
Architecture and Protocols for the Internet of Things: A Case Study

Angelo P. Castellani∗†, Nicola Bui†, Paolo Casari∗, Michele Rossi∗, Zach Shelby‡, Michele Zorzi∗†
∗Department of Information Engineering, University of Padova, Via Gradenigo 6/B, I-35131 Padova, Italy

†Consorzio Ferrara Ricerche (CFR), Via Saragat 1, B building, I-44100 Ferrara, Italy
‡Sensinode Ltd., Hallituskatu 13-17 D, FIN-90100 Oulu, Finland

Email: {castellani,casarip,rossi}@dei.unipd.it, {bui,zorzi}@ing.unife.it, zach@sensinode.com

Abstract—In this paper, we describe a practical realization
of an Internet-of-Things (IoT) architecture at the University
of Padova, Italy. Our network spans the floors of different
buildings within the Department of Information Engineering,
and is designed to provide access to basic services such as
environmental monitoring and localization to University users,
as well as to manage service access based on user roles and au-
thorizations. The network is based on a flexible and expandable
infrastructure allowing easy node management. A support for
the 6LoWPAN standard makes nodes reachable from outside
the network using IPv6 and provides an infrastructure to
realize IoT applications.

I. INTRODUCTION

The gravitational core formed by the concepts of Web 2.0
and the Internet of Things (IoT) [1] is shifting Web appli-
cations and services concepts towards wider integration and
accessibility, in light of an anytime, anywhere, anything in-
ternetworking paradigm. The future Internet builds on these
bricks to make up a dynamic entity, yielding novel means of
interaction with services, other users, and the environment.
Wireless Sensor Networks (WSNs) have been recognized
as a very important block of this internetworking concept.
Tiny, distributed objects as they are, WSNs constitute a
reasonably cheap sensory extension to Internet-connected
devices; moreover, their computational capabilities allow
for further (though possibly limited) use flexibility and
functional expansion. Any kind of next-generation Internet-
enabled portable device will set up advanced interactions
with the “things” making up the new IoT, resulting in a
pervasive infrastructure of fixed and mobile heterogeneous
nodes, seamlessly providing, exploiting or sharing context-
based services and applications. In particular, capturing the
context and surroundings of devices will constitute a key
component, making such operations as “Googling” physical
reality possible and common [2]. Such a wide perspective
requires stable foundations, starting from a widely agreed
upon protocol and communication infrastructure, which has
currently been identified in the IPv6/6LoWPAN protocol
suite [3]. By integrating any object into the IP infrastructure,
6LoWPAN is an important enabling technology allowing to
merge newer and older Web services, as well as to support
the cited IoT interaction paradigm, while still running ev-
erything over the widespread Internet infrastructure.

As part of the SENSEI [4] consortium and in the context
of the WISE-WAI project [5], the University of Padova
is putting this vision into practice, by channeling expe-
rience in the field of wireless sensor networking towards
the realization of a scalable and easily extendable network
structure, which is basically formed of three classes of
nodes (base stations, mobile nodes and specialized nodes)

running compatible code but providing different functions
and carrying out different tasks. The network spans the floors
of three buildings, and includes high- as well as low-density
areas. Nevertheless, our focus is not only on the setup and
installation of the network (although this is by itself inter-
esting and challenging), but rather on its use, development
and structure optimization. To this end, all nodes are IPv6-
compatible, which makes them directly addressable from any
Internet-capable device. The nodes support diverse services,
from environmental parameter monitoring to localization,
and are in turn supported by lower-level functionalities
allowing, e.g., to switch the application being run on the
node, to change the class/role of a node, to spread software
changes and updates over the air, or to perform low-level
resets in case of malfunctions [6]. Offering services through
our network provides an opportunity to realize part of the
IoT vision and continue research efforts in the field: in
addition, it demonstrates the advantages of the IoT in the
management as well as everyday occurrences of University
life, as explained in Sec. III.

