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Abstract—Recently, there has been a growing interest in the
research community about using wrist-worn devices, such as
smartwatches for human activity recognition, since these devices
are equipped with various sensors such as an accelerometer and
a gyroscope. Similarly, smartphones are already being used for
activity recognition. In this paper, we study the fusion of a wrist-
worn device (smartwatch) and a smartphone for human activity
recognition. We evaluate these two devices for their strengths
and weaknesses in recognizing various daily physical activities.
We use three classifiers to recognize 13 different activities, such
as smoking, eating, typing, writing, drinking coffee, giving a talk,
walking, jogging, biking, walking upstairs, walking downstairs,
sitting, and standing. Some complex activities, such as smok-
ing, eating, drinking coffee, giving a talk, writing, and typing
cannot be recognized with a smartphone in the pocket position
alone. We show that the combination of a smartwatch and a
smartphone recognizes such activities with a reasonable accuracy.
The recognition of such complex activities can enable well-being
applications for detecting bad habits, such as smoking, missing
a meal, and drinking too much coffee. We also show how to
fuse information from these devices in an energy-efficient way by
using low sampling rates. We make our dataset publicly available
in order to make our work reproducible.

I. INTRODUCTION

Smartphones are being extensively used for activity recog-
nition in recent studies, because they are carried by almost
everyone and are equipped with various onboard sensors, such
as an accelerometer and a gyroscope [1], [2]. Recently, wrist-
worn devices, such as smartwatches, are coming into the
market with such on-board sensors [3], [4], which can be used
for human activity recognition as well [5]. The combination
of these two devices provides us with richer information that
can be used to detect various human activities.

There are some activities that cannot be detected reliably
using a smartphone in the jeans’ pocket position alone, because
they mainly involve hand movements. Some of the examples of
such activities are smoking, eating, writing, typing, drinking a
cup of coffee, and giving a talk or presentation. These activities
can be recognized by using a wrist-worn device, because of
the various hand movements involved in these activities. Such
hand movements can provide us with information that can be
used either alone or in combination with the sensor information
from the pocket position to detect different contexts, for
example, having a cup of coffee while sitting. Various well-
being applications can utilize this extra context information
for detecting bad habits and giving a better context-aware
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feedback to the users. For example, drinking too much coffee
can be considered as a bad habit, which can be recognized with
such smart devices. Smoking is a well-known bad habit and
smoking detection information can be used by an individual
or a health professional to regulate smoking habit by getting
more insight in daily smoking usage. Another example of bad
habit is missing meals or not taking them on time. With eating
detection, a relevant feedback and meaningful insights can be
given to the users about their eating habits. Moreover, activities
like typing or writing can also be used to identify the right
moments for feedback. For example, a user should not be
interrupted while typing or writing but can be interrupted while
having a cup of tea or smoking for a feedback message. The
recognition of such complex activities can provide us with
more insights into the daily bad habits of users, which in
turn can be used in well-being applications. The possibility
of recognizing these activities using various sensors is shown
by a few studies [5], [6], [7], [8], [9], [10], which we discuss
further in Section II. However, these studies do not consider
the fusion of smartphone and smartwatch sensors. Moreover,
some of these studies just consider the recognition of one
of these activities. For example, in [8], the authors focus on
eating activity only. Similarly, in [10], only smoking activity
is considered.

In this paper, we explore the role of these two devices in
recognizing 13 different human activities using three classi-
fiers, such as SVM, KNN and decision tree (J48). We study
the strengths and weaknesses of these two devices in terms of
recognition performance. We are interested in their combina-
tion because they provide us with richer context information
due to their different positions on the human body. We explore
an intelligent fusion of these two devices in relationship with
different sampling rates, that can lead to energy efficiency.
We also study the impact of increasing window sizes while
sampling the sensors for the recognition performance of these
activities. Moreover, we study the effects that the possible syn-
chronization delays can have on the recognition performance.
We summarize the main contributions of this paper as follows:

e We evaluate the performance of the smartphone
(pocket position) and smartwatch (wrist position) sen-
sors for most common physical activities when used
alone and in combination with each other.

e  We evaluate the performance of these two devices in
recognizing additional six complex activities: smok-
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ing, eating, writing, typing on a laptop, drinking
coffee, and giving a talk. This is done in five different
sensors combinations from both devices.

e  We explore the impact of smartphone and smartwatch
sensor fusion on recognition performance with respect
to three different sampling rates and three different
window sizes.

e We make our dataset publicly available in order to
make our work reproducible.

