ing to who creates them, and owners control access to their
resources by setting permissions. In contrast, in pervasive
systems, there is often no direct link between an information
source (e.g., a camera in a meeting room) and the entities
that should be entitled to control the corresponding context
information for privacy purposes (e.g., the people captured
on camera). In addition, the relationship between these enti-
ties and the context attributes in which they have an interest
in terms of privacy - which we refer to in this paper simply
as an ownership relation - is often context-dependent.

As a result of these problems, most current context-
aware applications provide very little support for privacy.
Early efforts to address privacy concerns have investigated
the design of privacy-preserving location sensing systems
[10] and the integration of access control mechanisms into
pervasive computing infrastructure [4, 2]. These solutions
address only a small subset of the privacy challenges faced
in context-aware systems, and are based on many simpli-
fying assumptions (e.g., they only consider location infor-
mation, or assume that context information is neatly parti-
tioned into repositories that are under the control of a single
user). In this paper, we tackle the ownership challenges de-
scribed above in an attempt to provide one of the missing
pieces required for a complete privacy solution for context-
aware systems. We argue that ownership information forms
a natural extension to context models, and propose the inte-
gration of flexible notions of ownership into our previously
developed context modelling techniques. We also discuss
some early results of our efforts to develop abstractions that
users can exploit to express their privacy preferences.

2. Overview of our modelling approach

In the following sections, we briefly review our fact-
based and situation-based approaches to context modelling.

owns

person located at

controls

has type

owned by
device
located at

controlled by

engaged in

has channel

synchronous

Probability
(nr)+

Organisation

(identity)

permitted to use

requires device

Certainty

using

Communication

Channel (id)

Device

(id)*

(name)

Place

s

s

Mode (name)

Communication s

a

a

[]

has mode

located near
Device Type

(name)

iff p1 = p2

engaged in(p1,a) dependsOn person located at(p2,l)

 and l1=l2

Activity
(name)

Person

(identity)

 and device located at (d, l2)
* located near(p,d) iff person located at(p, l1)

Figure 1. Modelling context for a communication application using CML.

2.1. Fact-based context modelling

Our fact-based modelling approach provides a tool that
application developers can use to explore and formally
specify the context requirements of a context-aware appli-
cation. It provides constructs for defining the entities about
which context information is required and the types of in-
formation (or facts) that are of interest in relation to each
entity. It also allows developers to identify an appropriate
source for each fact type, specify dependencies and con-
straints, and explore information quality issues. The two
notations used to express the modelling constructs (graphi-
cal and textual) are outlined in the following sections.

2.1.1 Graphical modelling notation

As we have presented our graphical modelling notation in a
previous paper [7], we provide only a brief summary here.
The notation is based on Object-Role Modeling (ORM) [3].
ORM represents object types as ellipses and fact types,
which are relations on one or more object types, as se-
quences of role boxes. Each object type is assigned a name
and a reference mode that describes how instances of the
type are represented. Fact types are annotated with unique-
ness constraints, represented as arrows or lines spanning
one or more role boxes; these place restrictions on the pop-
ulations of the fact types in the manner of key constraints
on attributes of relations in the relational model. A variety
of other constraint types are also supported.

CML introduces various extensions to this basic nota-
tion, illustrated in an example model in Figure 1. The CML
extensions allow fact types to be labelled as:

• static (s), sensed (∧∧), derived (*) or profiled (◦) types,
depending on persistence and source;

• temporal ([]) types that capture histories of context in-
formation; and

• alternative (a) types that are capable of describing am-
biguous information (e.g., conflicting location reports
gathered from a variety of location sensors).

CML also provides extensions to support special constraints
on temporal and alternative fact types, annotation of fact
types with appropriate metadata types, and dependencies
between pairs of fact types.

2.1.2 Context schema notation
The context schema notation provides an alternative textual
format for modelling context, based loosely on SQL. A con-
text schema includes a declaration for each object and fact
type, in which appropriate keywords are included to rep-
resent annotations on fact types. The schema notation of-
fers the full expressiveness of the graphical modelling con-
structs, and incorporates additional detail that is inappro-
priate in a graphical model, including explicit naming of
roles in fact types and full definitions of reference modes in
terms of SQL data types. Context schemas provide a con-
venient input for tools that automatically generate helper

(a)
CREATE DOMAIN (

Person AS Identity,
Channel AS ChannelID,
CommunicationMode AS ModeName...