II. RELATED WORK

The interconnection of WSNs to the Internet has been
widely researched in the last few years. At the beginning
of the WSN era, researchers focused on the development
of dedicated systems, where highly specialized but non-
standard protocols were used within the WSN, whereas
one or multiple gateways were used to translate messages
and ultimately connect the WSN to the external IP world.
While these systems were generally efficient in the specific
application scenario they were designed for, they lacked
flexibility: developing new applications on top of them was
therefore time-consuming and cumbersome, as it required
modifications to the specialized protocols within the WSN.
As a remedy to that, the 6LoWPAN standard has recently
been proposed as a viable method to bring IPv6 to WSNs [7],
[8] so that sensor nodes can be natively addressed and
connected through the IP protocol. This has obvious advan-
tages such as rapid connectivity and compatibility with pre-
existing architectures, plug-and-play installation of WSNs,
rapid development of applications as well as the possibility
of integrating with existing Web services developed for
standard IP networks.

Web services are extensively and successfully used mech-
anisms in Information Technology (IT) systems; they may
be defined as techniques to develop interoperable and dis-
tributed applications exploiting Web standards like HTTP.
As discussed in [9], sensor networks can greatly benefit from
their usage, as Web services allow the integration of WSNs
into any system that is built on standard IT components, e.g.,

industry/home automation as well as home energy manage-
ment systems. TinyREST [9] efficiently implements Web
services on WSNs by carefully minimizing the overhead
introduced by the transport layer whilst using data formats
such as XML and WSDL. Web services can be classified
into SOAP-based and RESTful-based. The authors of [10]
have recently demonstrated that SOAP-based Web services
are doable for WSNs. The RESTful approach is however
currently preferred for these networks due to its lightweight
character [11]. RESTful has the sensor resource as its main
abstraction and every resource in every sensor node is linked
and retrieved through a Uniform Resource Locator (URL).
In addition, standard HTTP methods such as GET, POST,
PUT and DELETE are used respectively to acquire, modify
or delete the value of a given resource.

Recent research efforts explore the feasibility and the
performance limits of the RESTful approach for Web ser-
vices on top of 6LoWPAN for WSNs. These studies aim
at improving the usability of WSNs, making them suitable
for complex installations, while retaining the flexibility of
IP-based networks. A recent paper [11] presents an IP-
based WSN where nodes send data using Web services. The
authors of this paper show that this approach is doable for
resource constrained sensor nodes in terms of acquisition
time for the sensor data and power consumption. In addition,
they prove that TCP can be supported under particular
network settings. A similar approach has been presented
in [12] where WSN resources are integrated into IP-based
networks exploiting Web services.

Along these lines, in this paper we present our imple-
mentation of a Binary Web Service (BWS) [13] for WSNs.
Resources are handled according to the RESTful approach
and binary encoded XML is used to reduce the transmission
overhead. In addition, we exploit standard interfaces for
access (Resource Access Interface, RAI) and publication
(Resource Publication Interface, RPI) of resources. The
peculiarity of our work is that of presenting an actual system,
using standard protocols to offer various WSN services
to both the administrative staff and regular users of the
University (i.e., students and professors). We present our
current state of the art and what is planned in the future to
realize a complex WSN system; the resulting architecture
will be able to provide network services to a specific,
custom-designed base-station, as well as to generic mobile
nodes accessing the network using standard protocols.

III. SCENARIO

A University offers many application scenarios for
demonstrating the advantages brought about by the IoT in
real life. In particular, at least three service categories can be
offered in a University facility: i) Office automation: the ser-
vices belonging to this category are automated applications,
meant to help, e.g., the management staff; ii) Teaching: this
category includes all functionalities that can be exploited
by full registered users only; iii) Guest: visitors can access
this class of services to retrieve basic information (e.g., to
navigate around buildings) or to locate people.

68

32
112

16

16

48

40

50 m

DEI/A

DEI/D

DEI/M

DEI/G

Figure 1. Graphic representation of the testbed at the University of
Padova: the installation has been completed in all dark grey sections, and
is being carried out in light grey sections. Dashed lines highlight wireless
connectivity among far sections.