The rest of the paper is organized as follows. We describe
the related work in Section II. In Section III, we discuss the
data collection process and the simulation setup for the data
analysis. In Section IV, we discuss various aspects of per-
formance analysis of these two devices in different scenarios
and the effects of synchronization delays on the recognition
performance. Finally, in Section V, we present the conclusions
and future work.

II. RELATED WORK

Activity recognition in general [11] and especially using
smartphone sensors is well studied in recent years [1], [2] and
it is still being studied extensively. Various such studies are
summarized in many surveys [1], [12], [13]. There are also a
few studies on activity recognition using wrist-worn devices.
For example, in [14], the authors studied the role of smart-
watch and smartphone sensors in activity recognition. They
recognized nine physical activities using five classifiers. These
activities were sitting, standing, walking, running, cycling,
stair descent, stair ascent, elevator descent and elevator ascent.
However, the authors studied these two devices separately
and did not fuse sensor data from both these devices. They
used accelerometer, magnetometer, gyroscope, and pressure
sensors on the smartphone, and only an accelerometer on the
smartwatch.

In [5], the authors used a wrist-worn sensor and a sensor on
the hip to detect seven physical activities. They used logistic
regression as a classifier. They showed the potential of using
the wrist position for the activity recognition. However, they
evaluated these two positions separately and did not fuse
these two sensors. In [6], the authors use a single wrist-
worn accelerometer to detect five physical activities. Similarly,
a wrist-worn accelerometer was used in [7] to recognize 8
activities, including an activity of working on a computer.

In [8], the authors detect eating activity using a Hidden
Markov Model (HMM) with a wrist-worn sensor. They use
binary classification with eating as one class and all other
activities as the other class. Similarly, in [9], the authors
recognize the eating activity using a wrist-worn accelerometer
and a gyroscope. A feasibility study on smoking detection
using a wrist-worn accelerometer is done in [10], where the
authors reported a user-specific accuracy of 70% for this
activity.

Unlike these studies, we consider the fusion of both smart-
phone and smartwatch sensors at pocket and wrist positions.
Moreover, we consider more complex activities in this work,
such as eating, drinking a cup of coffee, giving a talk and
smoking. Whereas, some of these studies only focus on one
of these activities.
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IIT. DATA COLLECTION AND SIMULATION SETUP

We used two datasets in this work: one for simple activities
and one for complex activities. The first one is from our
previous work [15] and its collection protocol can be found
in [15]. In that dataset, ten users performed seven physical
activities while carrying smartphones (Samsung Galaxy S2)
in their right jeans pocket and on their right wrist posi-
tion, thereby emulating a smartwatch. These activities were
walking, jogging, biking, sitting, standing, walking upstairs,
and walking downstairs. In sitting and standing activities, the
user sat and stood still alone without talking and doing any
other activity. The smartphones were used in same orientation
on both positions. Because the new wrist-worn device are
equipped with sensors like an accelerometer and a gyroscope,
we simulate a smartwatch using Samsung Galaxy S2 on the
wrist position. We collected data for multiple smartphone sen-
sors, such as an accelerometer, linear acceleration, gyroscope,
and magnetometer, but here we only consider an accelerometer
and a gyroscope. The data was collected at 50 samples per
second for these sensors. For this dataset, each activity was
done for 3 minutes by all participants (30 minutes of data for
each activity), thereby creating a balanced class distribution
for training and testing.

