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Abstract—Global navigation systems and location-based ser-
vices have found their way into our daily lives. Recently, indoor
positioning techniques have also been proposed, and there are
several live or trial systems already operating. In this paper,
we present insights from MazeMap, the first live indoor/outdoor
positioning and navigation system deployed at a large university
campus in Norway. Our main contribution is a measurement case
study; we show the spatial and temporal distribution of MazeMap
geo-location and wayfinding requests, construct the aggregated
human mobility map of the campus and find strong logical ties
between different locations. On one hand, our findings are specific
to the venue; on the other hand, the nature of available data and
insights coupled with our discussion on potential usage scenarios
for indoor positioning and location-based services predict a
successful future for these systems and applications.

I. INTRODUCTION AND RELATED WORK

Navigation systems have been incorporated to our daily life.
The most prolific example is the Global Positioning System
(GPS) used by motorists and pedestrians alike. Although GPS
technology itself is quite mature, the market for devices with
GPS capability is expected to grow at a Compound Annual
Growth Rate of 15% between 2012 and 2015 [15]). Driving this
steady growth is the increasing proliferation of smartphones
with built-in GPS receivers enabling services beyond plain
navigation such as location-based shopping and social net-
working. Despite the steady market expansion, location-based
services would be crippled if limited only to outdoor venues:
people in urban areas could spend around 80-90% of their
time indoors [[17]. Fortunately, indoor positioning technologies
are on the rise, enabling smartphone users, businesses and
software developers to determine the location of people and
objects inside buildings. Most proposed Indoor Positioning
Systems (IPS) utilize some form of wireless radio commu-
nications: WiFi, cellular, RFID, Bluetooth, enhanced GPS and
their respective combinations; please refer to [16]] for a starting
point.

IPS inherently has the potential to tremendously advance
the concept of pervasive computing by forming the basis of
services like indoor wayfinding, people and asset monitoring,
personalized shopping, improved emergency response and
even making the real world digitally searchable down to the
object level [11]]. Given the intriguing business potential of an
emerging multi-billion dollar market, it is hardly surprising
that major tech companies are also involved in incorporating
IPS into their platforms and products. On the hardware vendor
side, Broadcom is focusing on enhancing the indoor position-

ing capabilities of their chips [8]. Already present in the online
map segment, Google [14] and Nokia [23]] are working on
extending their offerings for maps of indoor venues. Currently,
there are hundreds of SMEs active in IPS-related business, and
tech giants pay close attention as evidenced by Apple’s $20M
acquisition of WifiSLAM [4].

There is a long list of indoor venues, where users, busi-
nesses and venue-owners could mutually benefit from Indoor
Location-Based Services (ILBSs) built on top of an IPS. This
list includes shopping malls, large hotels and casinos, airports,
hospitals, museums, university campuses and office buildings.
Live and piloting shopping-related ILBSs include the ones of-
fered by BestBuy [6] and other major retailers such as Macy’s
and Target, partnering with different IPS startups such as the
already profitable Shopkick [28]]. Boston Children’s Hospital
has launched its MyWay mobile app providing among others
indoor wayfinding [[7]. In addition, the American Museum of
Natural History provides visitors with a personalized, location-
aware tour guide app [1].

NTNU (Norwegian University of Science and Technology)
partnering with Wireless Trondheim has been offering a hy-
brid indoor/outdoor wayfinding app called MazeMap (earlier
known as CampusGuide) [9], [22] for its main Glgshaugen
campus since Fall 2011; the first of its kind. MazeMap is
able to locate a user’s position on campus with an accuracy
of up to 5-10 meters, and provides room-level wayfinding and
object search capabilities. In this paper we focus on MazeMap,
and present a measurement study based on 19 month of
user logs. Our main contribution is a first-of-its-kind case
study providing usage statistics, human mobility patterns and
a spatio-logical network of rooms from a live ILBS covering
an entire university campus. First, we present spatial and
temporal distribution of user requests at the building, room
and object level. Second, we build a weighted directed graph
out of turn-by-turn routes resulting from wayfinding requests.
We construct a human mobility map, showing aggregated user
mobility patterns and campus highways. Third, we consider
the logical connections between rooms and floors linked by
wayfinding requests. We show that there are expected and un-
expected strong ties in this social graph. Furthermore, we find
that there is strong correlation between the strength of logical
connections and geographical distance; in fact more than 70%
of wayfinding requests are intra-building. In addition, we give
an outlook on the potential venues and usage scenarios for IPS
such as shopping malls, hospitals, institution-level resource



management, emergency preparedness and human mobility
research.

