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Abstract— Repeated experiences of negative emotions, such as
stress, anger or anxiety, can have long-term consequences for
health. These episodes of negative emotion can be associated with
inflammatory changes in the body, which are clinically relevant for
the development of disease in the long-term. However, the
development of effective coping strategies can mediate this causal
chain. The proliferation of ubiquitous and unobtrusive sensor
technology supports an increased awareness of those physiological
states associated with negative emotion and supports the
development of effective coping strategies. Smartphone and
wearable devices utilise multiple on-board sensors that are capable
of capturing daily behaviours in a permanent and comprehensive
manner, which can be used as the basis for self-reflection and
insight. However, there are a number of inherent challenges in this
application, including unobtrusive monitoring, data processing,
and analysis. This paper posits a mobile lifelogging platform
utilises wearable technology to monitor and classify levels o
A pilot study has been undertaken with six participant:
completed up to ten days of data collection. During thi
wore a wearable device on the wrist during waking
instances of heart rate (HR) and Galvanic Skin
Preliminary data analysis was undertaken usi
machine learning algorithms: Linear
(LDA), Quadratic Discriminant Analysi
Tree (DT). An accuracy of 70% was
Tree algorithm.
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e of stress that are experienced by the
a cumulative effect on the cardiovascular
is evidence that repeated and sustained
activation he sympathetic nervous system, alongside other
physiological changes, such as increased adrenaline, cortisol,
and levels of proinflammatory cytokines, is associated with age-
related diseases, such as cardiovascular disease, diabetes,
arthritis [2]. Given that between 9% - 11% of adults in the UK
suffer from cardiovascular disease (CVD) [4], those self-
regulatory processes underpinning the recognition/reduction of
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rder to support coping
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e computing and can be
record of the totality of an

e used to promote self-reflection, self-
tion and to support behaviour change. However, in
the burden of excessive data entry, it is important
for lifelogging platforms to record data automatically and
obtrusively. Modern smartphones and wearable devices
contain a number of non-intrusive sensors that enable collection
of an enormous amount of personal information. The feasibility
of these mobile technologies for lifelogging is supported by its
increasing affordability and pervasiveness, i.e. sensors are
becoming cheaper and smaller. Additionally, smartphones sit
within a growing category of networked devices that can be used
to monitor the behaviour of the individual [6].

This paper presents a mobile lifelogging platform that has
been developed to: (1) collect instances of data, including heart
rate (HR) and Galvanic Skin Resistance (GSR) from a wearable
device, (2) synchronise and remove noise and artefacts from the
collected data, and (3) apply machine learning techniques to
classifying instances of stress. Physiological markers of stress
are monitored through the collection of psychophysiological
data (HR and GSR). The usage of implicit monitoring delivers
guantitative data during everyday life, which can be transformed
into visualisations that support accurate recall from long-term
memory.

The reminder of this paper is constructed as follows. Section
2 provides an overview of background literature, whilst section
3 illustrates the design of the posited system. Section 4 describes
the pilot study that was undertaken to collect data in everyday
life from undergraduate university students using wearable
devices. This section also presents subsequent signal pre-
processing and labelling that was undertaken on this data.
Section 5 presents results of preliminary analysis to classify
stress using the data described in section 4, whilst section 6
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presents a discussion of the results. The paper is then concluded
in section 7.

Il. BACKGROUND

Recent advances in wearable sensor technology have
provided more efficient means of capturing data and recording
information in a digital form.

A. Lifelogging and Sensing Emotion

Humans have been documenting their personal lives for
centuries via the use of diaries and personal journals. Originally,
in handwritten form, this outlet allows the person to record a
chronological sequence of events, as well as thoughts and
feelings recorded at those times [7]. However, this retrospective
method suffers from the inherent biases and limitation of
reflection and remembrance. The idea of capturing every
moment of our lives digitally, saving every piece of information
and thus creating archives of personal digital information has
existed since the mid 1940’s [8].

