
4th International Workshop on Sensor Networks and Ambient Intelligence 2012, Lugano (23 March 2012) 

A Development Methodology to Facilitate the 
Integration of Smart Spaces into the Web of Things 

Iván Corredor, Josué Iglesias, Ana M. Bernardos, José R. Casar 
Telecommunications School, Universidad Politécnica de Madrid, Spain 

{ivan.corredor, josue,abernardos,jramon}@grpss. ssr.upm.es 

Abstract—How to create or integrate large Smart Spaces 
(considered as mash-ups of sensors and actuators) into the 
paradigm of "Web of Things" has been the motivation of many 
recent works. A cutting-edge approach deals with developing and 
deploying web-enabled embedded devices with two major 
objectives: 1) to integrate sensor and actuator technologies into 
everyday objects, and 2) to allow a diversity of devices to plug to 
Internet. Currently, developers who want to use this Internet-
oriented approach need have solid understanding about sensorial 
platforms and semantic technologies. In this paper we propose a 
Resource-Oriented and Ontology-Driven Development (ROOD) 
methodology, based on Model Driven Architecture (MDA), to 
facilitate to any developer the development and deployment of 
Smart Spaces. Early evaluations of the ROOD methodology have 
been successfully accomplished through a partial deployment of a 
Smart Hotel. 

Keywords-Smart Space, Web of Things, Model Driven 
Architecture, Development Methodology, Resource-Oriented 
Architecture 

I. INTRODUCTION 

The emerging notions of Internet of Things (IoT) [1] and 
Web of Things (WoT) [2] are coming up with Weiser's 
premonitory theories [3] about ubiquitous and calm computing. 
Those early theories envisioned Smart Spaces as physical 
spaces digitally augmented by heterogeneous smart objects 
(bundles of sensors, actuators, displays and computational 
components). In particular, in this paper, we refer to Smart 
Object as 'a computationally augmented tangible object', 
which is 'aware' of its own situation and provide services 
according to its own context 'without compromising its 
original appearance and interaction metaphor' [4]. The IoT 
paradigm suggests an IP-based internetworking schema in 
order to get resource-constrained devices ready to be plugged 
into Internet according to the WoT concept. Nowadays, both 
IoT and WoT are reaching an acceptable level of maturity 
allowing isolated sensor and actuator devices to be part of a 
connected network of heterogeneous Smart Objects. Therefore, 
in a short period, Smart Spaces made up of hundreds, even 
thousands, of networked daily Smart Objects, will become 
usual. 

Nowadays, any developer who wants to tackle with a Smart 
Space has to have strong understanding on general and specific 
technology aspects as communication protocols (e.g. IEEE 
802.15.4, 6L0WPAN, uIP...), platforms of wireless sensor and 
actuator networks (WSANs) or service discovery or security 
procedures, among others. Some research works have risen 
from the Model Driven Engineering (MDE) principles [5-7] 

with the aim of facilitating the management and organization 
of those knowledge areas, to enable rapid prototyping of large 
business systems. The IoT and WoT paradigms fit well with 
MDE-based approaches as this model: 
I) Allow modeling every part of the system and real entities 

through high-level models independently of the underlying 
heterogeneous technologies. 

II) Decouple consumers and providers of contextual resources 
{sensor, actuators and logic processes), enabling a real 
reuse of components. 

III) Provide development tools to facilitate rapid prototyping of 
complex deployments even for non-expert users. 

In spite of above mentioned characteristics, it is still difficult 
to get a common abstraction modeling which covers a wide 
range of scenarios involving a number of different sensors, 
actuators and logic processes. In order to solve this gap, this 
paper presents the Resource-Oriented and Ontology-Driven 
Development (ROOD) methodology. The ROOD methodology 
enables traditional MDE tools to rapid prototyping of Smart 
Spaces according to the WoT paradigm. The cornerstone of our 
proposal is the Smart Space Modeling Language (SSML), 
which allows modeling singularities of Smart Spaces, i.e. 
resources, services and platforms. The resource concept 
described by SSML is inspired in Fielding's seminar thesis [8]. 
The ROOD methodology manages two models that are defined 
from the SSML: the Smart Object Model (SOM) and the 
Environment Context Model (ECM). The ECM is focused on 
describing high level behaviors and context information of the 
entire Smart Space; the SOM models artifacts for specific 
Smart Objects, i.e. resources, services and business processes. 

