Loading [a11y]/accessibility-menu.js
Analysis of long-term abnormal behaviors for early detection of cognitive decline | IEEE Conference Publication | IEEE Xplore

Analysis of long-term abnormal behaviors for early detection of cognitive decline


Abstract:

Several researchers have proposed methods and designed systems for the automatic recognition of activities and abnormal behaviors with the goal of early detecting cogniti...Show More

Abstract:

Several researchers have proposed methods and designed systems for the automatic recognition of activities and abnormal behaviors with the goal of early detecting cognitive impairment. In this paper, we propose LOTAR, a hybrid behavioral analysis system coupling state of the art machine learning techniques with knowledge-based and data mining methods. Medical models designed in collaboration with cognitive neuroscience researchers guide the recognition of short- and long-term abnormal behaviors. In particular, we focus on historical behavior analysis for long-term anomaly detection, which is the principal novelty with respect to our previous works. We present preliminary results obtained by evaluating the method on a dataset acquired during three months of experimentation in a real patient's home. Results indicate the potential utility of the system for long-term monitoring of cognitive health.
Date of Conference: 14-18 March 2016
Date Added to IEEE Xplore: 21 April 2016
ISBN Information:
Conference Location: Sydney, NSW, Australia

Contact IEEE to Subscribe

References

References is not available for this document.