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Abstract—Egocentric vision is a technology that exists in a
variety of fields such as life-logging, sports recording and robot
navigation. Plenty of research work focuses on location detection
and activity recognition, with applications in the area of Ambient
Assisted Living. The basis of this work is the idea that locations
can be characterized by the presence of specific objects. Our
objective is the recognition of locations in egocentric videos that
mainly consist of indoor house scenes. We perform an extensive
comparison between Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) based classification methods
that aim at finding the in-house location by classifying the
detected objects which are extracted with a state-of-the-art object
detector. We show that location classification is affected by the
quality of the detected objects, i.e. the false detections among
the correct ones in a series of frames, but this effect can be
greatly limited by taking into account the temporal structure of
the information by using LSTM. Finally, we argue about the
potential for useful real-world applications.

I. INTRODUCTION

Egocentric vision is an essential part of various video
analysis tasks, extending from activity recognition [1] and
social interaction analysis [2], to automatic extraction of visual
guidelines [3] and infant visual attention [4]. The area consid-
ered in this paper is indoor location detection from egocentric
videos, with possible applications in Ambient Assisted Living
(AAL) for people suffering from limited vision or dementia.

To produce an inference on an image or video frame, one
could calculate image-descriptive features, stack them in a vec-
tor per frame and classify them with machine learning models
in a supervised fashion. In recent years, feature extraction
and classification have merged into end-to-end classification
methods with deep networks, providing state-of-the-art results.
In this work, we take a step back and consider a different type
of feature to infer the location.

Our key technique is to use the detected objects in a
video frame as cues to recognize the location. We build on
the idea that rooms can be characterized by the presence of
specific, distinctive objects. This consistency can be translated
into an association between objects and locations. Consider,
for example, Fig. 1 which shows the detected objects of an
egocentric video segment from a kitchen. There are three
categories of objects; (1) those that can be thought of as
movable, but bear meaning for understanding the scene, such
as the mug and the dish, (2) those that are distinctive to this
particular location, such as the stove, the microwave or the

fridge and (3) those that can be found in more than one
location, for example the soap and the tap, which could also
appear in a bathroom.

This motivates us to perform an analysis on the videos of the
Activities of Daily Living dataset (ADL) [5] and discover the
associations between the objects and their locations. To that
end, we train multiple classifiers with Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM) [6]
to experiment with per frame classification and utilization of
the temporal structure of the data, respectively. Conceptually, a
single frame of a scene might include only partial information
about the objects, as not all that are detectable could fit in
it. However, the combination of multiple frames over time
would produce a more complete view of the room. Eventually,
we compare the performance of classifiers from both types of
models, trained either on object annotations or the detections
from three similar detectors, each trained on different object
categories from different datasets.

The contribution of this paper is the development of a
method to analyze object associations with locations in ego-
centric videos. In addition, we describe the results of a
thorough parameter search for CNN and LSTM networks and
provide inferences about the outcome.

Section II is an overview of related work in egocentric
object and location detection, datasets and applications in the
field. In Section III we describe the dataset we used, the object
detectors and our classification modules and in Section IV we
present our results. Our findings are discussed in Section V
and we conclude in Section VI.

II. RELATED WORK

We focus on recognizing indoor locations based on the de-
tected objects from egocentric videos of people moving freely
in their homes. The ADL dataset [5] has these characteristics
and the necessary object annotations. Scientific literature pro-
vides a plethora of egocentric datasets [7]–[13] with a variety
of attributes. The datasets of [7], [8] are created with the aim of
detecting locations and observing indoor and outdoor everyday
scenes. The dataset of [13] focuses on activities that take
place either indoors or outdoors, such as walking, running and
sitting, whereas [9] is enhanced with accelerometer and heart
rate data to infer the sedentarity level of performed activities.
The dataset of [10] includes annotations and segmentations
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Fig. 1: The detected objects for ‘kitchen‘. Certain objects, such
as the oven and the microwave, dominate the scene.

of the important objects that characterize the activities, with a
large amount of the videos being outdoors. Datasets from [11],
[12] consist of videos in a kitchen, in which the participants
are asked to prepare food according to predefined recipes.

