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Abstract—Participatory sensing applications have an on-going
requirement to turn raw data into useful knowledge, and to
achieve this, many rely on prompt human generated meta-data to
support and/or validate the primary data payload. These human
contributions are inherently error prone and subject to bias
and inaccuracies, so multiple overlapping labels are needed to
cross-validate one another. While probabilistic inference can be
used to reduce the required label overlap, there is still a need
to minimise the overhead and improve the accuracy of timely
label collection. We present three general algorithms for efficient
human meta-data collection, which support different constraints
on how the central authority collects contributions, and three
methods to intelligently pair annotators with tasks based on
formal information theoretic principles. We test our methods’
performance on challenging synthetic data-sets, based on real
data, and show that our algorithms can significantly lower the
cost and improve the accuracy of human meta-data labelling,
with little or no impact on time.

I. INTRODUCTION

Many participatory sensing (PS), or crowdsensing, sys-
tems require regular human input, to translate sensing data
into meaningful information. However, human input is funda-
mentally unreliable (semi-trusted). This paper proposes novel
architectures and algorithms, that utilise recent trust based
inference techniques [1], [2], to flexibly maximise throughput
of valuable human input within crowdsensing systems.

PS applications are becoming increasingly popular and
complex, and can be used as direct data sources or for process-
ing pipelines [3], [4]. PS has been used to sense, measure and
map a variety of phenomena, including: individuals’ health,
mobility & social status, e.g. [5]–[7]; fuel & grocery prices,
e.g. [8], [9]; air quality & pollution levels [3], [10], [11];
biodiversity [12]; transport infrastructure, e.g. [13]–[15]; and
route-planning for drivers [16] & cyclists [17].

There are various conditions under which meta-data based
on human acquired labels are used in PS applications. For
instance, when data is shared directly with participants, such
as the Biketastic scheme from [17], where users share cycle
routes and associated information. Here, route information is
a combination of data from sensors (accelerometers, GPS, mi-
crophones,. . . ), with human generated content such as location
tags, photos of interesting features, and the implicit informa-
tion that this a good route. For optimal user experience, only
the best routes should be shared, with poor routes or incorrect
information weeded out. Other direct sharing applications with
similar requirements include environmental sensing in [12] and
social sensing in [5]. Some applications instead collect and
improve labelled data-sets for use with automated systems,
such as users tagging map locations in [5], [8] to be used
on mapping services, e.g. Wikimapia. Here application and

service have a mutually beneficial relationship, and both rely
on the quality of the human tags.

In other cases, human intervention is required to validate
sensed data, e.g. manual calibration of phone sensors is re-
quired for noise measurements in [11], and air-quality data in
[3]. Validation can also be required for meta-data, either when
the meta-data has stand-alone utility, like the map locations in
[5], or when it is used as training data for machine learning
inference, e.g. the pot-hole detector from [14] and the activity
recognition from [7]. Finally, these applications provide data
that could be commercially valuable [4], e.g. health data to
pharmaceutical companies, social data to advertisers and so on,
which can put formal Quality of Information (QoI) demands
on the data and meta-data.

These human contributions can be error prone, inaccurate
and/or biased. Therefore, this paper exploits probabilistic mod-
els for inference with semi-trusted labels, e.g. [1], which can
simultaneously estimate the reliability of annotators as well
as the ground-truth of the labels. Our contributions are: 1)
a measure of information content in these models, 2) three
metrics to estimate expected information gain of new labels,
and 3) three general active labelling algorithms that use these
metrics to efficiently acquire labels, and give QoI guarantees.