These services involve quite diverse technology, security
and quality requirements. For instance, the first category
includes such services as door access control, which aims
at granting access to qualified persons and therefore needs
integration with identification technologies (e.g., RFID) and
a reliable backbone network, Ethernet in our case. Moreover,
this application calls for complex security features, since
the network needs both to authenticate the users entering a
certain area and to avoid granting passage to forged IDs. On
the contrary, guest services do not need a particularly high
security level, but must be able to manage a large number
of users, hence requiring high scalability. In fact, in order
to route visitors through the building, the system needs to
run a reliable positioning system while, at the same time,
reporting information (such as location) to the users. This
can be performed with low-power radio interfaces, such as
the IEEE 802.15.4, so that users only require a USB dongle
for setting up communications with the fixed network. Even
though our testbed [6] can offer each of these services, in this
paper we only focus on those enabled by the wireless sensor
network backbone. In its actual configuration, outlined in
Figure 1, our testbed consists of more than 200 static sensor
nodes (currently being expanded to 300) and 100 more nodes
that can be used both as mobile stand-alone devices or as
USB devices for laptop connection.

By using Synapse++ [14], a fast and reliable over-the-
air reprogramming system, the static backbone can be
programmed with any of the following applications: i)
Web Services; ii) Localization; iii) Experimental protocols.
Experimental protocols and Localization can be installed
on demand in an arbitrarily large fraction of the network;
however, Web Services [13] constitute the default application
being run by the nodes using the Binary Web Service (BWS)
protocol.

In more detail, the BWS communicates through the IEEE
802.15.4 radio using the IPv6/UDP [3] protocol stack,
thus enabling interoperability between our testbed and the
Internet: in other words, it will be possible from any browser
to open a page on the IP address of a specific node and
look up/subscribe to its offered services, or read its sensor
data. The majority of our nodes offer baseline sensing
capabilities (light, temperature and humidity) as well as

some management parameters (battery level, transmission
power); however, nodes installed in specific locations are
programmed with additional services: for instance, sensors
in proximity of the teaching rooms can be asked for the
schedule of that room as well as a booking service; offices
have sensors that can record the name of the visitor and the
time of the visit; furthermore, the administrative staff can
use the testbed in order to read the temperature in the whole
building, and steer it to a comfortable level for employees
and students.

We are currently working on multiple aspects: technology,
smart automation and communications; we will connect
our testbed to available actuators, such as heaters, air
conditioners, light switches, etc. and a number of new
devices, such as an automated door key lock with RFID,
routing monitors for visitors and so on. In terms of smart
automation, we are developing control mechanisms to mon-
itor the environmental status of the buildings and generate
reports if critical or abnormal conditions are found. The
communication aspect is of fundamental importance, as
we aim at connecting every device using standard mobile
protocols either by browsing through gateway nodes or by
directly accessing nodes through native BWS. Thanks to the
aforementioned possibilities, our wireless sensor network
becomes much more than an experimental research tool,
turning it into a complete infrastructure allowing University
users to experience typical IoT services [1].

IV. NODE CHARACTERIZATION AND PARADIGM

REQUIRED

Notwithstanding the constraints (especially in terms of
nodes computational power and storage capabilities) of
the aforementioned scenarios, support to standard protocols
adapted for operation in a WSN (such as 6LoWPAN/UDP)
is highly recommended in order to achieve interoperability
and integration with current Internet-aware devices. In light
of these considerations, a minimal set of protocols encom-
passing all required functionalities is to be selected, in order
to minimize complexity by maximizing code reuse. To keep
network operations efficient, the architecture of the network
hosting these functionalities should be scalable and easily
extendable. To this end, we envision a resource-oriented
paradigm, whereby heterogeneous services are provided both
to sinks and to mobile nodes, which may be heterogeneous
and not designed to receive a custom service in a specific
network.

We distinguish among three types of nodes with corre-
spondingly different feature sets, depending on node mo-
bility, operating range, and level of specialization: i) Base
Station Node (BSN), e.g., an IPv6 sink/router; ii) Mobile
Node (MN) (e.g., wireless dongle to add WSN connectivity
to a standard laptop); iii) Specialized Node (SN) (e.g.,
offering services like temperature readings or actuation).
BSNs are usually static nodes, bearing no specialization and
a network-wide operating range; to this end, they must be
provided with bidirectional and simultaneous communica-
tion with one, many and possibly all nodes in the network,
also exploiting data aggregation techniques as appropriate.