Understanding of locations, in terms of mapping the sur-
rounding area or labeling the environment, has been under
active research in egocentric vision. In [14], an unsupervised
way of combining scene illumination and location characteris-
tics is proposed to enhance the usability of wearable cameras.
Location recognition is indirectly the task in [15] where a
Google Glass application captures images of the user’s field
of view and retrieves information about the buildings in sight.
An indoor localization system is considered in [16] where the
combination of a camera and a 2D laser scanner is applied
to register images to the real world coordinate system. A
multi-view indoor localization system from images and videos
is proposed in [17]. The algorithm computes self-similarity
matrices from the extracted images to correlate the various
captured views of the scene. Afterwards, it learns the system
through these features and when a query image is given, it is
able to provide its location and orientation. The combination
of wearable egocentric stereo cameras and inertial sensors is
considered in [18] to map an outdoor workspace and provide
route guidance for specific tasks in the workplace.

A thorough system for place classification is described
in [19]. Visual recognition is based on low-level features
and complicated semi-supervised training procedures to take
advantage of sparsely annotated available data. Temporal seg-
mentation of egocentric videos with CNN and Hidden Markov
Models is considered in [7] to highlight personal locations
of interest, trained with user-provided positive samples of
locations, also learning to reject locations that are not specified
by the user. Personal locations are also analyzed in [8] as part
of a user’s daily activities. For the frames of the videos, either
global image or CNN-extracted features are classified into
locations. In [20], [21], the combined improvement of object
detection and scene identification is investigated. Initially,

scene identification is performed from temporal egocentric
cues and its results are used to improve the results of object
detectors by associating the objects with specific locations.
Eventually, they show that by using an LSTM network to train
on the temporal sequences of the detected objects directly,
it is possible to improve the results of the detectors without
explicitly using the locations. They perform their experiments
on the ADL dataset. Our work is the opposite of this concept,
where we use the object detections to infer the locations, a
concept that is not uncharted in the activity recognition domain
[1], where object detections and hand object interactions,
among others, are explored towards activity recognition.

Searching through the parameters of a model to find the
optimal configuration is enticing, as suggested by the volume
of relevant work [22]–[26]. In [22], a multitude of LSTM
variants is tested on speech recognition, handwriting recogni-
tion and music modeling tasks to inspect the differences in
the architectures. It is shown that most LSTM variants do
not improve significantly, if at all, over the default LSTM
structure, which performs relatively well for all considered
tasks. Variations in the hyper-parameters used for training are
also explored, but it is observed that they are uncorrelated.
In an effort to provide further insights to the reasons behind
the effectiveness of LSTM, [25] provides a thorough study
on cell activations, error analysis and data representations. In
the context of searching for the best parametrization of an
algorithm to gain optimal performance, our work comprises a
large scale search on CNN and LSTM configurations.

III. METHODOLOGY

Our method amounts to analyzing an egocentric dataset
in terms of objects and locations (Sec. III-A), choosing an
object detection framework to perform our tests (Sec. III-B)
and creating a pipeline for location classification (Sec. III-C).

A. Activities of Daily Living (ADL) Dataset

The ADL dataset [5] consists of 20 videos of 18 morning
activities occurring indoors. Each video is an egocentric record
of the subject’s choice of the proposed activities performed in
an unscripted manner. In every video, the subject is different
and is performing activities in his/her own house, which pro-
vides considerable variations in locations, activities and video
appearances. In total, there are approximately 10 hours of
egocentric videos, equivalent to more than one million frames.
The videos have been manually annotated to include action
labels, object bounding boxes, object tracks and human-object
interactions. Train and test splits are provided by the authors;
videos 1-6 are considered training data and the remaining 14
comprise the test set. For our experiments we use the same
splits on the data.