A related active labelling method is proposed in [2], which
blacklists less reliable annotators to improve label collection
for (semi-)static data-sets. Our approach differs in that we
present novel techniques to efficiently collect human labels in
dynamic, and time critical crowdsensing applications. We also
accomodate different constraints on how labels are sourced,
and our information theoretic pairing metrics match annotators
with specific tasks, so we can respond to individuals’ strengths
and weaknesses. Unlike in [2], we do not need to manually
set a threshold for reliability of our annotators, instead pairing
is performed flexibly and based on need. This means that we
can differentiate between rapidly collecting labels of a given
quality, or efficiently improving the quality of the data-set as
a whole. [18] presents an active labelling approach. However,
this requires annotators to state their confidence on labels, and
a metric over object descriptors, so it is less broadly applicable.

Other related Bayesian models, e.g. those in [19], [20],
model the characteristics of each required label, e.g. difficulty,
and these are good candidate models on which to develop
extensions of this work. [21] presents lightweight inference
for binary semi-trusted labels, but it is unclear how this model
could be similarly exploited for active labelling to give the
same rich QoI guarantees.

The rest of the paper is laid out as follows: Section II
introduces certain methods for inference with semi-trusted



labels, and outlines a few useful concepts from information
theory; Section III details our novel adaptations to these
methods for the participatory sensing domains; Section IV tests
our methods’ performance on real and synthetic data against
more conventional approaches; and Section V summarises the
findings and discusses future work.

II. BACKGROUND

Recent research on crowdsourcing has applied probabilistic
models to large scale problems with semi-trusted meta-data,
e.g. [1], [2], [21]. These approaches focus on simple labels
(meta-data), e.g. binary, categorical, real scalars and vectors,
for discrete data items, and aim to simultaneously estimate
the hidden ground-truth of labels, and the reliabilities of the
annotators. These approaches exploit the principle that reliable
annotators tend to agree with each other more often than those
prone to random mistakes, bias, or error.

Consider first the basic trust model1 outlined in [1]. This
assumes there is a set of objects O, which requires annotation,
and for each object i ∈ O there is an unknown ground-truth
zi. There is also a set of annotators, A, who can be queried
about each zi. Each annotator j ∈ A, is not entirely reliable,
and when queried about zi gives label lij , which may, or may
not, be equal to zi. This model makes the weak assumption
that the majority of annotators are non-malicious. If true, then
more labels will lead to better inference, as on average even
information from weak annotators adds information.

Figure 1 shows the trust model, in which large nodes
represent random variables (RVs), and shaded nodes are ob-
served; directed edges show the direction of causal influence;
larger rectangles collect groups of RVs; and smaller nodes are
the prior parameters of the model. Together, this represents
a joint probability distribution. Ground-truths zi, labels lij ,
and annotator reliability estimates, aj , are represented in the
model by RVs. For simplicity, we focus on binary labels,
i.e. zi, lij ∈ {0, 1}, but this model can be used with 1-of-
K categorical, ordinal, real scalar and real vector labels. Here,
reliability estimates aj = (aj,0, aj,1), where aj,0 and aj,1 are
annotator j’s true negative rate (specificity) and true positive
rate (sensitivity) respectively.

i ∈ O

zi

(i, j) ∈ L

li,j

j ∈ A

aj

ζ α

Fig. 1. Simple graphical model to infer ground truth from semi-trusted labels
– object i ∈ O has hidden ground-truth zi, annotator j ∈ A has reliability aj ,
and lij ∈ L are observed labels. Parameters ζ and α encode prior knowledge.

A. Information Entropy and Gain
Information entropy and gain are used in Section III to

anticipate the value of a new label. Information theory [22]
tells us that before we know the outcome of some discrete
random variable (RV), X , then its entropy is given by

H(X) =
∑
x∈AX

P (x) log2

1

P (x)
(1)

1Similar to the model used in [2], where poor labellers are blacklisted.

where AX are possible values for X , and P (x) is the probabil-
ity X = x. Put simply, H(X) measures how much information
we gain by knowing the outcome of X .

For two RVs, X and Y , the average entropy remaining in
X after knowing Y is given by the conditional entropy

H(X|Y ) =
∑

x,y∈AX×AY

P (x, y) log2

1

P (x|y)
(2)

where P (x, y) is the joint probability that X = x and Y = y,
and P (x|y) is the probability X = x given Y = y.