The rest of the paper is structured as follows. Section II 
gathers relevant works on approaches for modeling services 
and resources in IoT and WoT. Section III describes an 
overview of the major features of the ROOD methodology. 
Section IV presents the ROOD methodology through a case 
study of a Smart Hotel. Section V describes first results from 
an early implementation of ROOD. Section VI concludes the 
paper with future work around our proposal. 

II. RELATED WORK 

A. MDE-based approaches 

In summary, the objective of Model Driven Engineering 
(MDE) [9] is to create model-based development environments 
from which code is automatically generated for a number of 
different platforms. Therefore, MDE allows developing 
software components without having previous knowledge 
about specific programming languages or pervasive platform 
technologies. The Model Driven Architecture (MDA), 

http://ssr.upm.es


proposed by the Object Management Group (OMG), is a 
proposed fulfillment of MDE. OMG provides all necessary 
standardized tools to design Domain Specific Languages 
(DSL) by which entities, relations, and behaviors of a system 
can be defined. 

Recently, the MDA's principles have been the basis for 
some proposals. A few of them are focused on improving 
MDA through semantic technologies, in order to augment its 
capacities with regard to the definition of systems for many 
different scenarios and platforms. One of the first contributions 
in this field was the W3C's proposal called the Semantic Web 
Best Practices and Development (SWBPD) whose main 
contribution is an Ontology Driven Architecture [7]. Several 
research works have been performed over that early idea. For 
instance, [10] presents a MDA-based methodology to reduce 
the burden when using ontologies for pervasive systems. 
Authors focus their research on a model transformation 
mechanism for the generation of context-aware applications by 
using a M2 layer metamodel called Upper-Level Context 
Ontology Model (ULCOM). In [5], it is proposed a basic 
methodology, which is based on a synergy between Ontology-
driven and Model-driven approaches. Conceptual models are 
used both at runtime and development for reasoning and code 
generation, respectively. In [6], an extension of MDA is 
performed. This research proposes an Ontology Driven 
Software Engineering (ODSE) which uses three groups of 
ontologies: Domain ontology, Task ontology and Ontology of 
software. 

B. Resources-Oriented Approaches 
Many research works are the result of the growing interest in 

modeling REST-based resources [8] for lightweight Resource 
Oriented Architectures (ROA). Some of those works are based 
on toolkits or frameworks that facilitate the development and 
deployment of RESTful applications. AutoWoT [11] provides 
a rapid integration of smart devices into the Web. It 
automatically generates both applications and server software 
components, enabling developers to focus on the use case. The 
research in [12] gathers a resource semantic model that 
describes sensors, actuators, and processing resources. 
Furthermore, it offers a framework based on that model for 
supporting queries and performing requests to actuators. On the 
other hand, [13] proposes a metadata framework inspired by 
EPCglobal network [14] to enable plug and play WSAN in 
Internet. The metadata managed by this framework allows 
discovering nodes and provides a list of available interfaces for 
query/actuating services as well as their application level 
message formats. 

The ROOD methodology contributes to the above-
mentioned research fields in several aspects. Firstly, it extends 
and improves traditional MDE-based approaches by using 
semantic technologies that validate models generated in each 
stage of the ROOD methodology. The major contribution of 
our proposal with regard to previous MDE-based approaches 
([4-6] and [10]) is its capacity to model concepts and generate 
artifacts that perfectly adapt to REST architectural styles what 
leads to a convergence between embedded pervasive networks 
and the WoT. Furthermore, the ROOD methodology can be 
used for building friendly development environments based on 
graphical modeling to develop and deploy large Smart Spaces 
rapidly. 

