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Abstract—Detailed and accurate vehicle-oriented
sensor data is considered fundamental for efficient
vehicle-to-everything (V2X) communication applica-
tions, especially in the upcoming highly heterogeneous,
brisk and agile 5G networking era. Information re-
trieval, transfer and manipulation in real-time offers
a small margin for erratic behavior, regardless of its
root cause. This paper presents a method for managing
nonuniformities and uncertainties found on datasets,
based on an elaborate Matrix Completion technique,
with superior performance in three distinct cases of
vehicle-related sensor data, collected under real driving
conditions. Our approach appears capable of handling
sensing and communication irregularities, minimizing
at the same time the storage and transmission require-
ments of Multi-access Edge Computing applications.

Index Terms—Graph Matrix Completion, V2X,
MEC, Sensor Data.

I. Introduction
As global telecommunication market shifts towards the

5G era and the fascinating technological advances it pro-
claims [1], it becomes obvious that new applications and
verticals with a tremendous affect in our everyday lives are
approaching. The deployment of a highly heterogeneous,
always available, brisk and agile network, offering inherent
support for billions of interconnected devices with less
than 1 millisecond end-to-end latency [2], will transform
almost every application from simple daily entertainment
to autonomous private transportation and the automotive
domain in general, inside Smart Cities which will provide
the proper underlying infrastructure.

The automotive domain is somehow divided into two
separate yet highly consolidating tracks, autonomous driv-
ing vehicles (ADV) and vehicle-to-everything (V2X) com-
munication [3], with V2X act as a key technology en-
abler for ADV by allowing moving vehicles to approach
each other more safely, thus enabling traffic flow opti-
mization techniques and increased situational awareness.

Vehicle-oriented notifications and alerts are propagated to
nearby infrastructure, properly equipped pedestrians or
other vehicles, rendering every involving entity capable
of reacting fast and efficiently regardless of the situation
[4] for instance, to the now hazardous cases of blind
intersections, closed curves, lane switching and overtaking
which often cause fatal car accidents worldwide. Smart
Cities all around the globe are deploying dedicated infras-
tructure for facilitating V2X communication in a seamless
manner, since citizen security and effective public/private
transportation are considered top priorities.

Information retrieval, transfer and manipulation in real-
time, requires a rapidly operating network with decreased
end-to-end propagation delay, large throughput and low
latency. In addition, for efficient and secure V2X com-
munication applications, the same network should include
proper interfaces for establishing robust connections with
the heterogeneous devices involved, being adequately fault
tolerant and able to deliver informative messages even with
fragmented data.

In this paper, motivated by the necessity for fault toler-
ant systems that will extract information from incomplete
datasets, as well as the omnipresent demand of limited
data transfer through the rather congested Smart City
networks that will be forced to operate partially based
on the resource savvy MEC architecture, we present a
method of managing nonuniformities and uncertainties in
vehicle-related data. This solution will allow us to retrieve
adequately detailed information from smaller or compro-
mised datasets through an algebraic interpolation process
that intends to effectively fill the missing information gaps
without changing the overall essence of the actual dataset.
Depending on the use case, the proposed solution could be
used for analytics retrieved from artificially reconstructed
data or simply as a method of lowering the threshold of the
necessary amount of data needed for a specific decision.



The rest of this paper is organized as follows: Section II
identifies our motivation and previous work on the topic.
Section III describes the mathematical method used for
the vehicle-oriented data reconstruction process. Section
IV presents the testbed architecture while the necessary
results are included in Section V. Finally, Section VI
concludes the paper.

II. Motivation and Previous Work
Over the last few years, cloud computing evolved to

a highly disruptive architectural paradigm which clearly
dominated the global market of on-demand computational
resources, allowing end users to efficiently lease them
according their needs on any given time [5],[6]. How-
ever, most service providers deploy massive geographi-
cally isolated datacenters, leading to a large round trip
delay, network congestion or service quality degradation,
all highly compromising factors for real-time, latency-
sensitive service requests and applications.

An initial approach for tackling issues such as increased
delay and elevated latency was eliminating distance be-
tween the data source and the corresponding computa-
tional resources that handle them as proposed by [7].
This work introduced the notion of data processing in the
network edge through dedicated nodes referred to as “edge
devices”. Alas, despite its efficiency, this approach does
not comply with the common deployment paradigms of
cloud computing followed by every vendor, therefore an
alternative solution was needed, however with respect to
the notion of edge computing which was proved to be a
step towards the right direction.
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Fig. 1: V2X communications over Multi-access Edge
Computing Infrastructure in a Smart City

The most recent architectural model for providing cloud
computing capabilities paired with an IT service envi-
ronment at the edge of the mobile network within the
Radio Access Network (RAN) and in proximity to the

service subscribers is Multi-access Edge Computing for-
merly known as Mobile Edge Computing (MEC) [8]. This
novel framework is characterized by ultra-low latency, high
bandwidth, real-time access to radio network and context
information, location awareness, efficient network opera-
tion and service delivery, thus ensuring high quality of ex-
perience (QoE) for all interconnected users . According to
the European 5G Public Private Partnership (5G-PPP)1

MEC facilitates the actual transformation of the mobile
broadband network into a programmable ecosystem and
paves the way towards meeting the original standards of
5G in terms of expected throughput, latency, scalability
and automation.