A related concept is mutual information, which measures
the average reduction in entropy of X by knowing Y , and is

I(X;Y ) = H(X)−H(X|Y ) (3)

We define two more information theoretic quantities. First,
the joint entropy of N independent RVs X1, . . . , XN is

H(X1, . . . , XN ) =
∑
n

H(Xn) (4)

where independence means P (x1, x2 . . . , xN ) =
∏
n P (xn).

If RV X has distribution P , and we think it has distribution
Q, then the Kullback-Leibler (KL) divergence measures the
information we gain by learning true distribution P , and is

DKL(P ||Q) =
∑
x∈AX

P (x) ln

(
P (x)

Q(x)

)
(5)

Bayesian probabilistic models allow us to treat beliefs
about unknown quantities as probability distributions over
RVs. Together with the above information theoretic quantities,
this concept allows us to measure how changing beliefs corre-
spond to information gains. In the next section, we show how
these measures can be used to guide knowledge acquisition.

III. ACTIVE LABEL COLLECTION

This paper considers labels about objective reality, e.g. map
locations; or about a shared view, e.g. whether a cycle route is
challenging. Given this, the object being labelled must be expe-
rienced. We categorise labels as either singular experience or
repeatable experience. Singular experience labels can only be
acquired contemporaneously with the data, because the original
experience cannot be sufficiently reconstructed from the data to
be re-experienced. For example, the categorisation of human
movement, e.g. cycling or walking, from accelerometer and
gyroscope readings. Repeatable experience labels are such that
a human inspecting or experiencing the data can reasonably be
expected to label it. A trivial example is labelling an image
based on its content. However, other examples exist, such as
deciding whether there is traffic noise or human conversation in
a sound recording (applicable to [17] and [5] respectively); or
tagging the name and function of a map location (used in [5],
[7], [8]). One common form of repeatable experience labelling
is the up-/down-voting of data (or meta-data), e.g. suggested
cycle routes [17], or the location of pot-holes [14]. This paper
focuses on labels corresponding to repeatable experience, as
the modelling techniques we employ require multiple labels for
data items. More precisely, they require a degree of overlap in
data items labelled by different annotators.



A. Object versus Annotator Centricity
Crowdsourcing (and hence crowdsensing) annotation appli-

cations come in many forms, and with different ways in which
data items (more generally tasks) are selected for annotators,
and how annotators are notified of requests, called staging.
Figure 2 shows two common approaches. The first is anno-
tator centric staging, see Figure 2(a), where annotators are
central to the task assignment, and objects are selected, either
individually or in batches, and queued for each annotator. This
approach is common for the labelling of large data-sets, where
annotators may attend sessions of annotation. In object centric
staging, see Figure 2(b), tasks arrive–or are selected in turn–
and are then assigned to a waiting crowd of annotators. This
approach is suited to live, on-going annotation, such as you
might find in crowdsensing applications, where annotators are
on call to answer questions for certain periods of the day.

(a) Annotator centric staging

(b) Object/task centric staging

Fig. 2. Annotator centric versus object/task centric staging.

There are a number of additional concerns that can apply
to both approaches, e.g. it may be that:

• Ground-truth corresponds to objective reality, or to hypo-
thetical consensus, i.e. population majority view.

• The ground-truth is used as training inputs to learning
algorithms, either for a single known algorithm or as a
general purpose data-set.

• There is marginal utility to improving the confidence in
ground-truth predictions beyond a threshold.

• QoI is either associated with the number of objects above
the confidence threshold, or more generally with overall
confidence measured across all objects.

• Some objects require higher confidence than others.

This paper focuses on general purpose active labelling for
objective ground-truth, treats all objects as equal in terms of
information quality, and explores methods to improve both
confidence threshold and overall confidence metrics. As stated
in [1], there is no fundamental difference in the treatment
of objective ground-truth and hypothetical consensus, so we
approach both label types in the same way.