There exist annotations for 48 object classes, although
only 42 are considered valid and mentioned as such in the
original paper due to the very low number of training or
testing samples. A list of the object classes together with their
occurrences in the dataset appears in Table I.
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Table I: The object classes of the ADL dataset and the occurrences in the videos. In parenthesis the instances in the train set.
person door fridge microwave bottle tap oven/stove pan
4650 (2424) 7903 (2019) 1999 (301) 2369 (527) 10310 (1705) 7826 (3252) 3196 (1007) 3156 (1026)
trash can dish cloth knife/spoon/fork food/snack kettle mug/cup soap liquid
2075 (486) 8216 (2274) 3077 (78) 4843 (1893) 3876 (741) 1239 (464) 11050 (2766) 8375 (2658)
pills basket towel tooth brush tooth paste electric keys tv tv remote
394 (148) 1588 (35) 4480 (1961) 1795 (819) 1746 (492) 1570 (417) 5600 (2033) 2813 (1253)
container shoes tea bag laptop cell phone cell thermostat book
5685 (3821) 3248 (735) 359 (177) 7027 (2183) 653 (271) 571 (238) 332 (137) 4770 (445)
dental floss vacuum elec keys pitcher detergent washer/dryer bed large container
547 (385) 519 (116) 118 (118) 1208 (277) 1105 (297) 3362 (954) 783 (228) 558 (6)
monitor keyboard shoe blanket comb perfume milk/juice mop
316 (287) 107 (102) 694 (300) 85 (31) 307 (51) 550 (0) 366 (0) 403 (0)

We are interested in the analysis of locations, so the dataset
is expanded with the location annotations from [21]. For every
30 frames of video, one of eight possible location classes
is defined, namely, kitchen, bedroom, bathroom, living room,
laundry room, corridor, outdoor and undefined (see also Table
II). The last class occurs in blurred frames or non-identifiable
places which we do not use for training and testing the location
classification models. Hence, the location classes are seven.

Table II: Samples per location. Some classes are better repre-
sented. Class ’undefined’ is not used for training and testing.

Location class Train set Test set Total
undefined 492 737 1229
outdoor 143 906 1049
kitchen 3414 6850 10264

bedroom 1821 3966 2285
bathroom 2307 2285 4592

living room 2606 5045 7651
laundry room 815 1097 1912

corridor 45 133 178
Sum 11463 21019 32662

B. Object Detection
In our experiments we use the Darknet framework1 to detect

objects. In total, we have three detectors based on the YOLOv2
CNN as described in [27]. It is a real-time object detection
system that can operate on various input sizes, a feature we
also exploit to improve detection performance. YOLOv2 is
based on the Darknet-19 architecture [27], which is pre-trained
on ImageNet [28] for the 1,000 class classification task, for
160 epochs. Our first detector is YOLOv2, fine-tuned on the
80 classes of the MS COCO dataset [29] and provided by
its authors. We train two additional models based on this
architecture for the object classes of ADL: (1) ADL48, on
all the classes in Table I and (2) ADL20, on the marked. This
selection of classes is based on [21].

The reason for the diversity in the detectors is that COCO
and ADL consist of different sets of classes. ADL comprises
objects found in homes, whereas COCO is more general in
its categories. Also, the number of classes in COCO does
not affect the quality of the detections due to the number of
labeled instances per class (over 5,000 [29]), which is not the
case in ADL, with fewer samples overall. The split between
ADL20 and ADL48 attempts to address this, by excluding
classes which are harder to detect.

1http://pjreddie.com/darknet/

C. Location Classification

We model the relationship between the objects in a frame
or a series of frames to recognize the location. After object
detection is applied on the train and test videos of the ADL
dataset, we get a vector of zeros and ones for every video
frame, at the length of the object detector’s output, i.e. 80 for
the COCO detector, 48 for ADL48 and 20 for ADL20. The
ones in each vector constitute the detected objects and the
zeros the undetected. We have location annotations every 30
frames (1 second) [21] and only use these in classification.

We train two types of classifiers. The first are based on
CNN architectures that do not take into account the temporal
structure of the data, whereas the second are based on LSTM,
which are trained on sequences of the aforementioned vectors.
We use TensorFlow version 1.3.0 for our experiments.

Global parameters for both cases include: (1) the object
detectors to produce the detections, (2) their detection thresh-
old and (3) the dataset combinations. The threshold creates
a trade-off between the confidence and the amount of detec-
tions. Higher thresholds result in more confident but fewer
detections. Lower thresholds provide more objects, but with
more false-positives. The dataset combinations comprise three
scenarios that affect the composition of a location classifier’s
dataset. Labels to labels (L2L) which consist of the ADL
object annotations for the train and test sets, i.e. the object
detections are not used for the L2L based models. Labels to
detections (L2D) which use the object annotations for training
and the detections of a specific detector with a specified
minimum confidence threshold for testing. Detections to detec-
tions (D2D) which are composed of detections for a common
threshold for both train and test sets. The classifiers based
on MS COCO are trained only for D2D due to the lack of
annotations for its object classes in the ADL dataset.