III. THE RESOURCE-ORIENTED AND ONTOLOGY-DRIVEN 

DEVELOPMENT METHODOLOGY: A N OVERVIEW 

This section presents the Resource-Oriented and Ontology-
Driven Development (ROOD) methodology for rapid 
prototyping of Smart Spaces and its integration into WoT. 
Firstly, we show the viewpoint of the ROOD'S metamodel 
(SSML) as well its models (ECM and SOM) according to the 
MDA. Secondly, we describe the different stages of the ROOD 
methodology and the role of each ontology. 

A. MDA 's perspective of SSML, ECM and SOM 

OMG defines an architecture stratified in four abstraction 
levels (MO through M3). MO contains instances of data for a 
specific platform; Ml is where system's models are defined; 
M2 specifies the DSLs that take part in the definition of models 
at M l . Finally, M3 defines the Meta-Object Facility (MOF), 
which establishes the basis for different modeling languages. 

Data and code (Java, C, C++,...) 

Fig. 1 MDA's perspective of ECM and SOML 
Fig. 1 shows the location of SSML, ECM and SOM around 

MDA architecture. It is not the aim of this work to go over the 
specification of the SSML. Shortly, the SSML is hosted in M2 
layer and extends the UML meta-model to create an own 
profile that defines every necessary element (entities, relations, 
interfaces, etc.). The SSML is a key piece within the ROOD's 
kernel. The ECM is an instance of SSML for modeling the 
behavior of a Smart Space in terms of activities, transitions 
between activities and events triggering transitions. The SOM 
is also an instance of SSML that allows modeling "things" or 
Smart Objects taking part in the Smart Space. 

In summary, ECM and SOM are provided as modeling tools 
for Smart Spaces. Instances of those models are represented in 
the form of diagrams. The drawing schema of those diagrams 
is validated through ontologies, which determine what it can be 
represented according the participants (e.g. sensor/actuator 
devices and users) and resources (e.g. context information or 
functionalities offered by devices) that are available at a 
specific Smart Space. 

B. Ontologies for validation and transformation 
The strength of ROOD methodology is achieved by means 

of several validations and transformations whose final results 
are well-formed ECM and SOM models, as well as optimized 
code for specific platforms. Ontologies in ROOD represent 
knowledge about specific characteristic of the Smart Space to 
be developed. These ontologies are the following: 

I) Domain ontology: defines the infrastructure entities and its 
relationships (e.g. spaces, human interfaces or devices). 



II) Context ontology: defines the Smart Space context as it is 
intended in ROOD methodology. Basically, this ontology 
defines aspects related to "user" and "environment" (e.g. 
location, ambient conditions, state, etc.), the relationship 
between context entities, and axioms to reason on context 
information. 

III) Service ontology: defines concepts such as tasks, business 
process and services as well its inputs and outputs. 

IV) Resource ontology: define every entity necessary to map 
traditional services into RESTful style resources. 

V) Platform ontology: defines relationships between entities 
represented in SOM and concrete software components for 
a specific platform. 

Ontologies instances are stored in different Knowledge 
Bases (KB) as RDF documents. The structure of the 
ontologies is designed to support deductive inference for 
transforming and validating models along ROOD'S stages 
using some ontology alignment techniques. The validation is 
performed both semantically and syntactically. Regarding the 
alignment, it is carried out between concepts in top-level 
ontologies to specific concepts in low-level, e.g. temperature 
measure in Context ontology is related to environmental 
measurement service in Service ontology. 

C. Phases of the development methodology 

The ontologies mentioned in the previous section are 
necessary to represent context consistently with the Smart 
Spaces we want to deploy. ROOD methodology offers ECM 
and SOM models to take advantage from context information 
along the phases defined in the traditional MDA methodology. 