B. Object Centric Staging
Object centric labelling involves finding the right annota-

tors for a given object or task. For this, the central authority
must be able to request labels from individuals. There are a

number of additional concerns associated with object centric
approaches. For example, the central authority may wish to:

• select one annotator for each object, or more than one.
• account for annotators failing to respond to requests, for

annotators to respond at different rates, or with response
rates that change with time

• limit the number of responses per object a priori by
number, or reactively based on information measures.

• associate a higher cost with labels from some annotators,
or with waiting longer for a response.

We focus on assigning one annotator per object at a time,
assume that all annotators respond reasonably quickly, and
allow costs to be a balance between time and number of la-
bels. Other complicating factors are considered straightforward
extensions of the methods here. We explore object centric
approaches first and propose two general staging algorithms.

Buffered Streaming: A small number of objects/tasks
are queued in a buffer. Iteratively, the queue’s head is assessed,
and if the inference is still unsatisfactory, it is paired with an
annotator and marked awaiting; otherwise the object is done
(qualified). When a an awaiting label is returned (or times
out), the object is moved to to the back of the queue.
Algorithm 1 Buffered Streaming.
Require: Buffer size b, qualification threshold, η

# Initialise buffer and pending & qualified objects
B ← ∅, P ← ∅, Q ← ∅
while O\Q 6= ∅ do

while |B|+ |P| < b do
i← next object()
P ← P ∪ {i}

for all labels lij returned, with (i, j) ∈ B) do
# Store label, move object from buffer to pending
L ← L ∪ {lij}, B ← B\{(i, j)}, P ← P ∪ {i}

run learning(L)
for all i ∈ P do

if qualifies(i, η) then
Q ← Q∪ {i}

else
j ← pair annotator(i,A\BA)
B ← B ∪ {(i, j)}. P ← P\{i}

return L

Buffered Pool Sampling: Objects are kept together in a
pool, then sampled individually from the pool, either randomly
or based on inference. Sampled objects are allocated to a
annotator, and pushed to a finite awaiting buffer. Objects exit
the awaiting buffer when response is received (or times out).
As new responses become available, inference can be rerun,
and satisfactory objects marked as qualified.
Algorithm 2 Buffered Pool Sampling.
Require: Buffer size b, qualification threshold, η

# Initialise buffer and qualified objects
B ← ∅, Q ← ∅
while O\Q 6= ∅ do

while |B| < b do
i← select object(O\(BO ∪ Q))
j ← pair annotator(i,A\BA)
B ← B ∪ {(i, j)}

for all labels lij returned, with (i, j) ∈ B) do
# Store label, remove object from buffer
L ← L ∪ {lij}, B ← B\{(i, j)}

run learning(L)
Q ← all qualified(η)

return L

Buffered streaming and buffered pool sampling are outlined
in Algorithms 1 and 2 respectively. In both algorithms, the
set A is the current set of annotators on call, and annotators



may dynamically join and leave this set. The set O contains
all objects recognised by the system. In general, new ob-
jects will be added to (or possibly removed from) this set
with time. Busy annotators are defined as those in a buffer
BA

def
= {j|(i, j) ∈ B}, and objects that have been assigned and

are awaiting responses are defined as BO
def
= {i|(i, j) ∈ B}.

next object() is used by buffered streaming to schedule the
next object for labelling. Most simply, this is done by time-
stamp or sampled at random. However, active-learning could
be used when coupled with a classification/regression al-
gorithm, see Section V. run learning(L) takes the current
labels L, and runs the inference, giving new ground-truth and
reliability estimates. qualifies(i, η) determines if the inference
for object i is sufficiently certain, and takes a threshold,
η, as argument – we discuss this further in Section III-D.
all qualified(η) simply returns the set of all sufficiently certain
objects, i.e. {i ∈ O|qualifies(i, η)}. pair annotator(i,A\BA)
predicts the best available annotator to label object i, and
select object(Ō) is used by buffered pool sampling to schedule
the next object, both are discussed further in Section III-D.
Buffered streaming is clearly more constrained than buffered
pool sampling, the latter allowing the central authority to
choose objects for every pairing based on changing need
but with an additional overhead. However, buffered streaming
ensures that each object qualifies in turn, and so can be used
to rapidly acquire individual objects of a given quality.