1) CNN Classifiers: We vary the number of training steps
and the dropout. The structure of the networks can be seen
in Table III. The ADL48 classifiers come in two variants
to measure the effect of network depth against the size of
the input vector; one with two layers with pooling, same as
the ADL20 and one with three like the COCO classifiers.
We use Rectified Linear Unit (ReLU) activations, Adam for
optimization [30] and cross entropy for the loss function.

2) LSTM Classifiers: We vary the number of stacked LSTM
layers, the number of hidden units per layer, the batch size and
the sequence size. (Table IV) We apply dropout after each
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Table III: CNN structures. For ADL20 and ADL48-2 the first
two conv and maxpool layers apply. For ADL48-3 and COCO
all layers apply. FC, dropout and softmax apply to all.

Type Filters Size/Stride Output ADL20/48/COCO
Convolutional 32 5 x 5 1 x 20 / 1 x 48 / 1 x 80

Maxpool 2 x 2 / 2 1 x 10 / 1 x 24 / 1 x 40
Convolutional 64 5 x 5 1 x 10 / 1 x 24 / 1 x 40

Maxpool 2 x 2 / 2 1 x 5 / 1 x 12 / 1 x 20
Convolutional 128 5 x 5 - / 1 x 12 / 1 x 20

Maxpool 2 x 2 / 2 - / 1 x 6 / 1 x 10
Fully connected, Dropout, Softmax

LSTM layer. After the final LSTM, there is a softmax layer
for the output. Similarly to the CNN, the loss function is cross
entropy and we use the Adam optimizer.

Table IV: The parameters we adjust for the LSTM classifiers.

Parameter Values
Stacked layers 1, 2, 5
Hidden units 1, 2, 3, 4, 5 * length of the input vector
Batch size 1, 2, 5, 10, 20
Sequence size 1, 2, 5, 10, 20, 50

IV. RESULTS

Following, we present the variants of the object detectors
with the best performance, the results of the CNN classifiers,
a case of per class examination and the LSTM classifiers.

A. Object Detectors

The better performing of our variations of the YOLOv2
architecture have input size 448 x 608 and are trained for
35,000 iterations. The remaining parameters are the same as
[27]. The recall of ADL20 is 31.29% and of ADL48 is 28.41%
on their respective ADL test set.

B. CNN Results

In order to discover the optimal configuration we experiment
with the hyper-parameters of Sec. III-C1. To reduce over-
fitting, a dropout value of 0.85 is deemed optimal. We train
for 5, 000 training steps, with a learning rate of 10−4 and
batch size of 50 samples. Our main objective is to assess
the effects of the object detection threshold to the location
classification. In total, we have four CNN classifier variants:
ADL20, ADL48-2, ADL48-3 and COCO, tested for the appli-
cable dataset combinations of Sec. III-C. All experiments are
executed five times to mitigate the effect of randomization in
the training procedure and the results show the average value
of the respective executions. In Fig. 2 the results are presented
in terms of overall accuracy on the test set and in Fig. 3 in
terms of averaged F1-score over the seven locations.

The best results are found in the L2L dataset combinations.
This can be expected from the fact that the object annotations
do not include noise, thus the train set is clean without
contradicting objects, while the lack of false detections in the
test set makes it more compatible to the knowledge of the
classifier. This is also supported by the fact that the D2D

classifiers who use noisy data for training and testing have
better performance than their L2D counterparts (Table V).

We vary the detection threshold from 0.3 to 0.7 with a
step of 0.1. In general, as the threshold increases, perfor-
mance drops. A lower threshold means more available object
detections, even if they include more false positives, allowing
the location classifier to identify uncertain locations easier,
while probably ignoring the false positive objects. On the other
hand, higher thresholds result in less detections with higher
confidence, which may not be enough to infer the location.

Varying the object detector affects the classification results
significantly. In Fig. 2 and 3 we see that ADL20 performs
better than the ADL48 variants and COCO is better than both.
The smaller number of object classes of ADL20 makes it
possible to have a simpler representation with higher accuracy.
On the contrary, the COCO detector, due to the greater amount
of training samples for each class is generally more robust,
despite being trained for 80 classes. This shows that a generic
object detector with better detection performance is preferable
to a less successful one that is more relevant to the context.

