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Abstract

Physical activity helps reduce the risk of cardiovascular disease, hypertension and obesity. The 

ability to monitor a person’s daily activity level can inform self-management of physical activity 

and related interventions. For older adults with obesity, the importance of regular, physical activity 

is critical to reduce the risk of long-term disability. In this work, we present ActivityAware, an 

application on the Amulet wrist-worn device that measures daily activity levels (sedentary, 

moderate and vigorous) of individuals, continuously and in real-time. The app implements an 

activity-level detection model, continuously collects acceleration data on the Amulet, classifies the 

current activity level, updates the day’s accumulated time spent at that activity level, logs the data 

for later analysis, and displays the results on the screen. We developed an activity-level detection 

model using a Support Vector Machine (SVM). We trained our classifiers using data from a user 

study, where subjects performed the following physical activities: sit, stand, lay down, walk and 

run. With 10-fold cross validation and leave-one-subject-out (LOSO) cross validation, we obtained 

preliminary results that suggest accuracies up to 98%, for n=14 subjects. Testing the 

ActivityAware app revealed a projected battery life of up to 4 weeks before needing to recharge. 

The results are promising, indicating that the app may be used for activity-level monitoring, and 

eventually for the development of interventions that could improve the health of individuals.
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I. Introduction

Physical inactivity increases the risk for cardiovascular disease and chronic diseases such as 

diabetes, hypertension and obesity [1]. Older adults with obesity who are sedentary are at 

higher risk of long-term disability and physical activity in this population is critical to 

reducing their risk of functional impairment. The American College of Sports Medicine 

(ACSM) recommends 150 minutes of moderate intensity activity each week for adults, 

including older adults [2]. Yet, a manner to unobtrusively track the amount of time spent 

doing moderate or vigorous activities are needed to enable this population to achieve this 

important health goal.

In this work, we built ActivityAware, an application that continuously monitors the activity 

level of individuals in real time using acceleration data recorded from an Amulet, a low-

power wrist-worn device [3]. We developed a Support Vector Machine (SVM)-based 
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machine-learning model to detect the activity level of a person using data from a Dartmouth 

College Institutional Review Board (IRB) approved study. We collected acceleration data 

from younger, healthy volunteers who wore the Amulet as they performed various activities 

that could subsequently be adapted to an older adult population. We created an app for the 

Amulet that implements our activity-level-detection model, continuously records 

acceleration data, classifies the activity level of an individual, updates the day’s accumulated 

time spent at that activity level, logs the data for later analysis, and then displays the results 

on its screen.

In the remainder of this work, we describe the Amulet platform on which ActivityAware 
runs and our approach to physical level categorization in Section II. We describe related 

work and the components of the ActivityAware app in Sections III and IV respectively. We 

describe our approach to developing the ActivityAware machine-learning model and the 

evaluation of the energy efficiency of the ActivityAware app in Sections V and VI 

respectively. We describe the limitations and future work in Section VII, and we conclude in 

Section VIII.

II. Background

In this section, we describe the Amulet platform on which the ActivityAware app runs and 

why it is suitable for running the app. Then, we describe the categorization of the physical 

activity levels we use in this work.

A. Amulet Wearable Device Platform

The Amulet is a hardware and software platform for writing energy- and memory-efficient 

sensing applications that achieve long battery life [3]. The Amulet hardware is a wrist-worn 

device that has two microcontrollers: an MSP430 running applications, and an nRF51822 

for communicating with peripheral Bluetooth Low Energy (BLE) devices such as a heart-

rate monitor and a galvanic skin response sensor (Figure 1). It has built-in sensors to 

measure acceleration, rotation, ambient sound, ambient light, and ambient temperature. The 

main board has two buttons, capacitive touch sensors, a battery, a haptic buzzer, two LEDs 

embedded in the case, a secondary storage board that holds a microSD card reader, and a 

display screen. The energy-efficient Amulet platform is useful for creating and running 

mHealth applications that monitor the physiological and behavioral health of its wearer, 

lasting weeks before needing to recharge.

B. Physical Activity Level Categorization

Physical activity levels are defined using the Compendium of Physical Activities, which 

capture the intensity of activities expressed in metabolic equivalents (METs): 1 MET 

corresponds the metabolic rate obtained during quiet sitting [4]. According to the Centers for 

Disease Control and Prevention (CDC) and the ACSM guidelines, activities can be 

categorized into low, moderate and vigorous based on METs [5]. Low corresponds to 

activities with METs less than 3 (e.g., sit, stand, lay down), moderate corresponds to 

activities with METs between 3 and 6 (e.g., walking at a moderate pace), and vigorous 
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corresponds to activities with METs greater than 6 (e.g., running) [5]. In this work, we use 

these example activities to characterize our activity levels.