Usually BSNs have direct connection to the Internet and
can provide connectivity to the WSN; a dedicated channel
for receiving events and subscribed data is also required.
MNs, in a typical use case, are external nodes running no
specific firmware for the WSN in use, but rather featuring
compatibility with the network specifications and protocols.
Given such compatibility MNs should be provided zero-
knowledge access to any particular node in the network,
possibly including BSNs; to this end, network probing, direct
access to resources, temporary network join and resource
subscription are relevant features to be supported. Finally,
SNs are nodes in charge of delivering one or more very
specific services, which makes SNs become a core part of
the network, and potentially the most limited devices. Even
though they are specialized, they might be in charge of
diverse activities: they need to serve requests by BSNs, MNs
or even other SNs requiring cooperation or relaying.

This preliminary description allows us to identify a set
of requirements that should be supported by the network
communication paradigm. In light of the interoperability
and integration of the network with Internet-based com-
munications, we choose to employ the Representational
State Transfer (REST) paradigm [15] well known in the
Internet domain, whereby any resource is addressed by
a unique identifier of standard format. The features to
be supported are summarized as follows: i) direct simple
resource request/response; ii) concise one-to-many resource
request/response; iii) structured resource request/response;
iv) resource subscription and event or delayed notification;
v) zero-knowledge network probing.

While being powerful enough to address interoperability,
REST makes the access to any resource as easy as a web
server interrogation. REST also simplifies the development
of the network communication paradigm, which can be built
around a single protocol by properly leveraging our flexible
Binary Web Service [13] implementation in a versatile
resource-oriented node design.

V. TINYOS NODE IMPLEMENTATION

A. Binary Web/XML Services

The Binary Web Service (BWS) protocol [13] is a bi-
nary, scaled-down realization of REST, but compatible with
the verbose HTTP protocol [16]. BWS is based on UDP,
enabling the REST interaction model on severely limited
devices such as wireless sensors. To access a resource
through BWS, a request message is issued. In the 2-3 bytes
long header of the message are specified the target resource
(identified by a URL), the access method (GET, PUT, POST,
etc.) and the format of the payload (Content-Type); the
payload contains any data required to fully describe the
request. A response describing the result of the request is
sent by the receiving resource to the requesting entity, which
is identified by its source (IP, port) pair; the header of the
response contains the HTTP status code summarizing the
result and the Content-Type (if any). All the aforementioned
fields are encoded in binary form in a simple, short header;
full support for URL strings is preserved but, alternatively,
the target resource can be specified using a binary code.

BWS delegates payload data compression, and advocates
the use of Efficient XML Interchange (EXI) from W3C [17]
for Binary XML encoding. This choice is mainly due to
the chance of operating the encoder in a schema-informed
byte-aligned mode [17] which makes coding simpler and
reduces the output size. However, we note that building
the grammar and thus the specific implementation from a
schema is quite complex; moreover building any generic
EXI encoder is indeed difficult, but simple implementations
can be derived only by analyzing specific schemas and by
deriving the subset of features required by those schemas.

B. Implementation description

In our implementation, the communication with any re-
source is uniformed using common, flexible components
(e.g., Binary XML Services), through a single-instance
and resource-shared BWS implementation on top of the
UDP/6LoWPAN stack. The same BWS module is designed
to provide both server and client capabilities. It supports
opening multiple servers, each able to serve parallel incom-
ing requests from clients; as a client, it can handle concurrent
communication with multiple different servers; therefore our
implementation allows flexible services to be based on a
single, reusable component. Both the client and the server
entities provide support for URL requests or compressed
URL requests, i.e., numerical identifiers (ID).

The BWS component provides server functionalities
through the BWSServer interface, triggering an event for
each incoming request to the registered resource.

interface BWSServer{

event error_t request(

uint16_t rid,

uint8_t id,

uint8_t method,

uint8_t content_type,

uint8_t *content,

uint16_t length);

event error_t requestURL(

uint16_t rid,

uint8_t *url,

uint8_t method,

uint8_t content_type,

uint8_t *content,

uint16_t length);

command void response(

uint16_t rid,

error_t status,

uint8_t content_type,

uint8_t *content,

uint8_t length); }

The interpretation of the method and content is left to
the appropriate resource depending on the requested web
service, which is identified by the server port and the URL
or ID. Every request is identified by a 16 bits locally unique
field (rid), in order to support triggering multiple requests
to the same component. A web service can still be configured
to handle one request at a time by refusing further in-
quiries using an appropriate status response; more advanced
components can track multiple requests and independently
respond to each. The BWS module keeps track of every
active request, by mapping every rid to the requesting

node IPv6 address and UDP port. Responses can be sent
asynchronously issuing a response command to the BWS
server and providing the rid matching the request being
served.