Table V: CNN results of L2L, L2D and D2D.

ADL20 ADL48-3
L2L L2D D2D L2L L2D D2D

Overall accuracy 0.76 0.57 0.59 0.73 0.48 0.54
F1-score 0.56 0.46 0.47 0.58 0.40 0.45
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Fig. 2: The overall accuracy in the test set for each CNN
model. The fact that it drops as the threshold increases gives
an interesting insight about the quality of the object detections
even with lower confidence, i.e. the quality of the detections
at threshold lower than 0.5 is high and able to produce
meaningful results while it drops significantly afterwards.

C. Per Class Examination

In Fig. 4 we compare the per class F1-scores for three
CNN classifiers. Our objective is to see which locations are
harder to detect. Locations ’outdoor’ and ’corridor’ suffer from
the scarcity of training samples plus object classes cannot
be registered explicitly to them. COCO, being more generic,
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Fig. 3: The F1-score, averaged over the 7 locations. The fact
that some locations are essentially undetectable (corridor, out-
door), affects the F1-score compared to the overall accuracy.
This leads to the conclusion that the dataset is imbalanced
with a clear advantage for classes which are easier to detect.

detects objects ’car’ and ’stop sign’ which enable it to classify
some instances of ’outdoor’ correctly. Also, it performs better
in classes ’bedroom’ and ’living room’ because it detects
’sofa’, ’chair’ and ’bed’, usually spotted in these locations.
It underperforms in ’laundry room’ because it lacks an object
class similar to ’washer/dryer’ of ADL20. The two variants
of ADL20 have similar average F1-scores (Table V) and are
performing better for ’kitchen’ and ’bathroom’ due to their
specialization in relevant objects like ’pan’, ’tap’ and ’soap’.
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Fig. 4: The per class F1-scores at detection threshold 0.3 for
three CNN classifiers.

D. LSTM Results

One major drawback of our CNN architecture is its inability
to take advantage of the sequential nature of the data, i.e.
the temporal associations of the objects with the locations. In
Fig. 1 the same scene exists for 42 consecutive seconds, but
the objects are not consistent throughout the segment. This
intuition drives us to perform tests with LSTM modifying the
parameters of Table IV to discover a more optimal classifier
for this task. We set dropout to 0.85, learning rate to 10−4 and

train steps to 500. To mitigate the effects of randomization we
create every model five times and average their results. In total,
the number of trained LSTM models is 38,250. We investigate
the improvement over CNN with the use of LSTM.

In Table VI we compare the best accuracies from LSTM
models to the best accuracy of a CNN model with the same
global parameters. In every task there exists an LSTM model
that surpasses the CNN classifier. Except for the L2L combina-
tion, where the results are relatively close (+5%), LSTM show
great relative improvement. For example, at the difficult case
of ADL48 L2D with threshold 0.7 it is 68% better. The same
conclusion can be drawn from Table VII where the F1-scores
are presented instead. As expected, they are smaller, because
they take into account the distribution of the dataset and are
affected by its imbalance (Table II). Still, the improvement
is considerable. To compare with the previous example, the
relative improvement for L2D at threshold 0.7 is 28.57%.

Table VI: LSTM best overall accuracies compared to the best
CNN in parenthesis.

Combination ADL20 ADL48 COCO
L2L 0.80 (0.76) 0.79 (0.76) -

L2D 0.3 0.69 (0.57) 0.62 (0.48) -
L2D 0.5 0.65 (0.51) 0.56 (0.38) -
L2D 0.7 0.54 (0.39) 0.47 (0.28) -
D2D 0.3 0.69 (0.59) 0.64 (0.54) 0.77 (0.64)
D2D 0.5 0.67 (0.54) 0.62 (0.52) 0.47 (0.28)
D2D 0.7 0.61 (0.51) 0.56 (0.48) 0.74 (0.59)

Table VII: Best LSTM F1-scores compared to the best CNN
F1-scores in parenthesis.