III. Related work

There has been considerable research to classify activities using wrist-worn devices and 

other devices worn on other parts of the body. Also, there exist commercial fitness trackers 

that monitor the physical activity of wearers. We describe some of the related work here.

Manini et al. classified four classes of activity (ambulation, cycling, sedentary, and other) 

using a wrist-worn and ankle-worn device [6]. Using 13 features and an SVM classifier, they 

achieved accuracies of 95% for the ankle-worn data and 84.7% for the wrist-worn device 

with leave-one-subject-out cross-validation [6].

Maurer et al. implemented a real-time classifier (decision tree) on a custom-built device 

called the eWatch, which they placed on various parts of the body including the wrist, belt 

and pocket [7]. They classified six primary activities: sitting, standing, walking, ascending 

stairs, descending stairs and running. With six subjects, their classifier had 87% accuracy for 

the wrist-worn data using 5-fold cross-validation [7].

Fitbit™ is a wrist-worn device that monitors several fitness parameters such as sleep, steps 

taken and activity level using data from an accelerometer, a gyroscope, and a heart-rate 

monitor (for some models). Fitbit calculates ‘active minutes’ when a person performs 

activities with METs above 3 – moderate-to-intense activities such as brisk walking, cardio 

workout and running [8]. Users can use this data to monitor their activity level over days, 

weeks, and months.

These works demonstrate that various activity groups can be classified using acceleration 

data from a wrist-worn device. The first two works focus on distinguishing between specific 

activities rather than activity levels. The real-time classifier developed by Maurer et al. 

implements a decision tree which tends to overfit the training data set. Although the training 

phase may reveal high accuracy results, the model might perform poorly on unseen data 

when deployed in a real-world system. Additionally, the work by Maurer et al. does not 

focus on tracking and displaying the amount of time spent performing each of the activities, 

which could be useful for the wearer of the eWatch. Although Fitbit™ tracks activity levels 

and displays the results to users, it is a closed system that uses a proprietary algorithm. As a 

result it is not clear how active minutes are calculated, and the accuracy of the algorithms 

being used is unknown.

There is a need for a system that monitors activity levels of users, has high accuracy, uses an 

approach that can be validated by others, and has long battery life. This system should be 

able to be modified and used by researchers who might be interested in monitoring the 

physical activity of various populations. Also, this system needs to have a battery life 

measured in weeks rather than hours and days. We present a system that satisfy’s these 

constraints and addresses the shortcomings of earlier work.
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IV. Solution: ActivityAware

ActivtyAware is an Amulet application that measures the daily activity levels of individuals 

(sedentary, moderate and vigorous). The app continuously collects acceleration data, 

classifies the activity level, updates the day’s accumulated time spent at that activity level, 

logs the data for later analysis, and displays the results on the screen as feedback to the 

wearer. The app consists of four components: data collector, activity-level detector, activity-

level monitor, and activity-level display (Figure 2).

A. Data Collector

The data collector samples data from a 3-axis accelerometer at a frequency of 20 Hz, and 

parses the data stream into 5-second windows. Previous studies have shown that a frequency 

of 20Hz is sufficient for capturing the frequency range of physical human activities for 

classifying activities [7].

B. Activity-Level Detector

The activity-level detector determines the activity level of the user. It computes a vector of 

features from each 5-second window of accelerometer data: mean and standard deviation of 

four values (individual x, y, z accelerations, and magnitude of the acceleration). This 8-

feature vector is then fed to the activity-level classifier, which is an implementation of the 

decision function of a Linear SVM:

Here, y is the vector that holds the result of the evaluation for the three activity levels, x is 

the computed feature vector of size: number of features, w is the coefficient matrix of size: 

number of classes × number of features and b is the intercept vector of size: number of 
classes. The values for w and b are obtained from the linear model that we train offline using 

the scikit-learn library (we describe the training of this model in Section V). Because this is 

a multi-class classification, we implemented the “one-vs-the-rest” approach for multi-class 

classification since the scikit-learn Linear SVM function uses this method [9]. In this 

approach, one classifier is trained for each of the classes that correspond to each row in the 

matrix w. The result of solving the equation is a vector y that contains a value for each of the 

three classes. The class with the maximum value is the predicted class.