)

(b)
CREATE STATIC FACT TYPE HasMode
(

Channel channel KEY,
CommunicationMode mode

)
CREATE TEMPORAL PROFILED FACT TYPE EngagedIn
(

Person person SNAPSHOT KEY,
Activity activity

)...

(c)
CREATE SITUATION CanUseChannel(person, channel):

forall device
. RequiresDevice[channel, device]
. LocatedNear[person, device] and

PermittedToUse[person, device]

Figure 2. Excerpts from a context schema rep-
resenting the model shown in Figure 1.

classes that simplify the development of context-aware ap-
plications [9].

Context schemas are divided into several parts. The first
part defines the object types and their representations, as
shown in the example in Figure 2 (a). The second part de-
scribes the fact types in terms of previously defined object
types, as illustrated in Figure 2 (b). Finally, the third part
defines a number of situations based on the fact types of the
second part. We discuss these in the following section.

2.2. Situation-based context modelling

Our situation abstraction provides a means to describe
contexts in higher level terms than individual facts. Situa-
tions are defined using a variant of predicate logic, as shown
by the example in Figure 2 (c), and can be easily combined
using logical connectives to form increasingly rich context
descriptions. They effectively express conditions on the
context that can be evaluated against a set of variable bind-
ings and a context (represented as a set of facts) to yield a
truth value. Further information and examples can be found
in an earlier paper [7].

3. Modelling ownership of context

In the remainder of the paper, we consider the problem of
representing privacy requirements in relation to context in-
formation. Although our focus is on the context modelling

approach outlined in the previous section, the concepts that
we propose (ownership and context-dependent privacy pref-
erences) can also be transferred into other modelling ap-
proaches.

This section proposes an ownership scheme that ad-
dresses the challenges introduced in Section 1 and is ap-
plicable at both the fact level and the situation level.

3.1. Modelling ownership of context facts

Context models such as the one presented in Figure 1
are often instantiated as large fact bases that merge infor-
mation from a variety of sources about many different peo-
ple and/or organisations. This implies that ownership must
be captured using an approach that is scalable (in terms of
specification of ownership relations and checking of owner-
ship at run-time), yet sufficiently fine-grained to distribute
control appropriately to both individuals and groups.

We propose a scheme in which ownership relations are
specified at the level of the fact type, so that each type has its
own rules for assigning ownership to individual facts. These
rules associate each fact with zero, one or multiple owners.
Facts that have zero owners are public; that is, they are not
associated with any privacy preferences and can be freely
disclosed to anyone. Non-public facts are always visible to
their owners, but are disclosed to others only in accordance
with the privacy preferences of all owners.

In order to make the task of specifying ownership of in-
formation more manageable, we also associate ownership
with object types as described in Section 3.1.1. This re-
moves the need to specify ownership on every fact type, as
the default ownership of each fact type can be defined as the
union of the ownerships of the objects participating in the
fact type’s roles. We have found that in most cases, this de-
fault ownership is actually the desired one. In the few cases
where the default ownership is not appropriate, fact type
ownership can be specified as described in Section 3.1.2.

3.1.1 Modelling ownership of object types.

As seen in our example context model, object types repre-
sent a variety of physical entities, such as people and de-
vices, as well as abstract concepts, such as groups and clas-
sifications. Some of these object types have the capacity
to act as owners of the context information related to them,
while others do not. We refer to objects that are capable
of ownership as first class objects. In our example model,
there are two object types belonging to this class: Person
and Organisation. For first class objects, ownership need
not be explicitly specified. For each object type that is first
class, we prepend the context schema declaration with the
keywords “FIRST CLASS”, as shown in Figure 3 (a).