Combination ADL20 ADL48 COCO
L2L 0.64 (0.56) 0.63 (0.60) -

L2D 0.3 0.53 (0.46) 0.49 (0.40) -
L2D 0.5 0.52 (0.44) 0.44 (0.36) -
L2D 0.7 0.52 (0.44) 0.36 (0.28) -
D2D 0.3 0.52 (0.47) 0.50 (0.42) 0.60 (0.51)
D2D 0.5 0.52 (0.45) 0.49 (0.40) 0.56 (0.45)
D2D 0.7 0.47 (0.40) 0.46 (0.37) 0.49 (0.32)

V. DISCUSSION AND FUTURE WORK

To develop a system that recognizes locations from objects
in a real setting, using the L2L combination for the location
classifiers is not an option due to the difficulty to acquire real
data. To address this, we made use of the object detector as
a means to provide real-time input to the classifier. Initially,
this leads to the L2D case, where we could train on generic
room representations e.g. a common kitchen has a fridge, an
oven and a tap, and expect to detect these objects at a test en-
vironment. However, the D2D experiments have better results
and are easier to use since they abolish the necessity for object
labeling of the generic room. Thus, the system can easily learn
new representations of existing places (for example, with a
specialized detector that was previously unavailable), but also
of unseen locations not included in the original categories.

A downside of D2D is the complete dependence on the
object detection quality to both create and identify room rep-
resentations, whereas L2D rely on it only for the identification
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part. Nevertheless, our experiments with the ADL dataset show
that for most locations in our set all detectors provide data of
sufficient quality to classify locations, especially when LSTM
is applied to take into account their sequential nature.

To use this method in a real AAL scenario further research
would be required to improve the overall results and address
the incomplete classification of certain locations.

VI. CONCLUSION

In this paper, we explored the recognition of indoor loca-
tions from egocentric videos. A state-of-the-art object detector,
trained separately on three object sets, was applied on videos
to extract objects for five detection thresholds. We classified
these detections with CNN and LSTM to infer locations and
evaluated the effect of the adjustable hyper-parameters on
the classification performance. We found that the choice of
object set affects the relevance of the detections to the location
classification task and the detection threshold their amount and
quality. One important discovery was that less, but more reli-
able object information hurts the classification results, whereas
more, albeit less confident information, improves them. The
comparison between CNN and LSTM had a clear winner in
LSTM, which exploit the sequential nature of the data and are
able to mitigate the effects of erroneous detections.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation program under
the Marie Skłodowska-Curie grant agreement No 676157.
Additionally, we would like to thank the authors of [21] for
providing the location annotations for the ADL dataset.

REFERENCES

[1] M. Ma, H. Fan, and K. M. Kitani, “Going deeper into first-person activity
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1894–1903, 2016.

[2] R. Yonetani, K. M. Kitani, and Y. Sato, “Recognizing micro-actions and
reactions from paired egocentric videos,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2629–
2638, 2016.

[3] D. Damen, T. Leelasawassuk, and W. Mayol-Cuevas, “You-Do, I-
Learn: Egocentric unsupervised discovery of objects and their modes of
interaction towards video-based guidance,” Computer Vision and Image
Understanding, vol. 149, pp. 98–112, Aug. 2016.

[4] K. S. Kretch, J. M. Franchak, and K. E. Adolph, “Crawling and walking
infants see the world differently,” Child development, vol. 85, no. 4,
pp. 1503–1518, 2014.

[5] H. Pirsiavash and D. Ramanan, “Detecting activities of daily living in
first-person camera views,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2847–2854, 2012.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[7] A. Furnari, G. M. Farinella, and S. Battiato, “Temporal segmentation
of egocentric videos to highlight personal locations of interest,” in
European Conference on Computer Vision, pp. 474–489, Springer, 2016.

[8] A. Furnari, G. M. Farinella, and S. Battiato, “Recognizing Personal
Locations From Egocentric Videos,” IEEE Transactions on Human-
Machine Systems, pp. 1–13, 2016.

[9] K. Nakamura, S. Yeung, A. Alahi, and L. Fei-Fei, “Jointly Learning
Energy Expenditures and Activities Using Egocentric Multimodal Sig-
nals,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6817–6826, July 2017.

[10] Y. J. Lee, J. Ghosh, and K. Grauman, “Discovering important people
and objects for egocentric video summarization.,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, vol. 2,
p. 7, 2012.