MDA development methodology consists of three main 
phases, which separate specific business logic aspects from 
platform features: I) Computation Independent Model (CIM); 
II) Platform Independent Model (PIM); III) Platform Specific 
Model (PSM). Particular transformations are performed from 
one phase to another, finally obtaining a platform-specific 
program code. This chain of model definitions and 
transformations has been adopted in the ROOD methodology. 
Moreover, this approach has been improved and consolidated 
by means of a mechanism of validations, which ensure well-
formed models for a specific Smart Space. 

Context 
ontology 

Transformation 
Service 

Transformation ontology 

ontology r 2) Smart Object Modela PIM 

m , , a 
Definition of 9 

I R — ' 

Fig. 2 shows an overview of the stages along the ROOD 
methodology and the involved ontologies in the previous 
section. Instances of those ontologies are used in top-down 
transformations in order to map ECM's concepts into specific 
SOM's entities, to finally achieve the automatic code 
generation for real platforms, through the needed Platform 
Specific Models (PSM). The main stages of the ROOD 
methodology are following described: 

1) Modeling high-level viewpoint: the Environment Context 
Model 

Before starting the ECM modeling process, both Context 
ontology and Domain ontology have to be instantiated: the 
information available to model the ECM (majorly states, 
context information, events, actions and transitions) will be 
validated according particular instances of Context and 
Domain ontologies. At this model, high level concepts are 
modeled, for instance control of environment parameters (e.g., 
light, humidity, etc.) or human-computer interfaces (e.g., 
displays or audio devices). 

iVaitmator bnvrurn-riisnti en .a not 

T^rio/Humic :,. t Mtatt.lr-iitü-'ii:: 

[Páramete's are Eta b lined] i dee activate -.11 

^Environment.a L -_iancie ' itabiliee En» icnmenal I ai air eter 

Stabilize 13 Environmental Parameters 

etí] Í activated Humidifier 

[Heat exceeded] / activated iftVAC 

Humidifier Working 

in I'H.nr Jit» Mor tcuing do/Heat Monitoring 

Notifying Abnormal Situation 

%8> 

Fig. 2 The Resource-Oriented and Ontology-Driven 
Methodology 

Fig. 3 An instance of the Environment Context Model 

Fig. 3 shows an example of the ECM for modeling a Smart 
Comfort System that is able to control humidity and heat 
levels of a room. The ECM will provide one or more SOM 
models, which will model one or more Smart Objects 
involving actions and transitions within the modeled Smart 
Space at this stage. 

2) Modeling Smart Things: the Smart Object Model 
At the SOM stage, specific services and functionalities are 

modeled and mapped over each "thing", integrating the 
workflow that is defined at the ECM. At this point, Smart 
Object activity is modeled through the following elements: I) 
low level processes (Tasks); II) workflows of tasks (Business 
Process); III) high level interfaces for Business Processes 
(Services). This stage involves three ontologies for 
transforming from ECM to SOM: Domain, Context and 
Service ontologies. Moreover, Service and Resource 
ontologies are used for validating models that are generated at 
this stage. 

Fig. 4 shows the general structure of the SOM. The Smart 
Object class, which is stereotyped as «Thing>>, represents 
participant entities belonging to a Smart Space; they consume 
and/or provide resources within a specific domain following 
REST principles. Smart Objects can be associated in order to 
create a Composite Smart Object (stereotyped as 



< < O b j e c t A r c h i t e c t u r e > > ) . This collaboration allows 
providing complex services by means of aggregation of 
atomic services. 

matched components are found, then a stub is provided for the 
developer to complete it. 

Context Piece 

-Coi i text l i i fo imation 

1 . . .1 

i 

Context Manager 

-ContÉXtPiÉCÉ 

-Co 

«ObjectArchitecture» 
Composite Smart Objei 
-SmartObject 

Fig. 4 Smart Object Model 

The context of Smart Objects and Composite Smart 
Objects are characterized by Context Pieces (stereotyped as 
<<Proper ty>>) . Those context pieces are managed by the 
Context Manager. The Context Manager is intended for 
implementing a set of inferring rules that analyze context 
pieces and get the Smart Object ready to show different 
behaviors according to its contextual situation. 