Other objects, such as devices, communication channels
and physical places, fall under the ownership of various first

(a)
FIRST CLASS Person AS Identity,
FIRST CLASS Organisation AS Identity,

(b)
SECOND CLASS Device AS DeviceID OWNED BY

SELECT person FROM Owns
WHERE Owns.device = Device
UNION SELECT person FROM Using
WHERE Using.device = Device
UNION SELECT organisation FROM OwnedBy
WHERE OwnedBy.device = Device,

SECOND CLASS Place AS PlaceName OWNED BY
SELECT person FROM Controls
WHERE Controls.place = Place
UNION SELECT organisation FROM ControlledBy
WHERE ControlledBy.place = Place,

(c)
THIRD CLASS CommunicationMode AS ModeName,
THIRD CLASS DeviceType AS TypeName,

(d)
CREATE SENSED ALTERNATIVE FACT TYPE PersonLocatedAt
QUALITY(Certainty)
(

Person person KEY,
Place place ALTROLE,

) OWNED BY person

(e)
CREATE SITUATION CanUseChannel(person, channel)...
OWNED BY person,
CREATE SITUATION Engaged(device)...
OWNED BY

SELECT person FROM Owns
WHERE Owns.device = device
UNION SELECT organisation FROM OwnedBy
WHERE OwnedBy.device = device
UNION SELECT person FROM Using
WHERE Using.device = device,

CREATE SITUATION WorkingHours()... UNOWNED

Figure 3. Adding ownership to the schema.

class objects. These are second class objects. The associa-
tions between first and second class objects can be context-
dependent, and are stated explicitly in the context schema
in terms of one or more fact types. Examples are shown in
Figure 3 (b). Device information is owned by the owners
and current users of the device, while place information is
owned by the people and/or organisations that control the
corresponding physical space.

Third class objects never have owners. In our example
model, communication modes fall into this category, im-
plying that all modes and all unary facts belonging to the
SynchronousMode fact type are universally visible. Third
class object types have simple schema declarations similar
to those of first class types, as shown in Figure 3 (c).

3.1.2 Modelling ownership of fact types.

The default ownership derived from object ownership dec-
larations can be overridden by defining a different owner-
ship within a fact type declaration, as shown in Figure 3 (d).
This example reassigns ownership of PersonLocatedAt
facts to the individuals described by the facts, replacing the
default scheme in which ownership is shared between these
individuals and the entities that have ownership over places
that appear in the facts. This modification gives individuals
greater control over their location information. It implies
that the people and/or organisations that control a place no
longer have automatic access to knowledge about the people
present in the place. Additionally, it ensures that a person’s
decision to disclose his/her location cannot be negated by a
more restrictive policy belonging to the place owner.

3.2. Modelling ownership of situations

As discussed in Section 2.2, situations describe abstract
classes of context defined in terms of fact types. One ap-
proach to handling privacy in relation to situations is to not
specify ownership explicitly, but instead apply the rules as-
sociated with the fact types referenced by the situation. In
this approach, the state of a situation is disclosed only when
all of the facts upon which this state depends are also dis-
closed. However, this approach is unsatisfactory for two
reasons. First, it is inefficient, as situations may depend on
large numbers of facts, each having distinct owners and pri-
vacy preferences. Identifying all of the owners, retrieving
the relevant preferences, and evaluating these for the current
context is likely to be extremely time consuming. Second,
it is unnecessarily restrictive. Queries on situations almost
always reveal less information than those on facts, as they
return simple truth values instead of precise values for at-
tributes such as location. This means that a more permissive
privacy policy can often be allowed. For these reasons, we
assign each situation its own ownership as shown in Figure
3 (e).

The first example demonstrates that ownership of sit-
uations can be trivially linked to values of variables (the
person variable, in this case). The second example illus-
trates context-dependent ownership: Engaged(device) is
owned by a combination of the owners and users of the de-
vice. The final example shows a situation that has no owners
and can be freely queried by anyone.

4. Modelling users’ privacy requirements

Assigning appropriate ownership of context information
is a first step towards supporting privacy. However, in order
to implement privacy mechanisms such as access control, it
is also necessary to provide a way for owners to stipulate the
conditions under which their information can be disclosed

to applications or users that request it. As in other privacy
frameworks [8, 1], we represent these conditions in terms of
privacy preferences. However, our model of privacy pref-
erences differs from previously proposed models in that it
offers all of the following features:

• inclusion of arbitrary types of context information in
preferences, instead of no context information [1], or
only limited types [8];

• specification of preferences over imperfect context in-
formation using advanced features of our context mod-
elling approach [6]; and

• representations for both positive and negative pref-
erences, so that users can describe circumstances in
which information can and cannot be disclosed1.