C. Annotator Centric Staging
Annotator centric labelling involves choosing appropriate

objects for users who annotate in sessions. Annotator centric
approaches may additionally wish to:

• allow annotators to terminate sessions at any point.
• have many annotators in session at any time.
• account for annotators working more or less quickly, with

response times that depend on time and task.

We propose one annotator centric staging algorithm, which
supports multiple annotators, who may join or terminate ses-
sions freely. We assume response times are probabilistic but,
for simplicity, assume these do not depend on task, time or
annotator. Suitable extensions are straightforward.

Session Queues: Each in session annotator is assigned
a queue of up to n objects. At each iteration, annotators
are assessed individually and suitable objects are allocated to
return queues to size n. As annotators leave sessions, queues
are cleared, and are freshly filled to size n when they rejoin.
Algorithm 3 Session Queues.
Require: Queue size c, qualification threshold, η

# Initialise session annotators, buffer and qualified objects
Ā ← ∅, B ← ∅, Q ← ∅
while O\Q 6= ∅ do

for all j ∈ A\Ā do
Cj ← ∅

Ā ← A, B ← {(i, j)|i ∈ Cj , j ∈ Ā}
for j ∈ order annotators(Ā) do

while |Cj | < c do
i← pair object(j,O\(BO ∪ Q))
B ← B ∪ {(i, j)}

L ← update labels()
run learning(L)
Q ← all qualified(η)

return L

Session Queues staging is outlined in Algorithm 3, where
in-session annotators are denoted Ā, and update labels() adds

all newly returned labels to L. Finally, order annotators(Ā)
determines what order the in session annotators will have their
queues filled, and pair object(j,O\(BO ∪ Q)) predicts the
best unqueued object for annotator j to label, again, both are
discussed further in Section III-D.

D. Information and Pairing Metrics
As discussed in Section II, the information content of

probabilistic beliefs (or rather the degree of uncertainty) can
be measured using the entropy of the corresponding random
variable (RV). Here we show how this relates to the simple
trust model from Section II for binary labels2, and how we use
this to mark objects as satisfied and pair them with annotators.
Recall that for labels L, the trust model infers ground-truth zi
for each object i. For our binary model, zi ∈ {0, 1}, and this
unknown outcome is modelled by a RV, Zi, where

P (zi = z|L) = (1− µi)(1−z)µzi (6)

For notational simplicity, we drop the explicit label condi-
tion, i.e. P (zi|L) = P (zi). Given this represents a probability
distribution over possible ground-truths zi, we can measure the
entropy of Zi, using Equations (1) and (6), to give

H(Zi) = −(1− µi) log(1− µi)− µi log(µi) (7)

Each label lij we have not yet collected also represents a
RV Lij . We can again calculate the entropy H(Lij), by noting

P (lij = l) =
∑
z

P (lij = l|zi = z)P (zi = z) and

P (lij = l|zi = z) = a
I[l=z]
j,l (1− aj,l)(1−I[l=z]) (8)

where I[.] is the indicator function.
From Equation (4), the total entropy over all objects is

H(O) =
∑
i∈O

H(Zi) (9)

because conditioned on the µis the Zis are independent.
Information theory states that new data will on average

add information [22], and hence decrease this entropy. Our
aim is to select a new label lij that will most reduce H(O).
In our model, Lij has a more direct relationship to Zi, than
other Zi′s, therefore we assume that choosing i and j to
maximally reduce H(Zi) is a good substitute strategy. This
is not a formal argument. We present three pairing metrics,
PMi,j , that predict the information gain in Zi given lij .