Remote BWS servers can be accessed through a comple-
mental interface (BWSClient), which provides methods to
access BWS features. On a client, every request is mapped to
a command which requires a service to the BWS component;
the corresponding response is an event triggered by the BWS
module. To support clients sending concurrent requests, a
16-bit rid is associated to each request and returned to the
resource as the result of the request or requestURL
command. The response event is fired within the initiating
component when the response message is received.

interface BWSClient{

command uint16_t request(

ip6_addr_t *addr,

uint16_t port,

uint8_t id,

uint8_t method,

uint8_t content_type,

uint8_t *content,

uint8_t length);

command uint16_t requestURL(

ip6_addr_t *addr,

uint16_t port,

uint8_t *url,

uint8_t method,

uint8_t content_type,

uint8_t *content,

uint8_t length);

event void response(

uint16_t rid,

error_t status,

uint8_t content,

uint8_t *payload,

uint8_t length); }

The versatile design of the BWS component has been en-
abled by a proper modification of the 6lowpan component
interfaces. The IP6P component has been re-engineered to
exploit the flexibility of parameterized interfaces as used in
a similar manner by the ActiveMessageC; this allows
the BWS module to take full control over the 6LoWPAN
subsystem using the UDP interface described below. Note
that the component IP6P parameterizes the interfaces de-
pending on the local UDP port: for this reason, it does
not appear among the function arguments. This modification
allows easy code reuse for processing incoming packets or
for writing outgoing packets to different UDP ports.

interface UDP {

command error_t sendTo(

const ip6_addr_t *addr,

uint16_t port,

const uint8_t *buf,

uint16_t len);

event void sendDone(

error_t result,

void* buf);

event void receive(

const ip6_addr_t *addr,

uint16_t port,

uint8_t *buf,

uint16_t len);

� �

��������

�	
����
��

�����������������������

���������������� !���������

"�#
"
#

���$��"���%����

��$�

&�'(

)%'�

�*+,

-	�
�%,,�����,,���

���

Figure 2. Components wiring in the SENSEI node.

VI. SENSEI CASE-STUDY

Our framework implementation is optimized, so as to
allow easy provision and configuration of real-life resources.
In the context of the European SENSEI project [4], the BWS
module has been then connected to two different Binary
XML Services, Resource Access and Resource Publish,
providing project-specific node interfaces.

The Resource Access Interface (RAI) provides access to
specific resources identified by the URL or the ID specified
by the BWS module. BWS methods are mapped as follows:
i) GET provides a reading of the current value of the
resource; ii) PUT sets, if applicable, the resource value
or inputs a new command; iii) POST is used to subscribe
to the resource by setting an appropriate criterion to push
notifications directly to the sender. The Resource Publish
Interface (RPI) is used instead to provide a comprehensive
description of node properties and offered Web services to
a BSN.

RAI and RPI communication is based on an out-of-band
agreement on an XML schema representing the information
to be conveyed in the various operations, and then on an
XML content exchange whenever required. EXI [17] has
been selected as the standard format for Binary XML: how-
ever a full implementation of an EXI encoder/decoder is not
advisable for a SN; therefore, a simplified implementation
is to be preferred.

By investigating the EXI standard and the agreed XML
schemas, the EXI coded schemas have been mapped to static
and variable parts; furthermore, the process of encoding and
decoding an EXI request body is done as follows: for every
resource, headers, footers and separators are known; between
such tags, resource-related values are read or written ac-
cording to the simple algorithm required to encode/decode
numeric values in the EXI coding.