The advancement of wearable devices are now seen as the
ideal platform upon which to collect personal data [9]. Using
such devices for lifelogging mitigates issues of keeping
handwritten diaries as data is captured ‘in the moment’. For
instance, the Affective Diary [10] used a range of bio-sensors to
record “affective body memorabilia,” such as pulse, skin
conductivity and activity, and a mobile phone to record SMSs
sent/received, photographs taken and the Bluetooth presence of
other mobile phones in the vicinity [10]. Similarly,
AffectAura [11], system collected electrodermal activity
data from a wearable wrist sensor [12], as well as audio

valence, arousal and engagement, which was
events on a timeline. The system used a

other works, Ayzenberg et al.’s [13]
commercial Affectiva Q™ wrist-wor

conductance and obtai
67 — 92%.

as a pre-emptive system that supports
daptive coping strategies.

When ajperson enters a stressful state, they encounter what
is commonly known as the “fight or flight” response, a
physiological reaction that results from a perceived threat [16].
Acute stress is responsible for diminishing the brains ability to
accurately recall memories, however this function is reversible
and not permanent [17]. On the other hand, chronic stress can
result in the acceleration of biological markers of aging [18]. It

has been suggested the level of stress that occurs at an early age
can increase or decrease the rate of biological aging [19].

I1l. SySTEM DESIGN

The availability of wearable sensing devices presents us with
unique opportunities to design intelligent systems that can be
taken into the real-world in order to monitor the emotional state
of users. This requires systems to unobtrusively collect large
quantities of data over prolonged periods and pro
to derlve meanlng As such, the system posi i

to promote
self-awareness to develop effective This will

be undertaken by focusing on:

odal approach; whereby multiple
orated into the system before a

rs in their natural environment, over a
The wearable sensors used gather

logical data, including heart rate and skin
conductance. Thus, the approach produces results that are
antifiable and objective. A pilot study has been undertaken to
explore the feasibility of the system. It should be noted that, the
ualization element is out of the scope of this paper and will be
e subject of future work.

IV. PILOT STUDY

Our lifelogging platform has been developed to measure
negative emotional states during everyday life. The platform
utilizes a commercially available wearable device (Microsoft
Band 2) to collect physiological lifelogging data, including heart
rate (HR) and Galvanic Skin Resistance (GSR). Data are
collected on the Band 2, which then connects to a smartphone,
via a purpose-built Android application and Bluetooth, where
the data is stored. Fig. 2 depicts the sensor hardware that has
been used for the study.
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Fig. 2. Mobile sensor equipment used for the pilot study, including
Microsoft Band 2 and smartphone

A. Participants and Data Collection

In order to assess the validity of our approach, the system has
been implemented via a pilot study of six undergraduate
university students. As an incentive, after completing the study,
participants were paid using a gift voucher to the value of £20.

Physiological lifelogging data, including heart rate (HR) and
Galvanic Skin Resistance (GSR), were collected using the
Microsoft Band 2. Additionally, the Perceived Stress Scale
(PSS) [20] questionnaire was used to collect subjective reports
about participants daily levels of stress. Each question was rated
on a 5-point Likert scale ranging from never (0) to very often
(4). Positively worded items were reverse scored, and the ratings
are summed, with higher scores indicating more perceived
stress. The responses in this questionnaire are intended to
identify how unpredictable, uncontrollable, and overloaded
participants find their lives [20]. Participants were provided with
the Microsoft Band 2 and were given a demonstratiop/a

afternoon and the Band was worn for u
during waking hours. The Universi

The pre-processin
MATLAB r2017b.
collection of lar
artefacts, whi
Thus, it is ement for appropriate signal
utilized for signal smoothing and
Furthermore, since we are recording
r a prolonged period and in the natural
aspopposed to a lab setting, instances of noise,
; isSing data values are likely to appear in our
datasets. FOr instance, loss of contact between the sensor and the
skin is inevitable.

Baseline drift is a type of unique artefact that commonly
occurs when collecting physiological datasets in the field over
long periods of time. These artefacts are typically the result of
motion artefacts from the electrode-skin interface, respiration
and motion of the subject, which consequentially leads to signal
quality slowly degrading over a period of time. Moreover, the

selected method must avoid distorting the original signal, as it is
important to ensure that the integrity of any classification built
using this data is intact. Our approach uses a three-step strategy
that first applies an Empirical Mode Decomposition, which
extracts a series of Intrinsic Mode Functions (IMF) [21]. These
signals contain baseline wander components, as well as the main
signal components. Secondly, a morphological filter has been
applied in order to extract baseline wander fro
[22]. The process of applying a morphological fi
modification of an objects shape,
transformation using the output of it
structuring element. There are fo
(erosion, dilation, opening and