One paper we are aware of which is close to our work
is [26]; however, it is based on the experimental tracking of
37 users for one month, while our study spans thousands of
users and 19 month in a large-scale, live system. Owing to
our slightly different focus, we do not elaborate on wireless
indoor positioning techniques; we only provide a starting point
[16]. We do provide a unique case study from a live ILBS
and a short discussion on the potential of indoor positioning,
however, our contribution has some limitations. Due to space
limitation we do not provide a comprehensive analysis of the
dataset: we believe that the nature of insights provided by the
case study are more important than the actual results. They
justify the potential of ILBSs in multiple venues and scenarios.
Moreover, the dataset is limited in that the system does not
yet have the capability for tracking individual devices or user
sessions; once operational, the latter feature is expected to
provide deeper insights.

The rest of the paper is organized as follows. Section [[I| gives
an overview of the MazeMap system. Section introduces
the dataset and analysis methods. Section |I[V]| presents our case
study. Section [V]discusses potential future usage scenarios and
challenges. Finally, Section [V]] concludes the paper.

II. MAZEMAP

MazeMap, a service for indoor positioning and navigation,
started as an R&D project between Wireless Trondheim and
NTNU [19]. Each year, 5000 new students arrive at NTNU,
and have lectures and activities all over NTNU’s premises.
The largest campus, Glgshaugen, covers 350000 sqm with
over 60 buildings and 13000 rooms. It is therefore a big
challenge for new students and many visitors to find their
way around campus. This was the motivation for MazeMap;
the first version was launched 31st August, 2011 under the
name CampusGuide. MazeMap allows the user to see building
maps on campus, locate the user’s own position within the
building, search for all rooms and different objects (toilets,
parking lots, etc.), and get turn-by-turn directions from where
the users is to where he wants to go. MazeMap can be tested
from anywhere at [22]. The service has become quite popular:
during the start of a new semester nearly 10% of all employees
and students use the service daily; the total number of unique
devices logged since August 2011 is around 20000. MazeMap
aims to help users find their ways with their laptops, tablets
and smartphones; the service is available from a browser and
as an app at both Google Play and Apple AppStore.

MazeMap can locate a user’s position indoors with an
accuracy of up to 5-10 meters using the dense WiFi network
of NTNU, which has more than 1,800 WiFi access points.
The technique used is called trilateration [20], where signal
strengths from 3 or more different access points are measured,
and the user’s position is calculated based on these. The
accuracy of the position depends on the WiFi network, how
access points are placed and their density. At this specific
campus, most outdoor areas are also covered multiple access

[ Type | Sample size ]
geopos 1301880
wayfinding 29808
object search 2294
suggestion 71

TABLE I: Requests by category

points; however, MazeMap is also able to use standard GPS
positioning when the user is outdoors (if the device has an
enabled GPS receiver), providing approximately the same
precision as the WiFi method. Note that the system is also
able to combine WiFi and GPS signals if available. On the user
interface side, in order to present the users with readable maps,
the service uses construction drawings, and interprets them to
recognize different objects, and to choose what to show or
hide. This way the maps the users see are not overloaded with
unnecessary technical data.

MazeMap is delivered as a software as a service, which
enables frequent updates of design and new functionality. The
service is already launched at different other premises includ-
ing St. Olavs Hospital (regional university hospital) and the
University of Tromsg; other venues are scheduled to start soon.
Furthermore, as part of the Wireless Trondheim Living Lab [2]
there is an interdisciplinary group at Wireless Trondheim and
NTNU looking into novel ways of utilizing location data and
improving the navigation service. MazeMap therefore collects
depersonalized data of service usage including positioning
logs, in accordance with NTNU directives and Norwegian law.

