
Balancing Autonomy and User Control in Context-Aware Systems - a Survey

Bob Hardian, Jadwiga Indulska and Karen Henricksen
School of Information Technology and Electrical Engineering, The University of Queensland

{bhardian, jaga, karen}@itee.uq.edu.au

Abstract

Application autonomy can reduce interactions with

users, ease the use of the system, and decrease user
distraction. On the other hand, users may feel loss of
control over their applications. A further problem is
that autonomous applications may not always behave
in the way desired by the user. To mitigate these
problems, autonomous context-aware systems must
provide mechanisms to strike a suitable balance
between user control and software autonomy. In this
paper, we present a survey of research on balancing
user control and system autonomy in context-aware
systems. We address various issues that are related to
the control-autonomy trade-off, including issues in
context modelling, programming models and tools, and
user interface design.

1. Introduction

The proliferation of mobile and embedded
computing devices requires a change in the nature of
interactions between users and computers. One of the
goals of pervasive computing is to reduce user
interactions with computing applications: i.e., to make
applications more autonomous and proactive. To
become autonomous and proactive, pervasive
computing applications need to place greater
dependence on context information in order to
dynamically adapt their behaviour to suit the
environment and user requirements.

Application autonomy can reduce interactions with
users, ease the use of the system, and decrease user
distraction. On the other hand, users may feel loss of
control over their applications. A further problem is
introduced by trade-offs between prescription and
freedom, which may result in autonomous applications
not behaving in the way desired or expected by the user
[1]. To mitigate these problems, autonomous context-
aware systems must provide mechanisms to strike a

suitable balance between user control and software
autonomy. This involves providing mechanisms to
make users aware of reasons for application
adaptations by selectively revealing aspects of the
application state, such as context information, user
preference information and adaptation logic used in
decision making processes. By providing this
information, users may be able to correct undesirable
actions (for example, by changing context information
or preferences appropriately). However, users can have
varying levels of expertise, and this affects their
understanding of system operations. Therefore, the
challenge is not only to identify what application state
information should be exposed, but also in what
manner (e.g., with what level of explanation).

In this paper we describe requirements for achieving
balance of control between users and context-aware
applications, and evaluate existing solutions for
addressing these requirements. There are few existing
solutions because the challenge of designing
applications to provide appropriate control to users has
traditionally taken a back seat to more fundamental
problems in context-aware systems, like sensing and
interpreting context. At the end of the paper, we also
provide a brief road-map for future work in this area.

2. Balance of control

The design space for providing user control in
context-aware applications can be characterised in
terms of the continuum shown in Figure 1.

At the leftmost end (A), users are given full control
over application behaviour, and applications have very
little autonomy. Applications designed in this way are
the most interactive. Conversely, at the other end (C),

Figure 1. A continuum of user control versus
application autonomy

applications only require a small amount of user
control, while pro-activity and autonomy play
important roles in reducing interactions with users.

Applications can also occupy any intermediate
position on the continuum (position B). However, it
cannot be assumed that one position is always better
than another for a given application. The appropriate
position along the continuum will be dictated by the
user’s needs, situation and expertise.

In traditional applications, the trade-off between
user control and software autonomy has been fixed at
design-time. In contrast, context-aware applications
may need to adjust the balance of user control and
software autonomy at run-time. However, models for
designing applications to support this type of
adaptation do not yet exist. In the remainder of this
paper, we survey the work in the field of context-
awareness that is most closely related to this problem,
with the goal of demonstrating the current state-of-the-
art and highlighting key issues for future work.

3. Studies on user control

User control can be conceptualised as the level of

user intervention that is required to operate a system
[2]. By placing a greater dependence on contextual
information, a context-aware system can operate with
limited user intervention. However, van der Heijden
[2] argues that the transfer of control from the user to
the system results in an increase in user anxiety (that is,
the personal discomfort that a user associates with the
use of the system), so that the lower the level of user
control, the more anxiety people exhibit after using the
system. However, one of the objectives of pervasive
computing is to decrease mental effort in the
interaction with the system. Van der Heijden also
argues that, the lower the level of control, the easier to
use people perceive the system to be. This is because
highly autonomous systems require less input and
thought on the part of the user.

In general, the user’s sense of control decreases
when the autonomy of the application increases;
however, as discussed by Barkuus and Dey [3], users
are willing to accept a large degree of autonomy from
applications as long as the application’s usefulness is
greater than the cost of limited control.