The Service class that is stereotyped as 
« S e r v i c e l n t e r f a c e » defines specific inputs and outputs 
for a service primitive provided by a Smart Object. Those 
interfaces are then encapsulated into resources, which are 
modeled by means of classes stereotyped as « R e s o u r c e » . 
This kind of entities characterizes every Smart Object's 
service as resources following a RESTful architectural style. 
This modeling process is carried out by mapping internal 
service interfaces into RESTful APIs; HTTP methods (GET, 
PUT, POST or DELETE) are defined to create or remove 
resources as well to query or modify its state. Additionally, 
classes stereotyped as « P o r t > > define an end-point consist 
of a URI and a port. Thus, software artifacts that are generated 
from classes stereotyped as « R e s o u r c e » enable an access 
point which allows integrating Smart Objects into the WoT 
following a RESTful architectural style. 

3) Generating program code from abstractions: the Platform-
Specific Model 

The final stage of ROOD methodology is focused on 
creating a Platform Specific Model (PSM) and generating its 
corresponding program code. During this stage business 
process are mapped over tasks; those are finally executed by 
agents, i.e. atomic software pieces that manage business logic, 
being able to perform a task by themselves. This mapping 
process is carried out from templates, which are stored in 
software repositories. This matching mechanism generates 
program code accordingly to software pieces that can be found 
in the repository. Thus, the more software pieces are stored in 
the software repository, the more automatic code can be 
generated code automatically for a specific platform. If no 

(Software Factoryi: 

Fig. 5 Platform Specific Model 

Fig. 5 shows the PSM used in ROOD methodology. A 
Platform (stereotyped as « P l a t f o r m » ) can host one or 
more resources, which are characterized by specific software 
and hardware (both stereotyped as 
« P l a t f o r m P r o p e r t y » ) . Resources are related to tasks at 
low-level and used by agents (stereotyped as 
« C o m p o n e n t » ) . The agent's life-cycle is managed by a 
Framework (stereotyped as « S o f t w a r e F a c t o r y » ) . 

IV. PROTOTYPING A SMART HOTEL: A CASE STUDY 

Let us consider a real prototyping of a Smart Hotel to 
exemplify the use of ROOD methodology. This Smart Hotel 
involves a cluster of different Smart Objects providing and 
consuming specific RESTful resources and managing its own 
contextual information. Smart Objects have two major roles 
within the Smart Hotel: 

I) Ambient quality control: This kind of Smart Objects deals 
with some environmental parameters (humidity, 
temperature and light) in order to generate a comfortable 
environment according to user's preferences. 

II) Simplified retrieval of tourism information: The Smart 
Hotel is decorated with some RFID-tagged souvenirs, 
which enable direct retrieval of tourism information. 
Visitors are assumed to be carrying a device (e.g. tablet PC 
or PDA), which enables accessing objects' information 
through different visualization interfaces (e.g. augmented 
reality). 

Ill)Healthcare monitoring: This kind of Smart Objects is 
responsible of monitoring vital signs of customers with 
special needs, through wearable personal biomedical 
sensors (e.g. hearth monitor belt, body humidity sensor or 
body temperature sensor). 

According to ROOD methodology, the whole system will 

be modeled, including the involved physical elements and 
business processes in order to generate as much code as 
possible. 

The first stage consists of managing high-level concepts 
through the Environment Context Model (ECM). For instance, 
Fig. 6 depicts the ECM for the tourism information service. 
This stage is driven by two ontologies: the Domain ontology 
and the Context ontology. 



The Domain ontology defines concepts with regard to: 
• Structural elements: e.g. walls, doors, monuments, etc. 
• Sensorial and actuator devices: e.g. motes, analog 

transducers, switches or biometric sensor. 
• User terminals: e.g. tablet PCs, mobiles and other 

information devices. 
The Context ontology defines concepts as follows: 

• User preferences: e.g. comfort temperature, light level or 
touristic points of interest. 