In the second dataset, we asked five participants, who took
part in our previous dataset, to perform 6 additional complex
activities. The term “complex” is used for clarity in compar-
ison purpose for these additional six activities. The duration
for these activities varies because different participants took
different times to complete them, such as smoking and drinking
coffee. Moreover, we wanted to capture one complete cycle of
these complex activities such as drinking one cup of coffee,
and smoking one cigarette. These activities are mentioned
below with the amount of time (for all participants) for which
the data was recorded.

e Typing (21 minutes): all five participants typed on
their laptops the introduction section of this paper.

e  Writing (21 minutes): they wrote the same introduc-
tion section on a paper of the same size.

e  Drinking coffee (24 minutes): they had a cup of coffee
while sitting in office lounge.

e Giving a talk (16 minutes): they gave a talk in our
meeting room about their research topic for 3-4 min-
utes.

e  Smoking (25 minutes): Each participant smoked one
cigarette while standing alone in the smoking area.

e  Eating (23 minutes): For the eating activity, users were
asked to eat soup or yogurt for 3-4 minutes in their
natural style while sitting alone in lunch place. The
soup cup was on a table while the participants used a
spoon for eating.

For the other seven activities, the time duration was 15 minutes
(for all participants), which we collected from the previous
dataset from the same 5 participants. One of the participants
was left-handed, so we put the smartwatch on his left hand,
unlike others. We know that most people use watches on their
left hands, however, in this study we explore the possibility of
using a wrist-worn device in general so we used the right wrist
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TABLE 1. SHORT NOTATIONS FOR VARIOUS FUSION SCENARIOS: (P
STANDS FOR POCKET POSITION, W FOR WRIST POSITION, A FOR
ACCELEROMETER, AND G FOR GYROSCOPE)

Fusion Scenarios Pa Pa Wa Wea
Pac v v X X
Waa X X v v
PWay v X v X
PWg X v X v

PWag v v v v

position. For the rest, it was always right jeans’ pocket and
right wrist position. The data was collected at 50 samples per
second using the Android application, which we developed in
our previous work [16], [15]. The previous dataset is available
at [17] and this new dataset will be available at the same
website.

In the preprocessing phase, we extracted two time domain
features for both the accelerometer and gyroscope. They are
mean and standard deviation. They are extracted over a win-
dow of 2 seconds. Moreover, we use a sliding window with
the overlap of 50%. These decisions are based on our past
experiences [15] and work done by other researchers [1]. To
counter orientation effects, we calculate the magnitude for
both these sensors and use it an extra dimension beside X,
y, and z axis. This method has been used in other studies
[18], [19], [20]. Then the two features are extracted for all
four dimensions for each sensor, which makes it 8 features
per each sensor.

For performance analysis, we used machine learning tool
WEKA (version 3.7) [21]. We selected three classification
methods which are commonly used for practical activity recog-
nition and have been shown to be suitable for running on
smartphones with reasonable recognition performance. These
classifiers are decision tree (WEKA version: J48) [22], [23],
[24], k-nearest neighbor (WEKA version: IB1) [18], [19],
[25], and support vector machine (WEKA version: LIBSVM)
[23], [13], [26]. We use these classification methods in their
default modes in WEKA (version 3.7) in order to make this
work easily reproducible. Moreover, we did not optimize the
parameters for these classification methods, because we are
more interested in the relative roles of the smartphone and
smartwatch sensors. For the recognition performance, we use
accuracy as a performance metric using 10-fold stratified cross
validation.

IV. PERFORMANCE ANALYSIS

We evaluated the recognition performance with smartphone
and smartwatch sensors in various scenarios where these
sensors are fused in various combinations. These scenarios
are given in Table I with their short notations. These short
notations are used in the rest of the paper.

As we mentioned, for performance analysis, we used two
datasets. One of them was used for recognizing commonly
performed simple activities and the other for more complex
activities, such as drinking a cup of coffee and giving a talk.
They are discussed in the next sections.

A. Recognition of Simple Activities

In this section, we discuss the role of smartphone and
smartwatch sensors in recognizing the commonly used phys-
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TABLE II. RECOGNITION PERFORMANCE FOR WALKING (A1),
WALKING UPSTAIRS(A6) AND DOWNSTAIRS (A7) USING ACCELEROMETER
WITH 50HZ SAMPLING RATE.

