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Abstract—Recent advances in technologies for capturing
video data have opened a vast amount of new application areas.
Among them, the incorporation of Time-of-Flight (ToF) cam-
eras on Ambient Intelligence (AmI) environments. Although the
performance of tracking algorithms have quickly improved,
symbolic models used to represent the resulting knowledge
have not yet been adapted for smart environments. This paper
presents an extension of a previous system in the area of video-
based AmI to incorporate ToF information to enhance scene
interpretation. The framework is founded on an ontology-
based model of the scene, which is extended to incorporate
ToF data. The advantages and new features of the model are
demonstrated in a Social Signal Processing (SSP) application.
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I. INTRODUCTION

AmI aims at the development of computational systems

that apply Artificial Intelligence techniques to process infor-

mation acquired from sensors embedded in the ambience in

order to provide helpful services to users in daily activities.

AmI objectives are: (i) to recognize the presence of individ-

uals in the sensed scene; (ii) to understand their actions and

estimate their intentions; (iii) to act in consequence.

The use of visual sensors in AmI applications has been

poorly studied, even though they can obtain a large amount

of interesting data. Some reasons have been usually argued

to explain this absence: the economic cost of visual sensor

networks, the computational requirements of visual data

processing, the difficulties to adapt to changing scenarios,

the disadvantages respect to other sensor technologies, and

so forth.

In the last decade, a new visual sensor technology has

emerged: ToF cameras. ToF cameras provide both intensity

and distance information for each pixel of the image, thus

offering 3-dimensional imaging. Recently, the cost of ToF

sensors has dramatically reduced, which has lead to a

widespread adoption of this technology, now even present

in consumer electronics like the KinectTM peripheral for

Microsoft XBoxTM system.

New computer vision algorithms have been proposed to

detect and track human movements from ToF data. To name

some application areas, ToF-based systems have been used

in SSP to classify human postures [21], and in Ambient

Assisted Living to detect people falls [15].

Unfortunately, current approaches do not offer a well-

defined model to capture the semantics of ToF data. In

this paper, we argue that the use of a formal conceptual

model to represent ToF data offers several advantages at

a low cost. Among other features, formal models allow

us to establish a common symbolic vocabulary to describe

and communicate camera data while providing support for

logic-based reasoning. Symbolic language is closer to human

language, and therefore it is easy to interact and interpret

system inputs and outputs. Reasoning, in turn, can be applied

to check the consistency of the models and to infer additional

knowledge from explicit information.

This paper describes an ontology-based representation

model for data acquired from ToF technologies. This model

is incorporated into a framework for contextual fusion of

2-D visual information previously proposed by our research

group [5]. The ontologies of the initial framework have been

extended to include ToF data, specifically:

• An additional Euclidean dimension for the position of

ToF objects. This is easily achieved by relying on the

qualia approach used in the original ontology model to

represent properties and property values.

• A new definition of the concepts that represent human

entities in the scene. Essentially, Person concept is

now associated to a description of anatomical joints and

limbs. This description has been formalized according

to existing patterns to represent part-whole relations

with ontologies and current ToF-based computer vision

models for articulated bodies.

A case study based on a SSP environment is presented

to illustrate the functioning of the extended framework.

The goal is the formal representation of complex activity

recognition data through ontologies. The example explains a

novel application of ToF cameras for live market researches.

Finally a straightforward rule is presented to describe the

ability of the model to express the semantics of real situa-

tions.

The paper is organized as follows. Section 2 presents

the state of the art of ToF camera applications and the

KinectTM sensor technology. Section 3 includes an over-

all description of the new features added to the existing

ontology-based computer vision approach. An ontology-

1



based human skeleton representation is explained in Section

4. Section 5 depicts a case study to detect interesting

situations in a SSP scenario. Section 6 summarizes the

conclusions obtained and proposes some directions for future

work.

II. TIME-OF-FLIGHT CAMERA APPLICATIONS AND

KINECTTM SENSOR

ToF cameras provide support for new application thanks

to their genuine features, compact structure, low weight,

reduced power consumption, low price, high resolution and

real-time intensity and distance acquisition. These sensors

implements a non-invasive technology to obtain 3-D data,

which avoid the use of embedded hardware like inertial

devices. ToF cameras have been mainly applied to human

activity recognition and Human Machine Interaction (HMI).