Designing user interactions with computers involves
deciding how to divide functions between humans and
computers [4]. Not all tasks can (or should) be
delegated to the system. There are residual tasks that
are left to human users when a system is automated. In
order to ensure that the residual tasks can be carried out
effectively by users, the system should reveal its

current understanding of the automated function, and
allow users to correct this understanding whenever the
system produces undesirable outcomes.

In addition to applications exposing their
understandings of context information to users,
context-aware applications need to ensure that actions
they take on behalf of users are both intelligible and
accountable [5, 6]. That is, the systems cannot simply
be trusted to take action on behalf of users. Bellotti and
Edwards suggest that users should be involved in
system actions as follows (reproduced from [5]):

• If there is only slight doubt about what the desired
outcome might be, the user must be offered an
effective means to correct the system action;

• If there is significant doubt about the desired
outcome, the user must be able to confirm the
action the system intends to take; and

• If there is no real basis for inferring the desired
outcome, the user must be offered available
choices for system action.

As discussed by Bellotti and Edwards,
accountability of a context-aware system can be
achieved by informing the user of the system’s
capabilities and its understanding of the current
context, disclosing actions taken by the system,
providing feedback to the user, and providing
mechanisms for user control. However, Bellotti and
Edwards only suggest general design principles for
context-aware systems; their work does not extend to
recommending design approaches or methodologies
that can be used to put these principles into practice.

4. Context modelling and reasoning

Providing a sufficient understanding of a context-
aware system’s view of the context and its
corresponding actions as discussed in the previous
section requires selectively exposing some of the
internal application state to users. As discussed in
Section 1, this state information includes the available
context information (as well as the means by which it
was derived), the system’s current knowledge of the
user’s preferences, and additional knowledge and logic
used to arrive at adaptation decisions. By exposing
these types of information, users are better positioned
to understand and correct inappropriate actions than
when context-aware systems are developed in the form
of “black boxes” . This, in turn, increases user control,
as users may be able to trace inappropriate behaviours
back to incorrect context or preference information (or

even to failed or mis-configured sensors), and to
correct this information accordingly.

To date, the context-awareness community has
placed much more emphasis on modelling context
information than on modelling preferences and
adaptation logic. (Preferences and adaptation logic are
typically handled directly within the application source
code, in a manner that makes the logic relatively
difficult to change or expose to users.) The context
modelling techniques developed so far provide a
natural starting point for research on generic (i.e.,
application-independent) models for exposing context
information, and the means by which it was derived, to
users.

Context models vary from very simple models to
advanced models. Advanced context models can
capture not only basic facts but also high-level
situations derived from facts. They can also model
relationships between context facts and quality of
context information. Many efforts have been made to
develop common context models and representations,
as well as reasoning algorithms that facilitate context
sharing and interoperability among context-aware
applications. A recent survey by Strang and Linnhoff-
Popien [7] classified context modelling approaches into
several categories: key-value models, mark-up scheme
models, graphical models, object-oriented models,
logic-based models, and ontology based models. For a
broad discussion of approaches, we refer the reader to
that paper. Here, we describe a subset of the
approaches for illustrative purposes. At the end of our
discussion on context modelling, we use these selected
models to suggest possible approaches for revealing
context information to users. Our motivation for
choosing the particular context modelling approaches
that are covered in this section is to highlight the wide
variations in current context modelling approaches, and
to illustrate how different models naturally lend
themselves to different means of exposing context
information.

One context modelling approach, which we
developed in our work on software engineering
techniques for pervasive computing [8], is the Context
Modelling Language (CML). CML assists designers
with the tasks of exploring and specifying the context
requirements of a context-aware application. CML
provides a graphical notation for describing types of
information. The model provides two levels of
abstraction: facts, which capture fine-grained
information, and situations, which describe abstract
classes of context described in terms of facts. The
model also distinguishes various types of context
information, based on persistence and source (i.e.,

sensed, static, profiled and derived context), and allows
quality of context information to be modelled. In
addition, we have defined additional models for
describing user preferences and adaptation logic, both
of which are based on our context modelling approach.
These models will be described further in Section 5.2.

Thomson et al. [9] show another approach to model
situations in context-aware systems using information
retrieval (IR) techniques. This approach builds on the
fact that there are similarities between the tasks of text
classification and situation determination. A vector
space model can be used to describe situations in terms
of a multi-dimensional Euclidean space, where each
axis corresponds to a term. A situation snapshot is
treated as a document of terms. The vector space model
can be applied to the representation of contextual
information to position a situation snapshot in situation
space. Additionally, the situation of a snapshot can be
identified using text classifiers, such as Support Vector
Machine (SVM) techniques.