Activity Py Wp PW 5 PW g-max(P A ,W 5) Pa-Wy
Al 097 | 092 0.98 +0.01 +0.05
SVM A6 0.80 | 0.80 0.95 +0.15 0.00
A7 0.83 | 0.84 0.95 +0.11 0.00
Al 097 | 0.95 0.99 +0.02 +0.02
IB1 A6 0.85 0.81 0.97 +0.12 +0.04
A7 0.83 0.87 0.96 +0.10 -0.04
Al 094 | 0.88 0.96 +0.02 +0.06
148 A6 0.81 0.78 0.88 +0.06 +0.04
A7 0.76 | 0.85 0.88 +0.04 -0.08

ical activities, such as walking (Al), standing (A2), jogging
(A3), standing (A4), biking (AS5), walking upstairs (A6), and
walking downstairs (A7). It has been shown in previous studies
[27] that battery consumption can be improved by using low
sampling rates. Therefore, we use three sampling rates namely:
50, 25 and 10 Hz, to evaluate wether reasonable recognition
performance can be achieved by using lower sampling rates.
However, we do not report the results for 25 Hz, because they
were similar to those of 50 Hz. In the next subsections, we
only discuss the results for 50 Hz and 10 Hz.

1) Using Only Accelerometer: We evaluate the perfor-
mance with the accelerometer at pocket, wrist, and finally at
the combination of the two positions. We show the results
(rounded off to 2 decimals) for the walking, walking upstairs
and downstairs activities in Table II. We observe a significant
increase in the overall recognition performance for these three
activities when the accelerometer data is combined from pocket
and wrist positions, as shown in Table II. In this table, PW 4-
max(Py4,W4) shows the % improvement by PW, compared
to P4 and W 4. For the rest of the activities, there are negligible
improvements when we combine sensors from both positions
because their individual performances are very high, i.e. above
98 %. Based on our previous work [15], we have seen that
such combinations only improve the overall performance if
the individual performances of these sensors are not very high,
so that there is room for performance improvement. Moreover,
the performance difference between wrist and pocket positions
are negligible for these four activities.

2) Using Only Gyroscope: We evaluated the gyroscope
using three classifiers at pocket and wrist position, both alone
and in combination with each other from these two positions.
These results are shown in Table III. We observe the same
general trends for the gyroscope as for the accelerometer in
terms of performance improvements by fusing sensors from
both devices. The only difference is that the improvements due
to fusion are observed for almost all seven activities because
the individual gyroscope performance is not very high for
them. Moreover, unlike the accelerometer, the gyroscope at
pocket position performs slightly better than that at the wrist
position for all seven activities. This performance difference is
shown in in Table III.

3) Using both Accelerometer and Gyroscope: In this sce-
nario, we combined both accelerometer and gyroscope at
pocket and wrist positions. Furthermore, they are first fused
on these individual positions and then combined from both
positions. The fusion is done in WEKA at raw level by
combining the features of all these sensors. We observe the
same trends in this situation as that of the accelerometer.
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TABLE III. RECOGNITION PERFORMANCE FOR ALL SEVEN SIMPLE
ACTIVITIES USING GYROSCOPE WITH S0HZ SAMPLING RATE.
Activity PG WG P WG P WG ~-max( PG ,WG ) PG - WG
Al 0.93 0.76 0.94 +0.01 +0.17
A2 0.08 0.01 0.09 +0.01 +0.07
A3 0.94 0.94 0.98 +0.04 +0.00
SVM A4 0.98 0.94 0.96 -0.02 +0.05
A5 0.95 0.94 0.96 +0.01 +0.01
A6 0.74 0.75 0.89 +0.14 -0.01
A7 0.73 0.82 0.93 +0.11 -0.08
Al 0.96 0.88 0.97 +0.02 +0.08
A2 0.85 0.74 0.87 +0.02 +0.11
A3 0.96 0.94 0.99 +0.03 +0.02
Bl A4 0.89 0.78 0.91 +0.02 +0.12
A5 0.96 091 0.98 +0.02 +0.05
A6 0.93 0.79 0.97 +0.04 +0.14
A7 0.90 0.85 0.97 +0.07 +0.06
Al 0.89 0.81 0.92 +0.03 +0.08
A2 0.86 0.79 0.88 +0.02 +0.07
A3 0.94 0.92 0.96 +0.02 +0.02
148 A4 0.83 0.66 0.84 +0.02 +0.17
AS 0.94 0.91 0.96 +0.03 +0.03
A6 0.88 0.78 0.90 +0.03 +0.10
A7 0.83 0.84 0.91 +0.06 -0.01