Mutual Information (MI): If we knew no more about
Zi and Lij , than their joint probability, then the mutual
information between Zi and Lij tells us how much new
information about Zi is acquired when we know lij . From
Equations (2) and (3), this is

PMi,j = I(Lij ;Zi) = H(Lij)−
∑

zi,lij∈{0,1}

P (lij |zi)P (zi) log(
1

P (lij |zi)
)

and can be evaluated using Equations (6), (7) and (8).
Note that Lij and Zi are non-trivially coupled by the

inference model, so this may not be a perfectly accurate
measure. However, it is a good first order approximation.

2It is straightforward to extend this approach to other kinds of labels.



Information Gain (IG): Alternatively, we can predict
how estimates of zi change, if we acquire lij . Define Z ′i as
new probability distribution that would be inferred if lij were
added to L. More specifically, if lij = l then Z ′i = Zi|lij=l.
The information gained by adding lij = l is then estimated by
DKL(Zi|lij=l||Zi) 3. As we do not know the label in advance,
we calculate the expected information gain

PMi,j = E(DKL(Z ′i||Zi)|lij) =
∑

lij∈{0,1}

P (lij)DKL(Zi|lij ||Zi)

=
∑

zi,lij∈{0,1}

P (lij |zi)P (zi)DKL(Zi|lij ||Zi)

using Equations (6) and (8) and run learning(L ∪ {lij}).
Thresholding (T): The third pairing metric, requires a

threshold η, and is the probability that lij will increase object
i’s entropy beyond threshold η, e.g. P (H(Z ′i) > η). This again
uses run learning(L ∪ {lij}) and is given by

P (H(Z ′i) > η) =
∑

lij∈{0,1}

P (lij) I[H(Zi|lij ) > η]

Approximating Z ′i: Note that information gain and
thresholding’s use of run learning(L ∪ {lij}) can be expen-
sive. However, methods from [1] and [2] use expectation-
maximisation algorithms which iteratively approximate all µi
and aj simultaneously. For models already trained on mod-
erately sized label sets, adding one label and retraining is
relatively cheap, and the vast majority of the change in Zi
occurs in the first E-step. For these reasons, we use a single
E-step approximation of each Z ′i, in our experiments.

E. Selection, Qualification and Pairing
The above measures are used as follows:

select object(Ō): in buffered pool sampling, schedules
the next object given those available, Ō. This selection can take
advantage of the entropy of ground-truth predictions, and we
examine three possibilities: random, object chosen at random;
most certain, choose object i? = argmaxi∈ŌH(Zi); and least
certain, choose object i? = argmini∈ŌH(Zi).

qualifies(i, η): determines if the inference for object i is
sufficiently certain given scalar threshold η > 0. For generality,
this uses the entropy as a measure of certainty, i.e. returning
H(Zi) ≤ η. For binary labels, this is equivalent to a probability
threshold η′, where sufficient certainty corresponds to µi ≤ η′
or µi ≥ (1− η′); asymmetric thresholds are also possible.

pair object(j, Ō): finds the best object i?, for annotator
j from those available. This uses any pairing metric, PM.,j ,
and returns i? = argmaxi∈Ō PMi,j .

pair annotator(i, Ā): finds the best annotator, j?, for
object i from those available, again based on a pairing metric,
PMi., where j? = argmaxi∈Ā PMi,j .

order annotators(Ā): orders annotators for processing
by session queues. We explore three possibilities: Egality (E),
i.e. random order; Meritocracy (M), i.e. by decreasing relia-
bility; and Cannon Fodder (C), i.e. by increasing reliability.