Ranganathan et al. [10] propose a model that is
based on first order predicate calculus. First order logic
can be used to perform inductive and deductive logic
reasoning on contexts. This approach allows the
deduction of higher-level contexts from low-level
sensed contexts using rule-based techniques.
Ranganathan et al.’s modelling approach also makes
use of an ontology to specify both basic context types
(in terms of classes) and the structure of context
predicates for use in checking predicate validity.

These modelling techniques are designed primarily
for internal use by context-aware applications and
supporting middleware components, as well as use by
application designers and developers. Very little work
has been done so far on developing conceptual models
or user interfaces for explaining the information
expressed using these modelling approaches to users.
Naturally, the different modelling approaches lend
themselves to different styles of explanation. For
example, Thomson et al.’s approach, which models
situations in terms of vectors, may lend itself to a
graphical style of explanation, in which relationships
between situations are depicted diagrammatically in
terms of overlaps, proximity, and so on. In contrast,
ontology-based approaches may be able to leverage
easily understandable ontology concepts (e.g.,
“sameAs” , “differentTo” , and “AllDifferent” in the
case of OWL [11]) to show relationships and explain
terms. In our modelling approach, it is possible to
show users run-time traces of situation, preference and
adaptation rule evaluations. These can help to explain
the use of context information by the application, and
can be used to identify only the relevant context

information to expose to users (i.e., the subset actually
used in a given decision made by a context-aware
application, as opposed to the entire set of context
information available to the application). We discuss
this idea further in Section 5.2.

In future work, it will be necessary not only to
explore techniques for exposing context information to
users for each modelling approach, but also to compare
the approaches to determine which are the most
appropriate (in general, as well as in specific
application domains) for building the “ intelligible and
accountable” systems advocated by Bellotti and
Edwards.

Another related problem is the development of
appropriate techniques for presenting different classes
of context information to users. The problem here is to
take each class of information (for example, activity
information, location information), and to identify the
most appropriate modes of presentation. For some
classes, a graphical presentation may be the most
natural, while for others, audio or textual presentation
will be more appropriate. Early work on visualisation
of location information, using graphical, map-based
approaches, has already been carried out by Aaltonen
and Lehikoinen [12] and Li et al. [13] (as well as
others), but more work is still needed in this area.

The issue of presenting context information is
complicated by the fact that separate presentation of
different classes of information may not always be
helpful. When a context-aware application combines
several classes of information in complex ways to make
decisions, it may be the combined result, rather than the
individual pieces of context information, that is
relevant to the user. In these cases, better results may
be achieved by showing direct links between the
application behaviours and the combined context
inputs, rather than showing pieces of context
information in isolation.

5. Programming models and tools

Developing context-aware applications that provide
appropriate levels of feedback and control to users
requires innovative programming models and tools. In
this section, we briefly review the following relevant
solutions: end-user programming techniques, a
preference-based decision support mechanism, and an
extension to Dey et al.’s Context Toolkit [14]. Other
programming models and tools have been proposed for
context-aware systems, but they are not covered, as
their emphasis is not on supporting user control.

5.1. End-user programming

End-user programming allows users, rather than
application developers, to define the behaviour of
context-aware systems. It aims to ensure a closer
match between user requirements and system
behaviours than is often achieved with traditional
software engineering approaches, and allows users to
add functionality that could not have been anticipated
by system designers.

One example of an end-user programming system is
a CAPpella [15], which supports a paradigm called
programming by demonstration. a CAPpella requires
the user to demonstrate desired system behaviours by
carrying out actions manually. It relies on machine
learning techniques to build recognizers to detect the
situations in which the actions should occur. Once the
system has been trained, it is able to carry out actions
automatically without prompting from the user.

The Topiary tool [13] is a second solution that
incorporates a simpler form of programming by
demonstration for recording scenarios for prototyping
purposes. However, it is not truly an end user
programming solution – instead, it aims to support
application designers by allowing them to create map-
based location models, develop scenarios by moving
objects around a location map, and create and run
storyboards. Topiary is focused exclusively on
location-based applications.

The Jigsaw editor [16] differs from a CAPpella and
Topiary in that it supports end-user programming by
assembly, rather than programming by demonstration.
It provides a visual interface based on a jigsaw puzzle
metaphor, which enables end-users to connect together
components, such as sensors, displays and applications,
to carry out tasks. Jigsaw primarily targets domestic
environments – for example, by enabling users to
construct doorbells or simple surveillance systems from
input and output devices in the home.