Considering the well-known telosb sensor node ar-
chitecture [18], we evaluated the ROM/RAM usage of the
system described above, and summarized it in Table I. We
highlight that implementation of the Binary Web Service
module makes efficient use of both ROM and RAM size,
independently of the number of clients or servers required
by the upper layers. The RAI component translates re-
quest and associates them to the appropriate resource; it

Table I
TINYOS COMPONENTS ROM/RAM UTILIZATION

Component ROM RAM

TinyOS core 1398 4

802.15.4 and ActiveMessage 9418 328

UDP/6LoWPAN 5182 1936

BWS 2950 326

RAI/RPI 1374 156

Resources 9800 354

also implements a highly specialized EXI encoder/decoder
which proves to be effective in terms of ROM occupancy.
Resource components (temperature, humidity, light, etc.)
require a larger memory footprint mainly because a spe-
cialized driver component is required for every on-board
chip. RAM occupancy, on the other hand is low with respect
to the available space (approximately 10 kB), except for
the UDP/6LoWPAN implementation which requires a large
static RAM allocation, mainly due to a 1280-byte buffer
required for re-assembling fragmented datagrams.

VII. LESSONS LEARNED, VISION AND FUTURE WORK

Thanks to the experience acquired up to the current stage
of the SENSEI project, we have envisioned a next-generation
system which leverages on the strengths of the architecture
set up to date. A Web Service model for WSNs has proved to
be valid for the current purposes and a careful implementa-
tion is strictly required to adapt this communication model to
a limited sensor node. The versatility of our implementation,
together with the flexibility of Web services allows to make
further steps towards a fully integrated system built around
the BWS component.

Our vision now requires that every interaction (e.g., as
devised at the end of Section IV) is managed internally by
the BWS. Each interaction will be mapped to use standard
REST methods, paired with a proper XML definition of the
data required in the process, to allow strong code reuse even
for very different operations or services offered.

As shown in the previous section direct simple re-
quest/response interactions have been easily implemented,
even though a specific interaction to gather many responses
from different nodes through a single request (concise
one-to-many communication) has been currently left as a
future work. Another interesting feature required by next-
generation systems is support for structured requests, re-
quired to gather multiple values from the same node; also,
interpreting complex requests based on the current state of
the resources (e.g., turn on the air conditioning system in
rooms with temperature higher than a certain threshold and
where the lights are turned on) is also a required function
that can be provided. In any event, the previous interactions
will be implemented thanks to the BWS component flexi-
bility which, together with the versatility of Web services,
can support complex XML interactions without redesigning
the paradigm and the components already in use.

In this vision EXI coding plays a central role, as binary
XML coding should be easy to implement and should allow
strong code reuse in order to facilitate the implementation

of multifaceted Web services on sensor nodes. However,
our understanding of EXI format has led to the conclusion
that the procedure required for coding two different XML
schemas with minimal differences could be completely dif-
ferent, so a minimal variation of the schema may require a
very different implementation. In this light, we have started
evaluating the EXI coding for sensor nodes, by building
an XML schema pre-processor that will directly output the
variable part of the C code required to encode/decode that
schema; as a second step, we will supply the pre-processor
with a set of optimizations aimed at minimizing the output
code size.

The last step in building our next-generation network
will be the standardization of the offered resources and
services. This will be accomplished by assigning a URL to
all resources in a standard, reusable and extendable fashion,
and then by mapping the procedure to opt-in and configure
guest mobile nodes to a web service URL. We are confident
that such a system can be easily replicated in different
scenarios through small changes specific to the different
resources and services offered, but without requiring any
modification to its core architecture.

In order to realize the Internet of Things, the simple,
efficient way of realizing the REST architecture presented
in this paper is surely needed as a global standard. Although
TCP/HTTP/XML is useful for some applications and more
powerful networks and devices, it is inappropriate for a
huge range of uses. Recently a new standardization effort
has been started at the IETF called 6lowapp [19] with the
goal of realizing application layer paradigms for constrained
networks and devices.

VIII. CONCLUSIONS

This paper presented an integrated framework for inter-
connecting WSNs and actuators to standard networks as
Web services. This is achieved through shared standard
interfaces working with scalable lightweight protocols, such
as 6LoWPAN. The framework has been validated through a
case study realized under the guidelines of SENSEI, one
of the largest European project on WSNs, and through
the actual implementation of the services developed on the
department-wide WSN testbed set up in the Information
Engineering Department (DEI) at the University of Padova.