These contributions can be adapted to AmI environments.

Several works have been aimed at improving person and

people tracking by relying on ToF sensors. Kahlmann et

al. [12] presented a tracking algorithm for the detection

of moving people. The approach is based on a Recursive

Bayesian Filter, more specifically the authors applied on

a flexible and general solution named Condensation algo-

rithm [11]. A fast multi-person tracking approach in 3-

D environments is Shape from Silhouettes (SfS) [6]people

using few cameras. Another proposal on real-time multi-

person tracking algorithm is presented in [1]. This work

delves into partial occlusions and close interactions between

several people under severe low-lighting conditions.

Eye-safeness of ToF cameras facilitates the development

of applications for human face detection. A nose detection

algorithm is presented in [8]. The combined use of range

and amplitude data achieves a robust identification in a wide

range of head orientations. Another example is [9], which

presents a boosting method based on the use of both gray

scale and depth images.

ToF sensors can be also applied for hand tracking. Breuer

et al. [3] focused on the problem of reconstruction –i.e.

inferring the various degrees-of-freedom of the hand from

sensor data. A real-time dynamic gesture recognition can be

found in [20]. The research is focused on 3-D medical data

exploration.

ToF cameras are useful to detect and track human ar-

ticulations for full-body reconstruction. Knoop et al. [14]

presented a framework to fuse information acquired from

different sensors –stereo, ToF and monocular–. This research

is based on a 3-D body model composed of cylinders and

different kinds of joint to track complex movements. The

approach by Holte et al. [10] combines both intensity and

depth data for body gesture recognition. The proposal is

trained from a specific point of view, and is able to recognize

gestures from different points of view by using a spherical

harmonic context representation.

All these researches were developed with sensor technolo-

gies prior to KinectTM. KinectTM have meant a breakthrough

in the hardware features of these devices. The sensor is based

on a structured near-infrared light, and a standard CMOS

image sensor used to receive the reflected light. A multi-

sense system-on-chip provides synchronized real-time depth

image, color image and audio stream. KinectTM operates at a

maximum frame rate of 30 fps. The capture range is between

0.8 and 3.5 meters with a maximum resolution of 640x480.

KinectTM is supported by three freely available libraries.

OpenKinect1, CL NUI2 and OpenNI3. OpenKinect is an

open source project dual-licensed under Apache 2.0 and

GPL2. The library provides drivers for the sensor and a

cross-platform API that works on Windows, Linux, and OS

X; wrappers for different languages such as Python, C++

and C#; and an analysis library which is expected to include

among other things, hand tracking, skeleton tracking and 3-

D reconstruction. The Windows Kinect Driver/SDK - CL

NUI plataform provides a SDK with freely available C, C++

and C# libraries, an API and a stable driver for Xbox NUI

Audio, NUI Camera and NUI Motor and Accelerometer

devices on Windows machines. OpenNI is a not-for-profit

organization composed of several companies. The purpose

of the organization is to promote the compatibility and

interoperability of Natural Interaction (NI) middlewares,

applications and devices, like KinectTM . OpenNI developed

a framework that can be used across different platforms and

devices. The framework is based on a set of middleware

libraries that convert raw data from a compliant device to

application data.

III. ONTOLOGY-BASED COMPUTER VISION MODEL AND

TOF TECHNOLOGY INTEGRATION

The framework for computer vision representation pre-

sented in [5] is based on an ontological model for the

representation of context and scene entities. This model

is organized into several levels compliant with the Joint

Directors of Laboratories (JDL) model [16]. Each layer

includes general concepts and properties to describe general

computer vision entities and relations at different abstraction

level. Concepts that belong to a less abstract ontology are

the building blocks of concepts corresponding to a more

abstract ontology. Current implemented levels are:

• Tracking Entities (TREN) level, to model input data

coming from the tracking algorithms.

• Scene Objects (SCOB) level, to model real-world en-

tities, properties, and relations.

• Activities (ACTV) level, to model behavior descrip-

tions.