However, the absolute accuracy values are higher than that
of the accelerometer in this case because of two extra sen-
sors. This also makes the relative improvements by fusing
the data from two positions lower compared to that of the
accelerometer. For example, the average improvement due to
fusion of wrist and pocket positions is 1%, which is negligible.
All seven activities are recognized with very high accuracy,
such as on average above 97% on wrist and pocket position,
and above 99% when both data from both positions is fused.
Therefore, we do not show the detailed results in this case.
Based on these evaluations, we show that simple activities can
easily be recognized with one pocket position but the fusion
of smartwatch with the smartphone makes this process more
reliable. Moreover, this fusion can enable the recognition of
more complex activities in a reliable way, which will not be
possible with the smartphone in the pocket position alone. We
discuss this in Section IV-B.

4) Using Lower Sampling Rates: As we mentioned earlier,
we repeated the above three scenarios for 10Hz to evaluate
whether reasonable accuracy can be achieved with lower
sampling rates. Our simulation results show that in most cases
the recognition performance of 10Hz is almost the same as that
of 50Hz. In terms of positions, SOHz performs slightly better
than that of 10Hz at the wrist and its combination with pocket
position by an average of 1% for all three classifiers. However,
this performance difference is 4% at pocket position, where we
observe relatively higher performance drops for 10Hz, such as
within a range of 0-19%. In terms of sensors combinations,
this performance difference is 1% for accelerometer, 3% for
gyroscope and 2% for their combination. For sitting, standing,
jogging, and biking activities, this difference is almost zero
on average. However, we observe an average performance
drop of 3%, 5%, and 7% for walking, walking upstairs, and
walking upstairs in all scenarios. One of the reasons for such
performance drop in using 10Hz is that we have a lower
number samples per window compared to that of 50Hz. This
can be improved by increasing the window size. Moreover, an
additional dimension of magnitude for these two sensors can
be used to counter the orientation effects, which can improve
the overall performance. For this purpose, we evaluated some
of these scenarios with increasing window size of 5 seconds
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and also by introducing an additional magnitude dimension.
In both cases, we observe performance improvements for the
situations, where we previously observed performance drops.
For example, using an extra magnitude dimension improves
the performance at pocket position by an average of 4%, with
an improvement range of 2% to 17%. The possible reason for
this improvement can be that this extra magnitude dimension
is used to counter orientation effects and phone orientation in a
pocket is not as fixed like that of the smart-watch’s orientation.
We do not report all these values here because of limited space.

5) The Effects of Synchronization: In our work, we assume
that data from smartwatch is being sent in real-time. Hence,
a delay can be observed in communication. For this purpose,
we introduce intentional delay in our data by shifting the data
from the smartwatch by a certain number of samples and see
if it affects the recognition performance. We introduced a 100
millisecond delay in the data by removing some samples from
pocket position at the beginning. This number was chosen as
an extreme case to test the effects of a possible delay. Then
we evaluated this new dataset for all three classifiers with
accelerometer, gyroscope and their combination. For 50Hz,
there was little or no performance drop: in the order of 0.5 to
2% on average. For 10 Hz, in some cases, we observed a very
small performance drop of less than 1% but in some cases there
was a small performance increase so we consider the overall
effect negligible. We assume that the system experiences the
same type of delay in the training phase as well, provided it
is an online training on the phone. In that case, the effect is
almost negligible. It is yet to be seen how these delays will
affect the performance when the classifiers are trained offline
without such delays and used online with data where such
type of delays are observed. However, we still believe that its
impact will be negligible, because these physical activities are
repetitive and such minor delays might not affect the overall
performance. Moreover, if there is any performance drop, then
it can be recovered by doing online training on the phone.
However, this needs to be further explored.

B. Considering Complex Activities

In this section, we consider some complex activities in
addition to the seven activities in the previous section and
explore the role of these two devices in their recognition.
For this purpose, we focused on 13 activities, as discussed
in Section III. For these activities, we considered 5 different
sensor combination scenarios as shown in Table I: W4, Wq,
Wag, PWy, and PW 4¢. Moreover, we use the extra mag-
nitude dimension for these complex activities to counter the
orientation effects, as we discussed in the previous section.
We also use a higher sampling rate of S0Hz to recognize these
complex activities and leave the analysis of 10Hz for this set
of activities for future work.