Although end-user programming techniques
generally provide better user control than traditional
software engineering techniques, they are not
appropriate for all application domains. They are most
appropriate when the required system behaviours are
reasonably straightforward. The simple tasks
commonly described in the literature – for example,
controlling lights or creating doorbells – are indicative
of the level of complexity that can currently be
achieved by end-user programming systems. A further
problem is that most of the literature on programming
by demonstration deals only with how to train the
system initially, not with how to later override or

modify behaviour (for example, when unexpected
actions arise or user requirements change).

5.2. Preference-based decision support

A more traditional approach to provide users with
control over their software is to incorporate preference
or personalisation mechanisms. This approach is well
known, but has not been widely studied specifically in
connection with context-aware applications.
Personalisation of context-aware applications is more
complex than personalisation of traditional
applications, because of the potential for dependencies
between the context and user preferences (specifically,
user preferences may be predicated on the context).

Although there are at least several context-aware
applications that allow configuration of user
preferences, there are few general programming tools
or models that support adaptation of application
behaviour based on a combination of context and user
preference information. We have developed one
solution that addresses this problem [17]. This solution
has three parts: (i) a generic preference model used to
specify context-dependent user requirements, (ii) a
programming model (the branching model) in which
preferences are combined with context information to
support decision making by applications about which
action(s) to invoke on behalf the user, and (iii) a
supporting programming toolkit. We have developed a
variety of context-aware applications using this
approach [8], and found that it improves user control,
but does not always improve transparency and
predictability, particularly when the preferences are
complex. Therefore, we are currently developing
extensions that provide greater feedback to users about
how their preference information is used at run-time.
Users will be able to view the particular preferences
and context information that led to past application
actions, and thereby “debug” and correct recurring
problems as discussed in Section 4.

5.3. Context Toolkit extension

Finally, Newberger and Dey [18] propose a very
specific solution for user control, based on Dey et al.’s
Context Toolkit [14]. This is founded on the idea that,
if application state information is exposed in an
accessible way, it can be leveraged for building
separate user interface components that allow
monitoring and control. The solution introduces an
enactor component into the Context Toolkit. The idea
behind this component is to encapsulate application
state information and adaptation logic, and to facilitate

external access through the provision of a standard
API. This allows user interface components, such as
Macromedia Flash components, to easily communicate
with enactors. These user interface components can
support monitoring and control of the enactor, thereby
facilitating fine-tuning of the enactor behaviour by the
designer. Enactors have the following standard sub-
components: references (for acquiring context data
from widgets), listeners (for monitoring changes), and
parameters (for controlling the behaviour).

Although this solution is primarily intended for use
by application designers, it is easy to see that a similar
solution could be developed to allow users to monitor
and control context-aware behaviour.

6. Conclusions and future work

Systems that sense and use context should selectively
reveal relevant context information to users, who can then
judge its accuracy. In order to be understood and
controlled, context-aware applications need to reveal the
elements that influence their behaviours. As well as
revealing context information, this can entail exposing
other aspects of the internal application state that come
into play in decision making processes.

As we discussed in this paper, techniques for
providing appropriate explanations and control
mechanisms to users, to offset common problems
introduced by highly autonomous behaviour, are either
primitive or non-existent in current context-aware
systems. One of the most advanced approaches to
providing user control is offered by end-user
programming techniques; however, as discussed in
Section 5.1, end-user programming is not appropriate
for all application domains. Newberger and Dey’s
extension to the Context Toolkit is also promising, but
has only been explored so far as a tool for the designer
to fine-tune application behaviour, not for end-user
control. Finally, our preference-based decision support
mechanism can potentially be opened up to allow users
to inspect traces of past preference and context
evaluations, but this remains part of our future work.
The use of traces will allow users to easily see where
decision making is going wrong. Control/feedback
mechanisms can be provided alongside the
explanations, so that users are not only passive
observers of the system behaviour, but are able to
directly manipulate it (for example, by adjusting
preferences).

Another important topic for future work involves
developing techniques for visualising context. Early
work has addressed visualisation of location
information, but further work is required, both in
relation to location information and other types of

context information. As discussed in Section 4,
different context modelling approaches lend themselves
to different styles of explanation and visualisation.
Therefore, there is a need to investigate model-specific
techniques, as well as to develop an understanding of
which modelling approaches are the most amenable to
explanation and visualisation, both in general as well as
in particular application domains.

Appropriate techniques for revealing context
information and decision processes will lead to new
programming models and toolkits for developing
context-aware applications. In most application
domains, these should eventually replace the current
programming models and toolkits which generally lead
to inflexible applications developed in a “black box”
style.