Our model for privacy preferences leverages the generic
preference model that we described in [7]. This model cap-
tures preferences as pairs containing a scope and a scoring
expression. The scope describes the context in which the
preference is applicable in terms of previously defined situ-
ations and arbitrary variables, while the scoring expression
assigns a score that indicates how appropriate an action de-
scribed by the variable values is within this context.

Our model of privacy preferences is a restricted form of
the general model, in which preferences are specified over
the following variables:

• the owner of the preference;

• the person or application issuing the query (requester);

• the purpose for which the query results will be used;

• the fact type or situation that is being queried; and

• relevant fact type attributes or situation variables.

The scores we currently use are either prohibit (do not dis-
close) or oblige (do disclose), but we are also investigating
scoring models that allow disclosure at different levels of
granularity or precision. We are currently also developing
a set of additional abstractions above our basic preference
model to ensure that the task of creating complete profiles
of privacy preferences is relatively straightforward for in-
formation owners. These will allow owners to dynamically
define context classes in terms of arbitrary features of the
context model (e.g., classifications of fact types), and then
attach their preferences to these instead of directly to indi-
vidual fact types and situations. We expect this feature to
be very useful, as it is tolerant of an evolving context model
and addresses observations made in previous research that
privacy requirements are often different for static versus dy-
namic information [8], and for histories versus snapshots.

1As discussed by Agrawal et al. [1], preference specification is consid-
erably simpler when both preference types are supported.

5. Future work

As well as refining our preference modelling approach,
we are extending the work presented in this paper in other
ways. One area we are investigating is how to better sup-
port disclosure of context information at different levels of
detail as advocated by Hengartner and Steenkiste [5] and
Lederer et al. [8]. Currently, we support this to some ex-
tent by allowing less restrictive privacy policies to be placed
on situations than on the facts referenced by the situations.
However, we are also investigating the use of obfuscation
techniques to degrade the quality of selected values in facts
according to users’ preferences, and the arrangement of
context information into hierarchies to facilitate informa-
tion disclosure at different levels of granularity. Addition-
ally, we are designing an access control mechanism to sup-
port privacy of users in pervasive computing environments,
based on the concepts introduced in this paper.

References

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. An XPath-
based preference language for P3P. In 12th International
Conference on World Wide Web, Budapest, 2003.

[2] F. L. Gandon and N. M. Sadeh. Semantic web technologies
to reconcile privacy and context awareness. Web Semantics
Journal, 1(3), 2004.

[3] T. A. Halpin. Information Modeling and Relational
Databases: From Conceptual Analysis to Logical Design.
Morgan Kaufman, San Francisco, 2001.

[4] U. Hengartner and P. Steenkiste. Access control to informa-
tion in pervasive computing environments. In 9th Workshop
on Hot Topics in Operating Systems, Hawaii, May 2003.

[5] U. Hengartner and P. Steenkiste. Protecting access to peo-
ple location information. In 1st International Conference
on Security in Pervasive Computing (SPC), Lecture Notes
in Computer Science, pages 25–38. Springer, 2004.

[6] K. Henricksen and J. Indulska. Modelling and using imper-
fect context information. In Workshop on Context Modeling
and Reasoning (CoMoRea), 2nd IEEE Conference on Perva-
sive Computing and Communications (PerCom), pages 33–
37, Orlando, March 2004.

[7] K. Henricksen and J. Indulska. A software engineering
framework for context-aware pervasive computing. In 2nd
IEEE Conference on Pervasive Computing and Communica-
tions (PerCom), Orlando, March 2004.

[8] S. Lederer, C. Beckman, A. Dey, and J. Mankoff. Manag-
ing personal information disclosure in ubiquitous computing
environments. Technical Report IRB-TR-03-015, Intel Re-
search, Berkeley, June 2003.

[9] T. McFadden, K. Henricksen, and J. Indulska. Automating
context-aware application development. In UbiComp Work-
shop on Advanced Context Modelling, Reasoning and Man-
agement, Nottingham, September 2004.

[10] G. Myles, A. Friday, and N. Davies. Preserving privacy in
environments with location-based applications. IEEE Per-
vasive Computing, 2(1):56–64, January-March 2003.