is referred to as the struct
that the original sig

the drifting elements. The
n combined and subtracted
Fig. 3 demonstrates, baseline

rt rate data from the Microsoft Band 2 was sampled
ilst GSR was sampled at 5 Hz. Therefore, it was
ecessary to downsample and lower the sampling rate of the
SR signal in order to synchronize these data with the heart rate
ynal. This downsampling procedure was achieved by
averaging the GSR signal over 5 second epochs. Instances where
oss of contact between the Band 2 and the skin occurred were
then filtered. The Microsoft Band 2 software development kit
(SDK) provides a Boolean check of the state of contact with the
skin, whereby 0 = loss of contact and 1 = contact is present. All
instances where contact = 0 have been removed.

C. Data Labelling

Labels for the data were derived using the PSS subjective
questionnaire data. As participants completed the questionnaire
twice a day, separate scores for the morning and afternoon were
calculated. A change score was then calculated (afternoon —
morning) to index mood changes that have occurred during the
day. Scores can be categorized into two states — A positive
increase indicates stress, whilst a negative score indicates stress
hasn’t occurred.

Raw Data
Filtered Data

15 1.52 1.54 1.56 1.58 16
No. of Observations <108

Fig. 3. Raw GSR signal with baseline drift. Blue: before application of
morphological filter. Orange: after application of morphological filter
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A zero indicates that a change hasn’t occurred over the
course of the day. The data was labelled using the derived states
identified in Fig. 4. Data that was collected on days that had a
change score of zero (i.e. no change occurred). A consequence 14
of labelling via subjective labels is that the datasets are 12
unbalanced. This can produce bias during the classification
process, as a poorer predictive accuracy can occur over the
minority class (in this instance the stress class) [24]. Therefore,
to correct this issue, the data was randomly undersampled using
the SpreadSubsample class in Weka 3.8. This filter produces a
random subsample of the dataset, where the maximum count for
each class is set to the size of the minority class. This process
resulted in 3.71% of the labelled data being removed. The data
for each participant was then combined and normalized into one Stress No Stress No Change

dataset, which was then used within the preliminary data
analysis. Mood State

V. PRELIMINARY DATA ANALYSIS Fig. 4. Self-reported mood t?‘t has been |WV|athe PSS questionnaire

The purpose of this analysis was to classify real-world data Predicted Class
to detect instances of stress. This was undertaken using three
supervised machine learning algorithms: Linear Discriminant
Analysis (LDA), Quadratic Discriminant Analysis (QDA) and

16

10

Frequency

o N B~ O

Negative (Relaxed) Positive (Stress)

Decision Tree (DT). The analysis was performed using the mir . Negative Mf??te'zﬁﬂ'ﬁ False Positive (FP)
(Machine Learning in R) package in RStudio v.1.1.383 The S | (Relaxed) elaxed i:]stances False alarms
classification models were validated using k-fold cross- <8 — 7 ) True Positive (TP)
validation, whereby k = 10. The performance of each ﬂ © Pé’s't"’e False ’\l‘\ﬁga“"e PN) | Correct identification
classification model was evaluated using the resulting confusion (B 195es of stress
matrix. An example of a confusion matrix output can be seen in Y Fig. 5. Confusion matrix outputs
Fig. 5 [25]. Performance measures were then generated fro
confusion matrix outputs including: F; Score — a measurement of the balance between PPV
« False Negative Rate (FNR) — misses that oc (precision) and TPR (recall/sensitivity):

stressful day has been classified as relaxed: f=2- (PPV - TPR) ®)

(PPV+ TPR)

FN
fnr =
(FN+TP)

e False Positive Rate (FPR) — false a
day has been incorrectly classifig

Three types of analysis have been undertaken using 1) only
the heart rate data, 2) only the GSR data and 3) using both heart
rate and GSR data. Fig. 6 illustrates the accuracy results. As it
can be seen, independently using heart rate (with all classifiers)
?) and GSR (with LDA and QDA) produced poor results. However,

using the decision tree classifier with either the GSR data or with

both HR and GSR data produced significantly better results. The

BER and F; results (see Fig. 7) illustrates that the lowest error

rate was produced using the decision tree classifier with either
(4)  justthe GSR data or with both HR and GSR data.