III. DATASET AND PROCESSING

We have acquired traces from MazeMap’s logging module,
covering the period between September 2011 and March 2013.
Since the system has been in active development merging
logs from different periods required additional effort. Logs
contain both explicitly user-initiated (wayfinding, object search
and object suggestion) and automatic, periodic client-side,
geo-positioning (geopos) requests. The number of different
requests can seen in Table [l On one hand, geopos requests
are initiated every 5-10 seconds (depending on the exact app
version), hence the large sample size. On the other hand,
individual geopos requests are not linked together as there
is no permanent user- or session identification implemented
in the current system. Moreover, whenever a geopos request
is initiated outdoors, the system records only that much; the
exact position is not saved. Therefore, only aggregate, intra-
building statistics are derived from this request type. Since
MazeMap is under continuous development, session-tracking
and more detailed geopos logging features will be available
in the future; approval from the institutional review board has
already been secured.

We focus on the Glgshaugen campus and filter explicit
testing requests from application developers as they would bias
our results. We have written Python scripts for data analysis,
used Gephi [12] for network visualization and QuantumGIS
[27]] for map-based visualization. First, we present raw results
of spatial and temporal characteristics of requests. In order
to draw a human mobility map, we focus on wayfinding



requests, and map every step of all turn-by-turn indoor/outdoor
routes onto a detailed map of the same granularity. To be able
to do this, we submit all wayfinding requests to a backup
MazeMap server running the routing algorithm, which returns
the corresponding paths. Based on this map, we present an
approximation of the aggregated human mobility pattern on
campus in Section [[V-A] We also present the buildings where
users spend the most time based on geopos requests. Further-
more, we zoom into the largest building (Realfagsb.), and show
the same statistics. In Section we only use the sources
and destinations of wayfinding requests, and structure them as
a weighted graph. We show the trivial and non-trivial logical
connections between different locations from a social network
perspective; we also find that logical connections between
locations show strong dependence on spatial proximity.

Note that the most avid users of the service are freshmen
(and new employees), who are not yet familiar with the cam-
pus layout. However, their movement patterns are expected to
be mostly similar to other students (and employees). Combined
with the fact that our logs contain data points from more
than 20,000 unique devices, we believe we do not introduce
significant sampling bias across the campus population. Fur-
thermore, we assume that users follow the turn-by-turn in-
structions provided by MazeMap for two reasons. First, maps
are constructed from actual floor plans and their connections.
Second, MazeMap takes combined indoor/outdoor paths into
account; also, the opportunity for cutting corners outdoors is
quite limited at this location. We use real building and room
names in our results; for detailed context, we refer the reader
to the zoomable map of the campus complete with building
names at [25].

IV. RESULTS

The spatial distribution of geopos and wayfinding requests
is shown in Figure [I] (note the log scale). Since geopos
requests are sent periodically by active user sessions, they
are much larger in volume. They give an approximation on
which buildings users spend the most time at. As expected,
buildings with numerous and large lecture halls (Realfagb.,
Gamle Elektro, Sentralb.) are at the top of the list. The
slope of wayfinding requests follows a similar pattern, but
with certain exceptions, e.g., Hovedb., the main administrative
building, is a popular target. It is a less obvious finding that
certain buildings exhibit disparity being sources or targets of
wayfinding. Berg (general use building) appears several times
more as a target, while Elektro A (multiple lecture halls and
study rooms) is rather a source. Not shown in the figure is
the outdoor area of the campus: a large number of automatic
geopos requests originate from here, and it is also the largest
(albeit aggregated) source of wayfinding queries. Regarding
single-room targets, the most popular are large lecture halls
(H3, F1 and R1), while smaller halls and the largest cafeteria
(Kafe Realfag) are also on the toplist (see Figure [2).