1OPENKINECT OpenKinect Main Page. http://openkinect.org/
2LABORATORIES, C. About: CL NUI Platform. Code Laboratories,

http://codelaboratories.com/kb/nui
3OPENNI OpenNI. http://openni.org/
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The model has been designed to promote extensibility and

modularity. Ontologies may contain both perceptual and

context data. Perceptual data is automatically extracted by

the tracking algorithm, while the context data is external

knowledge used to complete the comprehension of the scene.

For example, the description of a sensorised static object –

size, position, kinematic features, type of object, and so on–

is regarded as context data.

Some changes are needed to model tracking data coming

from ToF devices. The priority to adapt these changes is to

maintain the compatibility with the previous approach.

A. Three dimensional representation

The introduction of new devices requires upgrading the

capacity of spatial representation in the model from two to

three dimensions. These changes concern both perceptual

data captured by ToF cameras and context data representing

physical objects. The previous model followed the qualia ap-

proach used in the upper ontology DOLCE [4]. This model-

ing pattern distinguishes between properties themselves and

the space in which they take values. The values of a quality

–e.g. Position– are defined within a certain conceptual space

–e.g. 2DPoint. To adapt the ontology-based model to this

new quality space, the 3DPoint concept, which represents a

position using three coordinates, is included as a subclass of

PositionValueSpace, which represents the space of values

of the physical positions.

B. Real-world entities

Current KinectTM algorithms are able to detect real-world

entities; e.g. a person including data related to the human

limbs and joints. Our ontology-based model represents these

kind of real-world data at the SCOB level. However, SCOB

assertions must be supported by TREN data. TREN is

adapted to represent low level data of human members

and joints –position, size, kinematic state, and so on– this

information is associated to the Track concept.

The inclusion of limbs and joints is compliant to the pre-

vious version of the TREN ontology. The applied part-whole

pattern (see below) allows keeping backwards compatibility.

In fact, this model can combine 2-D monocular cameras and

ToF devices using the same set of ontologies.

IV. GENERAL MODEL FOR ONTOLOGY-BASED HUMAN

SKELETON REPRESENTATION

There are a lot of existing ontologies designed to

share and reason with structured data representing human

anatomy [19]. Unfortunately, these ontologies have been

developed in biomedical environments and define a complex

conceptualization which is not useful to our needs. There

are also other ontologies that represent the human body

in a more simplified way [7]; however these ontologies

are not designed to deal with different value spaces in a

cognitive environment. A general pattern based on part-

whole relationships is proposed to cover the semantic repre-

sentation of data captured using ToF sensors. The designed

ontology adapts the patterns presented in [18] and follows

the conceptualization of articulated bodies shown in [13]

while keeping compatibility with DOLCE. Our proposal can

be broadly adaptied to other fields. Some examples could be

formal representation of the cognitive vision discipline [17]

and automatic code generation for virtual worlds [2].

Real-world knowledge is organized by using mereological

–part-whole– relationships. A clear example is how the

human mind divides the structure of a body in subjetive

parts. KinectTM skeletal view (see Fig.14) is able to describe

a detected person in terms of two kinds of attributes: (i)

body members –hands, feet, thigh, and so on; (ii) joints

–shoulders, elbows, wrists, knees, and so forth. TREN

represents the attributes detected and the limbs composed

by these attributes as a conceptualization. Resulting concepts

represent the parts of the human body which is embodied

in the Track concept.

Figure 1: Joints captured by KinectTM skeletal view

Two properties are used to represent part-whole relation-

ships: (i) partOf; (ii) partOf directly –a partOf subprop-

erty. partOf is a transitive property whose goal is establish-

ing the correspondences between the parts and all the entities

containing them. partOf directly defines the subjetive rela-

tion among a part and the next direct level of composed

entities. These properties are necessary since cardinality

restrictions over transitive properties, such as partOf, are

not allowed by OWL-DL. Therefore, partOf directly is

used to define restrictions to mantain the cardinality con-

sistency, partOf is used to infer both direct and indirect

parts by means of transitive characteristic and the instances

of partOf directly property.

The ontology is extended with classes to represent direct

parts –e.g. TrackPartDirectly– and the overall set of part-

4Fig. 1 source: http://embodied.waag.org
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whole relationships –e.g. TrackPart. TrackPartDirectly sub-

sumes direct parts of a Track such as Head, UpperLimb,

LowerLimb, and so forth. TrackPart subsumes the set of

parts of the Track concept. For example, the direct parts

of an UpperLimb concept, namely Arm, Forearm, Hand,

Shoulder, Elbow and Wrist, are classified as subclasses of

TrackPart; however they are not considered subclasses of

TrackPartDirectly.