Finally, as we discussed in Section 2, users have
different requirements and capabilities when it comes
to interacting with context-aware systems. This means
that context-aware systems may need to vary the extent
and nature of feedback, explanations and control to
users at run-time. To support this, models of user
expertise are needed that are suitable for use in context-
aware systems. In addition, it will be necessary to
devise means of incorporating the notion of expertise
into visualisation and programming models. A related
issue will be how to support the notion of
“ interruptability” , so that the level of interaction with
users can also be adjusted according to the user’s
current task.

7. References

[1] K. Cheverst, N. Davies, K. Mitchell, and C. Efstratiou,

"Using Context as a Crystal Ball: Rewards and Pitfalls,"
Personal Ubiquitous Comput., vol. 5, no. 1, pp. 8-11,
2001.

[2] H. van der Heijden, "Ubiquitous computing, user
control, and user performance: conceptual model and
preliminary experimental design," in Proceedings of the
Research Symposium on Emerging Electronic Markets.
Bremen, 2003.

[3] L. Barkhuus and A. Dey, "Is context-aware computing
taking control away from the user? Three levels of
interactivity examined," in Ubicomp 2003: Ubiquitous
Computing, vol. 2864, Lecture Notes in Computer
Science. Berlin: Springer-Verlag, 2003, pp. 149-156.

[4] M. D. Harrison, R. E. Fields, and P. C. Wright,
"Supporting Concepts of Operator Control in the Design
of Functionally Distributed Systems," in Proceedings of
ALLFN'97. Galway, 1997.

[5] V. Bellotti and K. Edwards, "Intelligibility and
accountability: Human considerations in context-aware
systems," Human-Computer Interaction, vol. 16, no. 2-4,
pp. 193-212, 2001.

[6] S. Anderson, M. Hartswood, R. Procter, M. Rouncefield,
R. Slack, J. Soutter, and A. Voss, "Making Autonomic
Computing Systems Accountable: The Problem of
Human-Computer Interaction," in Proceedings of the
14th International Workshop on Database and Expert
Systems Applications: IEEE Computer Society, 2003,
pp. 718.

[7] T. Strang and C. Linnhoff-Popien, "A Context Modeling
Survey," in The Sixth International Conference on
Ubiquitous Computing (UbiComp2004). Proceedings of
the First International Workshop on Advanced Context
Modelling, Reasoning and Management. Nottingham,
England, 2004.

[8] K. Henricksen and J. Indulska, "Developing context-
aware pervasive computing applications: Models and
approach," Pervasive and Mobile Computing, In Press,
Elsevier, 2005.

[9] G. Thomson, P. Nixon, and S. Terzis, "Towards Adhoc
Situation Determination," in The Sixth International
Conference on Ubiquitous Computing (UbiComp2004).
Proceedings of the First International Workshop on
Advanced Context Modelling, Reasoning and
Management. Nottingham, England, 2004.

[10] A. Ranganathan and R. H. Campbell, "An infrastructure
for context-awareness based on first order logic,"
Personal Ubiquitous Comput., vol. 7, no. 6, pp. 353-364,
2003.

[11] D. L. McGuinness and F. v. Harmelen, "OWL Web
Ontology Language Overview, W3C Recommendation,"
2004.

[12] A. Aaltonen and J. Lehikoinen, "Refining visualization
reference model for context information," Personal
Ubiquitous Comput., vol. 9, no. 6, pp. 381-394, 2005.

[13] Y. Li, J. I. Hong, and J. A. Landay, "Topiary: a tool for
prototyping location-enhanced applications," in
Proceedings of the 17th annual ACM symposium on
User interface software and technology. Santa Fe, NM,
USA: ACM Press, 2004, pp. 217-226.

[14] A. K. Dey, G. D. Abowd, and D. Salber, "A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications," Human-
Computer Interaction, vol. 16, no. 2-4, pp. 97-166,
2001.

[15] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu, "a
CAPpella: programming by demonstration of context-
aware applications," in Proceedings of the SIGCHI
conference on Human factors in computing systems.
Vienna, 2004, pp. 33-40.

[16] J. Humble, A. Crabtree, T. Hemmings, K.-P. Åkesson, B.
Koleva, T. Rodden, and P. Hansson, "Playing with the
Bits - User-Configuration of Ubiquitous Domestic
Environments," vol. 2864, Lecture Notes in Computer
Science, 2003, pp. 256-263.

[17] K. Henricksen and J. Indulska, "Personalising Context-
Aware Applications," in OTM Workshop on Context-
Aware Mobile Systems, vol. 3762, Lecture Notes in
Computer Science: Springer-Verlag, 2005, pp. 122-131.

[18] A. Newberger and A. Dey, "Designer Support for
Context Monitoring and Control," Intel Research
Berkeley Technical Report IRB-TR-03-017, 2003.