Even though some of the described functionalities are
still under realization, our WSN installation can already
offer many different services ranging from localization to
data gathering and actuation control. The next steps in the
development of our infrastructure will deal with seamless
interoperability with available services and with the further
extension of the catalogue of resources available at the
University.

ACKNOWLEDGMENT

This work has been supported in part by the Cassa di
Risparmio di Padova e Rovigo Foundation, Italy, under the
project WISE-WAI, http://cariparo.dei.unipd.it, and by the
FP7 EU project “SENSEI, Integrating the Physical with

the Digital World of the Network of the Future,” Grant
Agreement Number 215923, http://www.ict-sensei.org.

REFERENCES

[1] Future Internet Assembly, “European Future Internet Portal.”
[Online]. Available: http://www.future-internet.eu/

[2] “Sense & Sensitivity by Orange Lab.” [Online]. Available:
http://senseandsensitivity.rd.francetelecom.com/index.php

[3] Z. Shelby and C. Borman, 6LoWPAN: The Wireless Embed-
ded Internet. Wiley, Nov. 2009.

[4] EU Integrated Project, “SENSEI: Integrating the physical
with the digital world of the network of the future.” [Online].
Available: http://www.ict-sensei.org/

[5] “WISE-WAI project web site.” [Online]. Available: http:
//cariparo.dei.unipd.it

[6] P. Casari et al., “The WIreless SEnsor networks for city-Wide
Ambient Intelligence (WISE-WAI) project,” MDPI Journal
of Sensors, vol. 9, no. 6, pp. 4056–4082, Jun. 2009. [Online].
Available: http://www.mdpi.com/1424-8220/9/6/4056

[7] A. Dunkels and J. P. Vasseur, “IP for Smart Objects,” IPSO
Alliance White Paper No. 1, Sept. 2008.

[8] J. W. Hui and D. E. Culler, “IP is Dead, Long Live IP for
Wireless Sensor Networks,” in Proc. of ACM SenSys, Nov.
2008.

[9] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos,
and K. Kim, “TinyREST - a protocol for integrating sensor
networks into the internet,” in Proceedings of REALWSN,
Stockholm, Sweden, Jun. 2005.

[10] B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny
web services: design and implementation of interoperable and
evolvable sensor networks,” in Proceedings of ACM SenSys,
Raleigh, NC, Nov. 2008.

[11] D. Yazar and A. Dunkels, “Efficient Application Integration in
IP-Based Sensor Networks for Emerging Energy Management
Systems,” in Proceedings of ACM Buildsys, Berkeley, CA,
US, Nov. 3 2009.

[12] L. Schor, P. Sommer, and R. Wattenhofer, “Towards a
Zero-Configuration Wireless Sensor Network Architecture for
Smart Buildings,” in Proceedings of ACM Buildsys, Berkeley,
CA, US, Nov. 3 2009.

[13] Z. Shelby, M. I. Ashraf, M. Luimula, J. Yli-Hemminki, and
A. P. Castellani, “BinaryWS: Enabling the Embedded Web,”
Coimbra, Portugal, submitted to EWSN.

[14] M. Rossi, N. Bui, G. Zanca, L. Stabellini, R. Crepaldi, and
M. Zorzi, “Code Dissemination in Wireless Sensor Networks
using Fountain Codes,” IEEE Trans. Mobile Comput., 2010,
accepted for publication.

[15] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation,
University of California, Irvine, 2000. [Online]. Available:
http://www.ics.uci.edu/∼fielding/pubs/dissertation/top.htm

[16] R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, “Hypertext Transfer Protocol
– HTTP/1.1,” IETF RFC 2616, 1999. [Online]. Available:
http://www.ietf.org/rfc/rfc2616.txt

[17] J. Schneider and T. Kamiya, “Efficient XML Interchange
(EXI) Format 1.0,” W3C Working Draft, 2008. [Online].
Available: http://www.w3.org/TR/2008/WD-exi-20080919

[18] CrossBow, “TelosB Mote Platform.” [Online].
Available: http://www.xbow.com/Products/Product pdf files/
Wireless pdf/TelosB Datasheet.pdf

[19] “IETF 6LowApp wiki.” [Online]. Available: http://6lowapp.
net