The classes hosting parts state existential range restric-

tions –owl:someValuesFrom– over part properties. To

improve the consistency, cardinality restrictions –exactly 1–

are stated over partOf directly as necessary conditions into

the concepts corresponding to body members and joints.

This means “a part only belongs directly to the next level

entity and just to that entity”.

The combined use of the part properties and the re-

stricted classes leads reasoners to automatically infer new

taxonomies derived based on part-whole relationships. Fig.

2 illustrate an example of a taxonomy inferred from a

explicitly stated taxonomy. Unfortunately, adding qualitative

cardinality restrictions on each concept could significantly

affect the performance of the reasoner. Some other con-

figurations for this pattern are possible and also valid.

This implementation tries to reduce the classification time

complying the semantics of the human body domain.

Explicit data taxonomy:  Inferred data taxonomy: 

Asserted Conditions Co

Figure 2: An example of explicit and inferred taxonomies

The classification of joints is inspired by the virtual model

shown in [13]. Similar to this article, the model comes from

the application of computer vision techniques in ToF de-

vices. There are three types of joints (see Fig. 3) depending

on the degrees of freedom (DoF): (i) UniversalJoint, three

DoF; (ii) HingeJoint, one DoF and two restricted DoF;

(iii) EllipticJoint, three restricted DoF. Joint concepts store

important data such as the articulated body members and

the angle between them. This data is basic to mantain the

consistency and to improve the semantic capacity of the

model.

The model is designed by taking into account future

changes in the granularity of the obtained data. New devices

able to offer an accurate definition of the body members –e.g

the fingers of a hand– are easily adaptable. The larger the

number of levels in the model, the greater amount of data is

inferred. More details and additional information about the

data described in this section can be found in the authors’

web page5.

Joint taxonomy:  Body member taxonomy: 

Figure 3: Explicit taxonomies for joints and body members

V. CASE STUDY: LIVE MARKET RESEARCH

Learning about relationships between the customer and

the product at the point of sale is a very interesting knowl-

edge in many economic fields, such as sales or market-

ing. Body gestures and spatial relationships contain useful

knowledge about the sensations and intentions of shopping

experiences. The model hereby presented can be used to

automatically build live market research works based on the

reactions and interactions of customers with the products.

Next subsections describes our system gesture instantiation

procedure and a description of the expressiveness of the on-

tology model by presenting an activity recognition example.

A. Gesture instantiation procedure

A data set containing the skeleton representation of sev-

eral –11– people was designed to test the new represen-

tation. These body structures were captured by using a

KinectTM sensor. For each person five types of upper limbs

gestures were stored: down, open, up, diagonal and akimbo.

A control system based on the OWL API6 functionalities

automates the assertion of data in the form of axioms from

the capture device to the ontology formalism. The control

system manages the classification of the individuals received

from the KinectTM sensor, the explicit property instantiations

such as partOf directly and the instantiation of properties

that represent the articulation of body member through

a joint. The control system also manages the automatic

calculation of datatypes from the received data, such as the

size of the body members, angles formed between them and

so forth.

5Additional resources: http://www.giaa.inf.uc3m.es/miembros/jgomez/et/
6OWL API: http://owlapi.sourceforge.net/
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An example instatiation of data to describe a left upper

limb with down gesture for the person in Fig 4., would

include: (i) classification of joint instances (see Fig. 3);

(ii) partOf directly property instantiations (see Fig. 2); (iii)

joint positioning data.

Figure 4: Gesture instantiation and action example

B. Activity recognition example: Picking up an object

Activity recognition usually requires composition of sim-

ple activities along the time. Therefore temporal analysis

is required in order to recognize complex activities [10].

Our ontology model is expressive enough to represent the

temporal dimension of the activities. The representation

capabilites resulting from the combined use of KinectTM and

the ontology-based model offer simple but very expressive

tools to detect interesting activities for a market research

confection.