75%

e Positive Predictive Valt %\/) [Precision] — the number of 20%
have beén marked as stressful when stress 65%
& 60%
g 55%
TP < 50%
ppv = ®) 45% I I I H I I
FP+TP
(FP+TP) 40% ﬂ
- . << < = < < = << =8 =
. —an index of overall performance: 3 8 2 2§ 2 2 8 g
T <« 5o B8 0w o= @8
TN+TP © @ -
acc = — TR (6) ° g 4 £
(TN+FP+FN+TP) T
(€ @ @

e Balanced Error Rate (BER) — the average misclassification
error rates of each class:

Dataset/Classifier
P N Fig. 6. Accuracy results for classifying data related to 1) only the heart rate,
ber = 0.5 (— + —) (7) 2) only GSR and 3) both heart rate and GSR data using Linear Discriminant
(TN+FP) ~ (FN+TP) Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Decision Tree

(DT) classifiers
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Fig. 7. Balanced Error Rate (BER)and F; results for classifying data related to
1) only the heart rate, 2) only GSR and 3) both heart rate and GSR data using
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA)
and Decision Tree (DT) classifiers

TABLE | presents the classifier performance results, which
demonstrated that the LDA with either the GSR data or with both
HR and GSR data produced missed the least number of stressful
days (low FNR) and had the highest sensitivity (TPR). However,
QDA with only GSR data produced the lowest false alarm rate
(FPR), whilst decision tree with either the GSR data or with both
HR and GSR data produced the highest precision (PPV). The
performance of each classifier has also been evaluated using a
Receiver Operating Characteristic (ROC) plot (see Fig. 8),
which plots FPR (false alarms) against TPR (recall/sensitivity).
As depicted in Fig. 8, the decision tree classifier with both the
GSR data or with both HR and GSR data performed particul
well.

V1. DISCUSSION

This paper has demonstrated positive result
stress in everyday life. A pilot study has be
collect physiological data, including he
Galvanic Skin Resistance (GSR), via t

data. It isInteresting
classification results.

Sensitivity
Dataset
TPR
HR.LDA 65%
HR.QDA 0% 73% 52% 80%
HR: 44% 43% 56% 56%
GSR.L 0% 100% 55% 100%
GSR.QDAY 94% 5% 59% 6%
GSR.DT 16% 48% 69% 84%
HR-GSR.LDA 9% 88% 56% 91%
HR-GSR.QDA 19% 78% 56% 81%
HR-GSR.DT 15% 48% 69% 85%
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00

data related to 1) only the heart rate, 2) only
nd GSR data using Linear Discriminant Analysis
jminant Analysis (QDA) and Decision Tree (DT)

basis to explore and improve upon. If we look ahead to feedback
stems, there is inevitably a trade-off between false alarms and
isses. If the purpose of a system is monitor a user in everyday
e, then a higher rate of false alarms could induce undue stress.
owever, for clinical purposes whereby negative emotions are
is linked to negative health outcomes, a higher rate of false
alarms would be more acceptable, as these instances could be
investigated further.

A limitation of this work is that it does not consider sleep.
Stress is not only experienced during the day but also at night,
whilst we sleep [26]. Recording data 24 hours a day would be
ideal to examine the manifestation and difference between
conscious and unconscious stress. However, the battery of
powered devices and contact with water (i.e. when showering or
swimming) are issues. Future work will also consider the
development of visualizations to provide feedback. This must be
carefully considered and be meaningful so as to not cause undue
stress but also facilitate self-reflection.

VII. CONCLUSION

The widespread proliferation of wearable devices offers an
alternative means of measuring emotional states ubiquitously
and unaobtrusively [27]. Wearable devices possess a number of
sensors that can collect a variety of data, which can be
amalgamated to detect and infer transitory moments of stress.
This is important to identify moments of negative emotions that
we might be unaware of or to identify the frequency of these
episodes.

This work has demonstrated that data collected from
wearable devices in everyday life can be used to successfully
detect instances of stress. A respectable accuracy of 70% has
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been achieved using the Decision Tree classification algorithm.
The next steps for this work is to explore the integration of
feedback. This would enable us to become more aware of our
emotional wellbeing and to learn self-regulating negative
emotions, which is imperative for leading a healthy lifestyle.
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