• Environmental parameters: e.g. temperature, humidity, 
gases, light, cloudy, sunny, etc. 

• Device states: e.g. current visual information, actuator 
states or battery level. 

• Axioms and rules: e.g. It is snowing then it is not 
recommended to leave from the Hotel. 

Instances of previous ontologies enable aligning concepts 
from both ontologies (e.g. monument to touristic points of 
interest). This alignment technique allows validating concepts 
represented in ECMs, i.e. states, context information, events, 
actions and transitions. 

[Request for Touristic Information] 

J V 
Waiting for Information Request 

do/Listen for info request 

[Searched location]/return info 

[Request for Location Info mation] 

[No location system] I Search In D E 3 / \ [Lou • tier í a í ul ated] .< return info 

[Location system] /calcul 

Searching for location in DB 

do/get Location DB 

•ftJlnfo found] / re 

Searching Toruistic Information 

do /Search Touristic Info in DB 

Calculating Current Location 

Fig. 6 ECM modeling a touristic information service 

Second stage begins when valid ECMs are generated; at 
this stage, ECM models are transformed into one or more 
Smart Object Models (SOMs). These initial SOMs are stubs, 
which have to be manually completed by the developer who 
has to decide how to map services into resources following a 
REST architectural style. The aforementioned process consists 
of encapsulating service primitives into HTTP methods (GET, 
PUT, POST and DELETE) as well as the definition of a URI 
schema for uniquely ^identifying every resource hosted in 
each Smart Object. 

-Position:[x,y,z] 
i 

« Property» 
Touristic Information 

-Touristic DB 
i 

« Property» 
Context Manager 

-Context Piece 

1 

-InputParam 
-OutputParam 
-Precondition 
-Postcondition 

iServicelnterface» 
get Location 

InputParam 

a Resource: 
:ation Resource O -

get RSSLi 

«Servicelnterface> 
getTouristiclnfo 

-InputParam 
-OutputParam 

<iPort» 
End Point 

address:URI 

«Interface» 
get Touristic Info 

erations:getTourlnfo 
rt:/SouvenlrX/lnfo 

^edActuators:void 
•Operations :get Location 
Port:/SouvenirX/loc 

Fig. 7 SOM modeling a Smart Souvenir 

Fig. 7 shows an example of well-formed SOM model, 
corresponding to a virtual Smart Souvenir tagged with a RFID 
tag. In this case, the service primitive 
getTouricticinf ormation () is offered via a GET method that 
is invoked to the URI 
http://SmartHotel.com/SouvenirX/description. That 

invocation retrieves the touristic information in JSON format 
related to the tagged souvenir from a RESTful database. 

The validation of a SOM is performed through both 
Resources ontology and Service ontology. 

The Service ontology defines aspects for specifying 
traditional services-oriented architectures. These 
characteristics are the following: 
• Service methods: procedures that are executed by specific 

business logic. 
• Data types for inputs and outputs: data types that are 

managed by every service. 
• Preconditions and postconditions: necessary conditions to 

complete a service execution cycle correctly. 
• Participants: one for atomic services, and two or more for 

composite service. 
The Resources ontology defines a reduced set of features 

for characterizing a RESTful API for functionalities hosted by 
Smart Objects. Those aspects are the following: 
• URI: identifies uniquely a resource. 
• State: indicates the current state of the resource: available, 

unavailable or temporally suspended. 
• Operations: defines allowed operations (HTTP methods) 

for this resource (XML, HTML or JSON). 
• Output representation: indicates the format of the returned 

data. 
• Sub Resources: URLs of sub-resources depending on this 

resource. 
Instances of the above mentioned ontologies are necessary 

to model all those singularities of resource-oriented 
architectures by wrapping service primitives characterizing 
traditional service-oriented approaches. 