Interesting activities for current market researches may

be: stand in front of, look at, point at and touch a product,

and compare two products. Comparing products normally

implies the recognition of simple interactions between dif-

ferent body members and several static objects that are part

of the context. Recognition of simple interactions generally

starts with a body member picking up an object; these facts

can be detected, for example, if there is a spatial relationship

between a hand and an object. This process is more robust

if the object includes sensors able to detect state features

–kinematic state, position, and so on.

In order to demonstrate the expressiveness of our repre-

sentation, a syntactically relaxed nRQL –the query language

of the RACER reasoner– rule is presented. This rule finds

picking up activities between persons and smart objects.

First, different variables that act along the rule are de-

clared (3-9). Then, a correspondence between Tracks and

Persons is performed (10). Hands and Elbows pertaining

to the Track are retrieved (11-12). The rule checks if these

individuals are parts of the same UpperLimb (13-15). The

act of picking up an object usually means that the Elbow is

maintained at over 90 degrees (16). Afterwards the spatial

relationships between Hands and Products are retrieved

(17). Finally, to increase the accuracy the rule considers

if the object involved in the situation is currently moving

(18). If it does not exist any active pick up relationship that

acts along the same Hand and Product and the antecedent

conditions are satisfied, then the consequent is applied. The

consequent creates a PickUp activity (20) with a known

begining (21) and an unknown ending (22) as well as a

relationships among the new activity with the passive (23)

and the active subject (24).

1  (firerule 
2 (and //Antecedent 
3    (?currentFrame #!tren:CurrentFrame) 
4    (?person #!scob:Person) 
5    (?track #!tren:Track) 
6    (?hand #!tren:Hand) 
7    (?elbow #!tren:Elbow) 
8    (?product #!scob:StaticObject) 
9    (?product "type" #!scob:Type) 
10    (?person ?track #!scob:hasAssociatedTrack) 
11    (?hand ?track #!tren:partOf) 
12    (?elbow ?track #!tren:partOf) 
13    (?hand ?upperLimb1 #!tren:partOf_directly) 
14    (?elbow ?upperLimb2 #!tren:partOf_directly) 
15    (equal ?upperLimb1 ?upperLimb2) 
16    (?elbow (>= #!tren:angle 90) 
17    (not (?*hand ?*product :dc) 
18    (?product (> #!tren:velocity 0) 
19    (//Consequent 
20    (instance (new-ind ?pickUpAct) #!actv:PickUp) 
21    (related (?pickUpAct ?currentFrame #!tren:isValidInBegin) 
22    (related (?pickUpAct "unknown_frame" #!tren:isValidInEnd))
23    (related (?pickUpAct ?object #!actv:pickedUp)  
24    (related (?pickUpAct ?person #!actv:pickingUp) 
25 ) 

Figure 5: Rule to exemplify expressiveness

Improved functionalities for activity recognition algo-

rithms can be offered by relying on the semantic expres-

siveness of the model. It is possible to use techniques

to refine the search space; for example, by considering

the type of object analyzed. If we are only interested in

knowing current interactions of the customers with a specific

kind of objects, it is only necessary: (i) to find the tracks

with a proper part spatial relationship with the area type

corresponding to the object of interest; (ii) to browse for a

spatial relationship between the product and the hands of

the previously retrieved tracks.
Other rules can be defined to extract interesting market

research data. For instance counting the kind of people

pointing at a product. The recognition of this activity only

involves the analysis of the state of the joints of an Upper-
Limb to infer the pointed object. Hence, using the size of

the limbs allow us to infer addtional data, such as the range

of ages –e.g. child or adult– of the people who is attracted

by the product.

VI. CONCLUSION AND FUTURE WORK

This article has presented a general ontology-based model

for formal representation of the human body. This model

can be exported to other fields such as cognitive vision

or code generation from ontologies. The model has been

embedded into a previous computer vision framework by re-

lying on part-whole patterns and DOLCE recommendations.

The proposal accomplishes an extension, which includes

KinectTM skeletal view data representation with backward

compatibility. To illustrate the functioning of the extended

framework, a case study for live market research with a

simple activity recognition example rule has been described.
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Future works will address the application of the entire

model to a real life scenario combining monocular and

ToF sensors. This application should include a probabilistic

mechanism to reason with real world data asserted in the

model, which may be imprecise or uncertain.
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