C. Activity-Level Monitor

The activity-level monitor is responsible for keeping track of the number of minutes spent 

per day, for each of the three activity-level categories. This component tracks three data 

points for each activity level: total minutes today, mean minutes over all days, and total 

minutes over all days. (Here, all days refers to the set of days since the app was started.) The 

value for each of these data points is updated after each classification result, and the total 

minutes today is reset at midnight each day.
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D. Activity-Level Display

The activity-level display component displays information about the amount of time spent 

for each activity on the Amulet screen computed by the activity-level monitor. The display 

presents the amount of time in minutes spent for each of the activity levels for that day (first 

row) and the total minutes over the past days (second row) (Figure 3). In the future, we plan 

to display graphs of the activity levels to highlight trends over the past days and explore 

other ways the data should be displayed based on user feedback.

V. Activity-Level Detection Model - Machine Learning Training Offline

SVM is a classifier that constructs a high-dimensional hyper-plane and uses it to perform 

classification [9]. SVM chooses a hyper-plane that maximizes distance to the nearest points 

on the either side of the plane for the binary classification case (Figure 4). We use SVM 

because it uses a subset of the training set – support vectors – for its prediction function. 

Models like k-nearest neighbor (kNN), on the other hand, need to store all the data points in 

memory for prediction. SVM is more memory efficient and thus well suited for low-memory 

platforms like the Amulet. We trained three SVM models: Linear SVM, Polynomial (with 

degree 1) SVM and Radial Basis Function (RBF) SVM, using the scikit-learn library [9] to 

distinguish low, moderate, and vigorous activity levels. We use scikit-learn’s default 

parameters for the SVM models.

A. Data Collection

We collected data from volunteer subjects under a study protocol approved by Dartmouth’s 

IRB. All individuals completed a basic baseline demographic questionnaire that assessed 

age, gender, race, height, weight and handedness (left or right). All data was collected online 

via Research Electronic Data Capture software (REDCap) into a centralized, HIPAA 

compliant repository.

1) Activity Data Collection App—We developed an app similar to ActivityAware for the 

purpose of collecting data from the study. The app has three states: Ecological Momentary 

Assessment (EMA), Data Collection, and Data Logging (Figure 5).

The app begins in the EMA state. Within this state, the user selects which activity they are 

about to perform from a list of activities using capacitive touch sensors on the Amulet 

(Figure 6). After the user selects the specific activity and presses the button on the Amulet, 

the app switches to the data-collection state.

In this state, the app collects and stores acceleration data from a 3-axis accelerometer with 

range ±2g at a frequency of 20 Hz. We discard the first 5 seconds of data. After 2 minutes, 

the app switches to the data-logging state in which it logs the collected acceleration data 

along with the activity level onto a micro-SD card on the Amulet.

The app then switches to the EMA mode to allow the user to select the next activity to 

perform. We accompanied the subject when they performed the activities so we could ensure 

they completed all activities correctly and the appropriate number of times.
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2) Study Protocol—We collected acceleration data from 14 subjects (n=14) as they 

performed various physical activities. The subjects were college students 18–23 years old. 

Subjects wore the Amulet on their left wrist and performed each of the following activities 

for 10 minutes as the Amulet ran the Activity Data Collection App: sit, stand, lay down, 

walk at a regular pace, and run (Figure 7).

We had 50 minutes of data from each subject resulting in 700 minutes of data total. We 

categorized the data from these 5 activities into the following classes: low (sit, stand and lay 

down); moderate (walk); and vigorous (run). We then split the data into 5-second non-

overlapping time windows that previous studies have shown to be suitable for activity 

classification [6].

B. Feature Extraction

From each 5-second window of each subject’s data, we extracted eight time-based features 

that previous studies have shown to be relevant for activity detection: mean and standard 

deviation of each of four values: acceleration (x, y, z axes), and magnitude of the 

acceleration vector [6][7]. The result was a training dataset containing a total of 8,362 

feature vectors.

C. Training /Classification

We trained three SVM models – Linear, Polynomial and RBF SVM – each of which 

classified the data into three activity levels: low, moderate and vigorous. We ran experiments 

to test these three classifiers.