After having finished the modeling of every Smart Object 
in the Smart Hotel, ROOD methodology provides Platform 
Specific Models (PSMs) through instances of the Platform 
ontology. These PSMs allow generating code for different 
embedded platforms, e.g. motes (MicaZ :, Sun SPOT2, 
Shimmer3), Android-based platforms (android ADK4, tablet 
PC) or IP cameras (Camera Axis5). Moreover, it is generated a 
set of specific components for managing every Smart Object 
through distributed Gateways. In summary, we finally have 
web resources according to the features modeled in SOMs. 

V. FIRST EVALUATIONS OF ROOD METHODOLOGY 

The case study presented in previous section has been used 
to carry out a preliminary evaluation of the ROOD 
methodology. Currently, we have partially implemented our 

1 MicaZ: http://www.snm.ethz.ch/Projects/MicaZ 
2 Sun SPOT: http://www.sunspotworld.com/ 
3 Shimmer: http://www.shimmer-research.com/ 
4 Android ADK: http://www.cooking-hacks.com/index.php/arduino-
mega-adk.html 
5 Camera Axis: http://www.axis.com/ 

http://SmartHotel.com/SouvenirX/description
http://www.snm.ethz.ch/Projects/MicaZ
http://www.sunspotworld.com/
http://www.shimmer-research.com/
http://www.cooking-hacks.com/index.php/arduinomega-adk.html
http://www.cooking-hacks.com/index.php/arduinomega-adk.html
http://www.axis.com/


proposal using the Obeo Designer6, an Eclipse plugin that is 
based on the Eclipse Modeling Project7. A ROOD visual 
editor for rapidly creating Smart Object Models has been 
firstly implemented. In this version, the first ROOD'S stage, 
involving the creation and validation of ECM and its 
transformation into SOM, is manually performed. For next 
versions, we foresee to extend our visual editor in order to 
automatically carry out such functionalities. By using our 
visual editor, it is expected to cover a wide range of devices to 
be deployed on our Smart Hotel. Shimmer nodes managing 
Bluetooth biometric sensors (hearth rate, accelerometer or 
body temperature) or Android ADK devices (e.g. offering 
visual feedback through its LEDs) may be modeled in order to 
create mashups of Smart Objects. Currently, ROOD visual 
editor only support mote platforms, i.e. MicaZ and Sun SPOT 
in our case study. 

Apart from code generation for every device characterizing 
Smart Objects, our editor generates code for a web server 
based on Rest let8, a flexible and lightweight REST framework. 
This web server is deployed on Gateways (usually a PC, 
Tablet PC or Android-based mobile), which connects Smart 
Objects to the Web of Things. It works as an interface 
exposing device functions in a RESTful way. Using ROOD 
visual editor we estimate that the process of developing and 
deploying Smart Objects for the Smart Hotel can be 
significantly reduced. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we propose a Resource-Oriented and 
Ontology-Driven (ROOD) methodology based on the OMG's 
MDA to develop and deploy pervasive applications for Smart 
Spaces. We have dealt with some semantic technologies to 
improve the MDA in order to provide friendly development 
tools allowing no expert developers to build complex Smart 
Spaces. 

ROOD consists of three development stages similar to those 
of MDA. Thus the development of a smart environment is 
firstly tackled from a very abstract viewpoint {Environment 
Context Model) in which a flow of contextual data is modeled; 
secondly, from a more refined viewpoint {Smart Object 
Model), where roles and functionalities within Smart Spaces 
{tasks, business process, service and resources) are distributed 
among Smart Objects. Finally, a Platform Specific Model 
(PSM) is obtained - it is key to get program code ready to be 
deployed on physical devices. 

We have presented a study case to illustrate the ROOD 
methodology through a Smart Hotel composed of multiple 
Smart Objects driven by specific physical devices. We have 
performed an early evaluation of the ROOD methodology 
through a visual editor based on Obeo Designer, whose first 
version partially implements the ROOD methodology. To this 
aim, we have partially prototyped a Smart Hotel, specifically 
the part of the system dedicated to environmental parameters 
management. This is a first step to test the potential of the 
ROOD methodology's concept to effectively facilitate the 

whole prototyping of Smart Spaces and their integration into 
the Web of Things. 