Based on our evaluation results as shown in Table IV, we
found that combining the accelerometer from both pocket and
wrist positions perform the best in recognizing all these 13
activities. The combination of the accelerometer and gyroscope
from both positions (PWag ) performs the same as that of
the accelerometer combination from both positions (PW,)
except for walking upstairs and walking downstairs activities.
In PW 4 scenario, we observe a higher performance than that
of PW 4 by an average of 2% and 4% for the walking upstairs
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TABLE IV. RECOGNITION PERFORMANCE FOR COMPLEX ACTIVITIES
IN W4, AND WG SCENARIOS. PW 4 - MAX(WaG,WA) SHOWS THE
OVERALL PERFORMANCE IMPROVEMENT BY PW 4.

Activity Wag W5 Wag — Wy PW g - max(W 5 o, W 4)
Al 0.96 0.96 +0.00 +0.02
A6 0.93 0.87 +0.06 +0.05
A7 0.98 0.87 +0.11 0.00
type 1.00 1.00 0.00 0.00
SVM write 0.95 0.96 -0.01 +0.04
coffee 0.80 0.82 -0.03 +0.17
talk 0.77 0.73 +0.04 +0.20
smoke 0.91 0.92 -0.01 +0.05
eat 0.94 0.94 +0.01 +0.06
Al 0.98 0.96 +0.02 +0.01
A6 0.96 0.85 +0.11 +0.03
A7 0.99 0.91 +0.08 -0.02
type 1.00 0.99 0.00 0.00
Bl write 0.99 0.98 +0.01 +0.01
coffee 0.93 0.91 +0.03 +0.06
talk 0.86 0.79 +0.08 +0.11
smoke 0.93 0.93 0.00 +0.05
eat 0.97 0.92 +0.04 +0.03
Al 0.93 0.90 +0.03 +0.03
A6 0.91 0.80 +0.11 +0.01
A7 0.94 0.86 +0.09 -0.05
type 0.99 0.99 0.00 0.00
148 write 0.95 0.94 0.00 +0.04
coffee 0.87 0.85 +0.02 +0.12
talk 0.84 0.78 +0.06 +0.11
smoke 0.90 0.89 +0.01 +0.05
eat 0.91 0.88 +0.03 +0.08

and walking downstairs, respectively. We only show the results
for PW 4 scenario in Table IV and not for PW 4 because they
have almost same recognition performance. The performance
improvement of adding the two additional gyroscopes is not
significant, especially taking into account its impact on the
battery life, which is yet to be seen in practical implemen-
tations. Using only smartwatch sensors performs worse than
its combination with the smartphone sensors. Therefore, it is
better to combine these two devices for better recognition
of these complex activities. Within smartwatch sensors, the
combination of gyroscope and accelerometer performs better
than their individual performances for some of the complex
activities, such as eating, drinking coffee, giving a talk, walk-
ing upstairs and walking downstairs. The performance results
of these different combinations using SVM, IB1 and decision
tree classifiers are shown in Table IV. We do not show the
results for sitting, standing, jogging, and biking, because their
results are very high and we observe negligible performance
improvements for them in different fusion scenarios. In gen-
eral, the recognition performance of using the gyroscope alone
was poor and that is why we do include it in these graphs.
Moreover, the recognition performance of complex activities
at pocket position alone was poor, so we did not report these
results.