D. Testing Results

We ran 10-fold cross-validation and leave-one-subject-out (LOSO) cross-validation on the 

data from the study using Linear, Polynomial, and RBF SVM.

Overall, Polynomial SVM performed the best with accuracies of 98.3% and 98.1% for 10-

fold and LOSO cross-validation respectively (Table 1). Linear SVM performed second best, 

with accuracies of 95.7% and 95.6% for 10-fold and LOSO cross-validation respectively, 

and RBF performed worst with accuracies of 59.4% and 59.4% for 10-fold and LOSO cross-

validation respectively. Tuning the hyper-parameters for RBF could improve its accuracy.

VI. Energy Efficiency of ActivityAware

We tested the energy efficiency of the ActivityAware app by running it for 7 days (168 

hours) as it computed activity levels continuously throughout the duration. We recorded the 

battery voltage level each hour over the 7-day period.

The graph of the battery level shows battery percentage as the y-axis and time (hours) as the 

x-axis. The battery level dropped linearly from 100% to 73% over the 7-day period (Figure 

8). From a linear extrapolation of this battery-life data, we forecast that the app can run for 

approximately 4 weeks (26 days) before the Amulet needs to be recharged, which should be 
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convenient for most users. This result demonstrates that ActivityAware is sufficiently energy 

efficient.

VII. Limitations and Future Work

Our experiments have several limitations that imply the need for additional investigation. We 

used only a limited number of time-based features and also no frequency-based features for 

training the classifiers, because the latter are computationally intensive to derive. Computing 

additional temporal and frequency-based features could produce better models. We 

additionally could test various subsets of the features to obtain a feature set which is small, 

less computationally intensive, and yet produces high accuracy.

We implemented a Linear SVM model in the ActivityAware app rather than a Polynomial 

SVM model. While Polynomial SVM had the highest accuracy, it is more computationally 

intensive and requires more memory to store all the support vectors. Implementing a 

Polynomial SVM model could lead to more accurate real-time predictions. Also, since we 

only used the default setting while training the Linear SVM, we could tune the hyper-

parameters with a grid search to obtain accuracies comparable to or even better than the 

Polynomial SVM, in which case there will be no need to implement a Polynomial SVM 

model in the ActivityAware app.

We did not explore the best way to display the activity level information to users. We need to 

design varied interfaces and get user feedback to determine the best interface to use, and to 

select which display makes the most impact with reference to personal physical activity level 

monitoring.

Finally, we have not yet trained or tested our model with subjects in our target population, 

obese elderly people; we need to validate our preliminary results with data from obese 

elderly people and with larger populations before final conclusions can be drawn.

VIII. Conclusion

In this work, we present ActivityAware, an application on the Amulet wearable platform to 

measure the activity levels of individuals continuously and in real time. The app 

continuously collects acceleration data on the Amulet, classifies the activity level of an 

individual, updates the day’s accumulated time spent at that activity level, logs the data for 

later analysis, and displays the results on the screen.

Our results show accuracies of 59.4% for RBF SVM, 95.7% for Linear SVM and 98.3% for 

Polynomial SVM with 10-fold cross validation, and accuracies of 59.4% for RBF SVM, 

95.6% for Linear SVM and 98.1% for Polynomial SVM with LOSO cross-validation. 

Testing the ActivityAware app revealed a projected battery life of up to 4 weeks when 

running the Linear SVM classifier.

The apparent accuracy and energy efficiency of our app show that ActivityAware has the 

potential to be used for activity-level measurement and monitoring and could eventually 
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inform the development of intervention and personal physical activity management that 

could improve the health of elderly individuals.
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Figure 1. 
Fully assembled Amulet device (left), Internal Amulet peripherals (middle), custom Amulet 

circuit board (right)
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Figure 2. 
Components of ActivityAware App
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Figure 3. 
Snapshot of Activity-Level Display component of ActivityAware
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Figure 4. 
Hyper-pane separating two classes in SVM
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Figure 5. 
States of Activity Data Collection App
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Figure 6. 
Snapshot of EMA state of Activity Data Collection App
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Figure 7. 
Plots of acceleration data from one subject for activities: standing, laying down, sitting, 

walking and running
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Figure 8. 
Graph of Battery Life over 7 days
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Table 1

Accuracy of SVM models using 10-fold and LOSO Cross Validation

Polynomial SVM Linear SVM RBF SVM

10-fold 98.3% 95.7% 59.4%

LOSO 98.1% 95.6% 59.4%
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