Figure [3] shows the temporal distribution of wayfinding
requests per month over 12 months. The distribution appar-
ently follows a university schedule: most requests are made

H3

F1

R1

R7

ELS
MB5A
EL3

R2

21

F6

52

EL4

R10

F2
Tradlose
K27

Kafe Realfag

0 150 300 450 600

Fig. 2: Top targets of wayfinding requests per room
100000

10000
1000

100

B L S L S i N S N LN s
A P e T i T e T e T e TP T T e e

Fig. 3: Temporal distribution of wayfinding requests (log scale)

in the beginning of semesters (August-October and February
in Norway), decreasing through the semester (as student get
to know the campus better) and bottoming out around exams
and holidays (June-July and December-January).

Regarding object search queries, the most popular POIs are
toilets, followed by computer and study rooms. Bus stops and
parking lots are less popular, see Figure [ for the breakdown.

A. Putting statistics on the map

An interesting interpretation of our dataset is a map of users’
movement on campus. Deriving such a “traffic map” could
be quite important both from scientific and practical points
of view, e.g., understanding human mobility or predicting
congestion points. We construct such a map based on the
20000 wayfinding requests recorded by MazeMap. Note that
this map is an approximation of the real mobility pattern on
multiple levels: it uses limited data aggregated over both the
user population and time; and it assumes that users actually
follow the turn-by-turn instructions provided by the system.
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Fig. 4: Breakdown of requested objects
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Fig. 1: Number of requests per building (top 30, log scale)
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Fig. 5: Human mobility map: routes calculated from wayfinding
requests

The aggregated user mobility pattern is shown in Figure[5] The
underlying data structure is a weighted, directed graph, where
weights denote the frequency of a given path-segment ap-
pearing across turn-by-turn routes for all wayfinding requests
(directions of edges are omitted for better visibility). Building
contours (in red) are layered over the mobility map. A main
outdoor pedestrian walkway can be observed running along the
campus from S-SE towards N-NW. Several indoor “highways”
are present, e.g., inside Realfagsb. (with the most large lecture
halls) at the south end and Hovedb. (administrative center) at
the north end. Almost all narrow corridors and small offices
are mapped out by the routes.

Figure [6] shows a building-level map of the campus, colored
by the number of automatic geopos updates received from the
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Fig. 6: Popular buildings: calculated from geopos updates

given building (see Figure [T] for exact per building numbers).
Small pie charts illustrate whether the building is more a
source or target for the users’ wayfinding requests. Note that
identifying hotspots from geopos requests are indeed biased
by the actual uptime of apps running on user devices, which
in turn is determined by device type, OS type and version, and
users explicitly terminating apps. We assume that these effects
have been balanced out by the large user population and the
long duration of our trace.

Statistics from the largest building (Realfagsb.) are visual-
ized in Figure [7} The mobility map is a zoomed in version
of Figure [5] Names of rooms which are popular targets of
wayfinding requests contain the floor number as the last digit.
Obviously, there are numerous other statistics which can be
derived for the dataset, both at the building- and the room-
level.

B. Logical connections

If wayfinding requests are viewed as logical connections
between rooms, floors and buildings, we can think of locations
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Fig. 8: Logical network of floors based on wayﬁndlng requests.
Nodes: (floorID, buildingID). Color codes represent buildings.

as nodes in a social network, where the strength of ties
is the number of requests between respective nodes (undi-
rected). While floors act as natural communities of rooms,
and buildings act as natural communities of floors due to
the strong spatial correlation, less trivial strong ties can also
be discovered. Figure [§] shows the logical network of floors
(nodes are labeled as (floor ID, building ID)), with floors of the
same color belonging to the same building, using the OpenOrd
layout [21]]. The size of a node corresponds to the weighted
node degree, and loop edges denote wayfinding requests within
the same floor. We only show “strong” connections above a
weight threshold of 10. We can see that the ground floor (1.0)
of popular buildings are well-connected; a lot of lecture halls
can be found on the ground floor, and NTNU undergrads tend
to have lectures covering multiple buildings. However, strong
connections do exist between different floors of different
buildings, e.g., between the large lecture halls on the ground
floor of Gamle Elektro (1.0,1), and the third floor of Hovedb.
(3.0,2), where the financial department is located.