Though there was a pattern in gyroscope data for these
additional six activities, it was not as frequent as in the case
of walking, jogging, biking and using stairs. This less frequent
pattern for complex activities resulted in poor performance
for gyroscope. Therefore, we increased the window size from
2 seconds to 5 and 10 seconds respectively to capture these
patterns. This did improve the recognition performance for gy-
roscope using IB and DT classifiers. Compared to the 2 second
window, this performance improvement for the IB1 and J48
classifiers was on average 7% and 5% using a 5 second window
and 11% and 10% using a 10 second window. This activity-
wise improvements for these three time windows using IB1
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TABLE V. RECOGNITION PERFORMANCE FOR ALL ACTIVITIES AT
WRIST USING GYROSCOPE WITH 2, 5, AND 10 SECOND WINDOW SIZE.
Activity Wg2sec WG (5sec—2sec) WG (10sec—2sec)
Al 0.94 +0.00 +0.01
A2 0.66 +0.11 +0.18
A3 0.95 +0.04 +0.02
A4 0.84 +0.04 +0.02
AS 0.82 +0.07 +0.11
A6 0.86 +0.06 +0.12
IB1 A7 0.87 +0.05 +0.09
type 0.74 +0.16 +0.21
write 0.79 +0.05 +0.11
coffee 0.77 +0.01 +0.05
talk 0.57 +0.10 +0.13
smoke 0.55 +0.14 +0.24
eat 0.72 +0.05 +0.10
Al 0.86 -0.01 +0.00
A2 0.62 +0.09 +0.14
A3 0.90 +0.03 +0.04
A4 0.78 +0.02 +0.03
AS 0.74 +0.04 +0.07
A6 0.83 +0.04 +0.13
148 A7 0.79 +0.08 +0.14
type 0.66 +0.14 +0.19
write 0.68 +0.05 +0.08
coffee 0.69 +0.03 +0.05
talk 0.51 +0.07 +0.13
smoke 0.50 +0.07 +0.21
eat 0.64 +0.05 +0.10

and J48 classifiers are shown in Table V. The Wg(55cc—2sec)
and Wg(10sec—2sec) Shows % increase by window size of 5 and
10 seconds compared to 2 seconds. If the gyroscope is used
alone for recognizing these activities, the window size must be
large enough to capture a complete repetitive pattern. In this
case, a window size of 10 seconds can produce a significant
recognition performance. This performance could be improved
further by using larger than 10 seconds windows. However, we
did not evaluate bigger windows because of the small size of
our dataset. This can be done as a future work.

We also tested the other four sensors combinations with
increasing window sizes of 5 and 10 seconds. However, the
recognition performance for those combinations was very high
for 2 second window, and we did not observe any significant
performance improvement by increasing the window size. That
is why we do not report those results here.

Though the recognition performances for the complex
activities, such as smoking, eating, having a cup of coffee and
giving a talk, are encouraging, there can be many variants of
these activities. For example, smoking while sitting can be
different. Smoking in a group of friends or colleagues where
all of them are talking, can be a completely different activity
because in group the frequency of inhaling the smoke and the
duration between two such inhaling might be different. The
same problems arise with eating activity. For this study we
considered eating soup or yogurt with a spoon while these food
items were on the dining table. However, there can be different
variants of the eating activity, such as eating a sandwich while
sitting, standing or walking. This needs to be further explored.
In this study, we explored the possibility of using the fusion
of smartphone and smartwatch sensors for recognizing various
interesting activities where hand movements are involved.
However, these various hand movements also might cause
problems in detecting some activities. It might be a good idea
not to use wrist position for detecting simple activities because
sitting activity can have so many variants and will be difficult
to recognize with a smartwatch only.
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V. CONCLUSION AND FUTURE WORK

In this work, we evaluated the role of smartphone and
smartwatch sensors in recognizing 13 different human ac-
tivities. First, we explored the fusion of sensors from both
these devices for recognizing seven commonly used physical
activities, such as walking, jogging, sitting, standing, walking
upstairs, walking downstairs, and biking. Then we considered
six additional activities: smoking, eating, drinking coffee, giv-
ing a talk, typing and writing. We showed that these complex
activities are recognized with a higher accuracy by combining
sensors from the smartphone in the pocket position and a
smartwatch. The recognition of these complex activities can
enable new well-being applications for the detection of bad
habits. We also showed that for simple activities the fusion of
these two devices may not bring significant improvements in
the recognition performance, but it does make the recognition
process more reliable. We also show that we can achieve
an acceptable accuracy using low sampling rates when using
sensor fusion, which can save battery life.

This is the preliminary work on recognizing complex
activities, such as smoking, drinking coffee, giving a talk, and
eating. We intend to further explore these activities in more
realistic scenarios. For example, smoking combined with other
activities, and eating in a group. Moreover, we would like to
consider more complex activities, where hand movements are
involved. We will further explore the personalized classifica-
tion for these complex activities for individual users. In this
work, we have imbalanced classes for some activities, so we
intend to collect more data on these activities to create a dataset
with balanced class distribution.
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