3To see why, note that Zi|lij=l would then be our best approximation of
the ground-truth.

pair annotator(., .) and pair object(., .), also support ran-
dom (passive) pairing. However, the staging methods discussed
here are only truly effective, with non-passive (active) pairing.

IV. RESULTS

The data-set most closely satisfying our experimental re-
quirements was the Cub200 birds [2]. However, this has too
little overlap between annotators, and no ground-truth. To ad-
dress this, we trained the inference model on real labels for an
individual binary Cub200 attribute, e.g. has size::small, then
sampled 500 object ground-truths and 50 annotator expertises
from the inferred values, to synthetically generate labels with
known ground-truth. Response times were sampled from an
exponential distribution with mean of 1 minute.

Figure 3(a) shows final label count, time, information
entropy and ground-truth error rate for 5 runs of each object
centric approach, as well as naive label collection. . Results
show buffered streaming terminates more quickly than naive
sampling and with just over half as many labels, while the
best pool sampling method takes ∼ 50% longer, but again
with fewer labels. Note that performance for all methods have
error rates slightly higher than their thresholds, with buffered
streaming as least accurate. Figure 3(b) shows how error rate
threshold affects buffered streaming performance, with stricter
thresholds reducing the number of labels (cost), but with
increased time penalty. Mutual information pairing leads to
fewest labels, while Thresholding gives the best accuracy.

(a) Streaming (St.) and pool sampling (Sa.); threshold error rate 0.1.

(b) Buffered streaming, variable threshold error shown in legend.

Fig. 3. Object centric results, with pairing metrics mutual information (MI),
information gain (IG) and threshold crossing (T). Buffer size was 25 for active
methods. Naive (N) method also shown. Error bars are 1 std. error.

Figure 4 (a) and (b) show the effects of varying ordering
and queue length on the session queues staging respectively,
where annotators join/leave sessions with probability 0.1 each
iteration. Each experiment represents 5 runs for a fixed 50000
iterations, so only accuracy and entropy results are shown.
Figure 4 (a), shows Egality ordering, with thresholding and
information gain metrics, leads to higher accuracy than all



other choices. Figure 4 (b) uses Egality ordering and shows
that larger queues give slightly higher throughput of labels.

N

(a) Annotator order (b) Session Queues
Fig. 4. Session queues, with pairing metrics: Mutual Information
(MI), Thresholding (T) and Information Gain (IG). (a) compares (E)gality,
(M)eritocracy, and (C)annon Fodder ordering, and (b) compares different
Queue lengths n, denoted Qn. Error bars are 1 std. error.

V. CONCLUSION

This paper outlines a family of approaches for active
labelling within crowdsensing systems. These methods are
based on information theoretic principles and cater for a
variety of constraints on how labels are collected, i.e. staging.
Object centric staging offers ways in which the number of
labels required can be significantly reduced with small or no
impact on time, and this will be particularly relevant when
there is a cost associated with label collection. However, there
are additional benefits, including a finer grained control over
label collection, and cleaner data-sets, e.g. a smaller number
of low quality labels. Unsurprisingly the naive approach is
competitive on time though, as it allows maximal through-
put of information, every annotator providing labels at their
maximum rate. Annotator centric staging shows a marked
improvement in accuracy over naive approaches for fixed label
collection time, and labels can be queued in advance for each
annotator. Both staging approaches can improve the acquisition
rate and accuracy of inferred ground truth.

Aggressively optimising label acquisition could, in theory,
lead to reduced accuracy due to confirmation bias, i.e. seeking
to confirm what one already believes. However, there was no
evidence of this in our results. The entropy measure correlates
well with the error rate for all of our algorithms.

In future work, we intend to support other label types &
QoI measures (e.g. those in [23]); to account for time, task
& annotator dependent response rates, and easier & harder
tasks; and perform case studies on real collection in the
wild. Another research avenue is to account for the specific
learning algorithms that use the data, by integrating active label
collection with active learning. The general principles outlined
here offer a strategic base from which to explore these ideas.
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