[11] A. Fathi, X. Ren, and J. M. Rehg, “Learning to recognize objects
in egocentric activities,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3281–3288, 2011.

[12] A. Fathi, Y. Li, and J. M. Rehg, “Learning to recognize daily actions
using gaze,” in European Conference on Computer Vision, pp. 314–327,
Springer, 2012.

[13] Y. Poleg, C. Arora, and S. Peleg, “Temporal segmentation of egocentric
videos,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2537–2544, 2014.

[14] A. Betancourt, N. Daz-Rodrguez, E. Barakova, L. Marcenaro, M. Rauter-
berg, and C. Regazzoni, “Unsupervised understanding of location and
illumination changes in egocentric videos,” Pervasive and Mobile Com-
puting, vol. 40, pp. 414–429, Sept. 2017.

[15] H. Altwaijry, M. Moghimi, and S. Belongie, “Recognizing locations with
google glass: A case study,” in IEEE Winter Conference on Applications
of Computer Vision, pp. 167–174, IEEE, 2014.

[16] N. Lee, C. Kim, W. Choi, M. Pyeon, and Y. Kim, “Development of
indoor localization system using a mobile data acquisition platform and
BoW image matching,” KSCE Journal of Civil Engineering, vol. 21,
pp. 418–430, Jan. 2017.

[17] G. Lu, Y. Yan, N. Sebe, and C. Kambhamettu, “Indoor localization
via multi-view images and videos,” Computer Vision and Image Under-
standing, vol. 161, pp. 145–160, Aug. 2017.

[18] K. Qian, W. Zhao, Z. Ma, J. Ma, X. Ma, and H. Yu, “A Wearable-
assisted Localization and Inspection Guidance System using Egocentric
Stereo Cameras,” IEEE Sensors Journal, pp. 1–1, 2017.

[19] V. Dovgalecs, R. Mgret, and Y. Berthoumieu, “Multiple Feature Fusion
Based on Co-Training Approach and Time Regularization for Place
Classification in Wearable Video,” Advances in Multimedia, vol. 2013,
pp. 1–22, 2013.

[20] G. Vaca-Castano, S. Das, and J. P. Sousa, “Improving egocentric vision
of daily activities,” in Image Processing (ICIP), 2015 IEEE International
Conference on, pp. 2562–2566, IEEE, 2015.

[21] G. Vaca-Castano, S. Das, J. P. Sousa, N. D. Lobo, and M. Shah,
“Improved scene identification and object detection on egocentric vision
of daily activities,” Computer Vision and Image Understanding, vol. 156,
pp. 92–103, Mar. 2017.

[22] K. Greff, R. K. Srivastava, J. Koutnk, B. R. Steunebrink, and J. Schmid-
huber, “LSTM: A Search Space Odyssey,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, pp. 2222–2232, Oct. 2017.
arXiv: 1503.04069.

[23] N. Y. Hammerla, S. Halloran, and T. Pltz, “Deep, Convolutional, and
Recurrent Models for Human Activity Recognition Using Wearables,”
in Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI’16, pp. 1533–1540, AAAI Press, 2016.

[24] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in Proceedings of the 32nd Inter-
national Conference on Machine Learning (ICML-15), pp. 2342–2350,
2015.

[25] A. Karpathy, J. Johnson, and L. Fei-Fei, “Visualizing and understanding
recurrent networks,” arXiv preprint arXiv:1506.02078, 2015.

[26] D. Mishkin, N. Sergievskiy, and J. Matas, “Systematic evaluation of
convolution neural network advances on the Imagenet,” Computer Vision
and Image Understanding, vol. 161, pp. 11–19, Aug. 2017.

[27] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 6517–6525, July 2017.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009.

[29] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollr, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European Conference on Computer Vision, pp. 740–755,
Springer, 2014.

[30] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980 [cs], Dec. 2014. arXiv: 1412.6980.

SmarterAALSmarterAAL'18: Workshop on Advanced Technologies for Smarter Assisted Living solutions: Towards an open Smart 
Home infrastructure

883Authorized licensed use limited to: University Library Utrecht. Downloaded on April 11,2023 at 13:38:37 UTC from IEEE Xplore.  Restrictions apply. 