Based on the logical network above, we suspect that logical
connections are strongly correlated with spatial proximity. In
Figure 0] we plot the cumulative distribution function (CDF)
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Fig. 9: CDF: geographical distance of weighted logical connections

of weighted logical connections with respect to geographical
distance between their endpoints (simplified as the distance
between buildings). It is easy to see that close to 70% of the
weight of connections situated indoors (zero distance), and ~
90% of them correspond to a geographical distance less than
500 meters. The “traffic map” in Figure [5 hints at the opposite;
however, indoor-only paths consist of much less path segments
therefore being less visible on the map.

Please find all of our maps in zoomable vector graphics
format at [3]).

V. DISCUSSION

Results presented in Section [[V] form an interesting campus
case study. However, IPSs could potentially offer much more
data, and enable various location-based services at numerous
other venues.

Potential usage on-campus. Managing location resources
at the university-level is not easy: evidence from an IPS
providing data on actual user movement, distances to cover
in breaks between classes and potential bottleneck staircases
and corridors can make the outcome closer to optimal. Coor-
dination among faculties and departments concerning meeting
and lecture rooms can also be improved.

Potential for other scenarios: shopping malls, hospitals
and emergency preparedness. A venue for IPS-based intel-
ligence with huge business potential is the shopping mall;
here, being able to easily get mobility and popularity data
with different granularity (room, floor, wing, building, venue)
could be extremely helpful [28]]. Tailor-made, location-specific
advertising could be realized. Studying human traffic patterns
(see Figure5)), mall managers can validate the position of or re-
locate their flagship stores, get informed on where to plug in a



novelty store, or work out an informed pricing plan for tenants.
In addition, studying the logical connections among stores (in
the flavor of Figure [§] studying tie strengths, communities,
etc.) can shed light on non-trivial shopping patterns, creating
the possibility for a profitable coupon program and product
bundling encompassing multiple stores of different profiles.
Furthermore, evidence from deployed IPSs can be used when
planning, building and operating new shopping malls, office
buildings or hospitals. Specifically in hospitals, it is essential
to keep track of where both patients, staff and equipment
are, and support both wayfinding (for patients), planning
(of logistics), and self-coordination (of doctors and nurses)
as unexpected events occur [24]]. Finally, regarding safety,
IPSs could enable a higher level of emergency preparedness
at indoor venues. Response teams can be sent to an exact
location, and evacuation routes could be adjusted on the fly;
this approach could be also utilized in large underground
complexes and tunnels, where the GPS system has no use.

Human mobility research. Understanding human mobility
patterns is of great importance from scientific, engineering
(how to build more efficient systems for people) and business
angles. Owing to large mobile phone traces, we have a pretty
good understanding of people’s movements on a macro scale
[13]. However, since urban population spends the majority
of its lifetime indoors, understanding micro-scale mobility
is essential; once equipped with an individual user tracking
feature, IPSs can help tremendously in this area.

Challenges. All potential services and usage scenarios
mentioned above can only be built on carefully designed and
implemented IPSs, posing technical challenges. The two most
important requirements for IPS are precision and scalability
(location update frequency, peak load, large venues). Data
quality of the premises-data are very important. Another
important aspect is the integration with GPS-based systems
and other, more fine-grained location services. In addition to
the technical, there is a need for deep understanding of location
privacy [5] and users’ valuation of privacy [18], and data
handling best practices such as with network measurement
data [10]. It is clear that further development and potential
success of IPS technology and location-based services depend
on a cooperative effort from researchers, engineers, economists
and lawmakers.

VI. CONCLUSION

In this paper we provided a glimpse into data available from
a hybrid indoor/outdoor positioning and navigation system
called MazeMap. We showed possible interpretations of these
data, including finding potential bottlenecks and hotspots
with the help of mapping user mobility patterns; reflecting
on spatial (room, building and campus-level) and temporal
characteristics of user requests; and discovering spatio-logical
connections between locations in different buildings. Justified
by our case study, we presented a brief outlook on the potential
of indoor positioning systems and location-based services
enabled by them. We believe that such systems and services

have a bright future with regard to both data-driven research,
engineering and business applications.
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