Our future work is focused on researching an improvement 
of the expressiveness of the ROOD methodology by 
increasing the use of semantic technologies, as new ontology 
evolution and alignment techniques, to improve the integration 
of Smart Objects into virtual mashups. 

ACKNOWLEDGMENT 

This work has been supported by the Spanish Ministry of 
Industry, Tourism and Commerce and the European Fund for 
Regional Development under grant TIN2011-28620-C02-02, 
the Ministry for Science and Innovation under grant TIN2008-
06742-C02-01 and the Government of Madrid under grant 
S2009/TIC-1485 (CONTEXTS). 

REFERENCES 

[I] International Telecommunication Union, "ITU Internet reports 2005: The 
internet of things," 2005. 

[2] S. Duquennoy, G. Grimaud and J. Vandewalle, "The web of things: 
Interconnecting devices with high usability and performance," in International 
Conference on Embedded Software and Systems, ICESS '09, pp. 323-330, 
2009. 

[3] M. Weiser, "The computer for the 21st Century," Pervasive Computing, 
IEEE, vol. 99, pp. 19-25, 2002. 

[4] F. Kawsar, K. Fujinami and T. Nakajima, "Prottoy Middleware Platform 
for Smart Object Systems", International Journal of Smart Home, vol. 2, pp. 
1-18,2008. 

[5] A. Soylu and P. De Causmaecker, "Merging model driven and ontology 
driven system development approaches pervasive computing perspective," in 
24th International Symposium on Computer and Information Sciences, ISCIS, 
pp. 730-735, 2009. 

[6] A. Katasonov and M. Palviainen, "Towards ontology-driven development 
of applications for smart environments," in 8th IEEE International 
Conference on Pervasive Computing and Communications Workshops 
(PERCOM Workshops), pp. 696-701, 2010. 

[7] P. Tetlow, J. Pan, D. Oberle, E. Wallace, M. Uschold and E. Kendall, 
"Ontology Driven Architectures and Potential Uses of the Semantic Web in 
Systems and Software Engineering," vol. 2011, 2006. 

[8] R. Fielding, "Architectural Styles and the Design of Network-based 
Software Architectures," 2000. 

[9] T. Gherbi, D. Meslati and I. Borne, "MDE between promises and 
challenges," in 11th International Conference on Computer Modelling and 
Simulation, pp. 152-155,2009. 

[10] N. Georgalas, S. Ou, M. Azmoodeh and K. Yang, "Towards a model-
driven approach for ontology-based context-aware application development: 
A case study," in Fourth International Workshop on Model-Based 
Methodologies for Pervasive and Embedded Software, pp. 21-32, 2007. 

[II] M. Simon, G. Dominique and T. Vlad, "Facilitating the integration and 
interaction for real-world services for the web of Things," in Urban Internet of 
Things - Towards Programmable Real-Time Cities (UrbanlOT 2010); 
Workshop at the Internet of Things 2010 Conference (IoT 2010), Tokyo, 2010. 

[12] C. Villalonga, M. Bauer, F. López Aguilar, V. Huang and M. Strohbach, 
"A resource model for the real world internet," in Smart Sensing and Context, 
P. Lukowicz, K. Kunze and G. Kortuem, Eds. Springer Berlin / Heidelberg, 
pp. 163-176,2010. 

[13] J. Sung, Y. Kim, T. Kim, Y. Kim and D. Kim, "Internet metadata 
framework for plug and play wireless sensor networks," in Sensors 
Applications Symposium, IEEE, pp. 320-324, 2009. 

[14] GS1, "EPCglobal network," 2011. [Online] Available: 
http ://www.gs 1 .org/epcglobal. 

http://www.gs