To further clarify the abilities of the proposed ar-
chitecture, European Telecommunications Standards In-
stitute (ETSI) created an industry specification group
(ISG) which in [9] describes a few service scenar-
ios under consideration that fully take advantage of
MEC towards increasing performance compared provid-
ing such services through the cloud or core network
servers. As expected, the Smart City-relevant, Vehicle-
to-Infrastructure/Pedestrian/Vehicle (V2X) use case was
among the dominant ones, since it uses MEC to extend the
connected car cloud into the highly distributed mobile base
station environment, and enable data and applications
to be housed close to the vehicles. This can reduce the
round trip time of data and enable a layer of abstraction
from both the core network and applications provided over
the internet. MEC applications can run on corresponding
MEC servers which are deployed at the base station site to
provide roadside functionality. The MEC applications are
designed to receive local messages directly from vehicle
and roadside sensors, analyze them and then propagate
(with extremely low latency) hazard warnings and other
latency-sensitive messages to all interconnected devices, as
depicted in Figure 1. This enables for instance a nearby
car to receive data in a matter of milliseconds, allowing
the driver to immediately react.

However a serious issue still remains; what happens
when, regardless the reason, the obtained vehicle-oriented
sensor datasets are not adequate for proper analysis? Or
similarly, which is the baseline above which problematic
situations can be identified, taking into consideration that
network conditions may compromise the transmission of
the whole set of sensor information from the vehicles.
This thorny issue could be efficiently tackled by employing
Matrix Completion techniques [10] as analyzed in the
following section.

III. Low rank approximations in the presence of
missing data

A. Preliminaries on Matrix Completion
Assuming that we are given a low-rank incomplete

matrix V with dimensions 𝑚×𝑛, then Matrix Completion

1https://5g-ppp.eu/



(MC) refers to the problem of reconstructing the values of
the data matrix when only a small subset of its entries is
available. More specifically, given V ∈ ℝ𝑚×𝑛 with rank 𝑅
and a set of known entries 𝐾 , then the solution of the
optimization problem

minimize 𝜏‖Y‖∗
s.t. Y𝑖𝑗 = V𝑖𝑗, 𝑖, 𝑗 ∈ 𝐾 (1)

where 𝜏 is a weighting parameter and ‖Y‖∗ is the nuclear
norm of Y in (1) can precisely recover the content of
matrix V . The nuclear norm is formulated as

‖Y‖∗ = ∑
𝑘

𝜎𝑘(Y) (2)

where 𝜎𝑘(Y) is the k-th singular value of 𝑌 . As the
authors in [11] state, for a matrix sampled with a random
process with 𝑛 entries, so that 𝑛 ≥ 𝑐1𝑁5/4𝑅𝑙𝑜𝑔(𝑁) then
with a probability 1 − 𝑐2𝑁−3𝑙𝑜𝑔𝑁 the solution of (1) is
equal to V where 𝑐1 and 𝑐2 are constants. To perform
the minimization of (1) the singular value thresholding
(SVT) algorithm [12] is employed. The SVT operator
𝐷𝜏(Z) is presented in [12]. Given Z the dual variable of
the Lagrangian, the minimizer of (1) is evaluated via the
iterative execution of the following equations:

Y𝑙 = 𝒟𝜏(Z𝑙−1) (3)

Z𝑙 = Z𝑙−1 + Ω ∘ (𝑉 − 𝑌 ) (4)

for 𝑙 = 0, … , 𝑙𝑚𝑎𝑥. Moreover, matrix Ω is defined as

Ω = {1 𝑖, 𝑗 ∈ 𝐾
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

B. Application to one dimensional signals
To be able to apply the aforementioned approach in

the case of time-series, we initially rearrange the one
dimensional data into square or rectangular matrices. To
be more specific, we initially construct matrix columns
by concatenating the measurements 𝑣1, 𝑣2, ⋯ , 𝑣𝑛⋅𝑚 as pre-
sented in Figure 2,

V =
⎡
⎢⎢
⎣

𝑣1 𝑣𝑚+1 … 𝑣(𝑛−1)𝑚+1
𝑣2 𝑣𝑚+2 … 𝑣(𝑛−1)𝑚+2
⋮ ⋮ ⋱ ⋮

𝑣𝑚 𝑣2𝑚 … 𝑣𝑛⋅𝑚

⎤
⎥⎥
⎦

(5)

To be able to evaluate the reconstruction ability of the
aforementioned MC approach to the current dataset, we
need to identify the required number of singular values 𝑘
that minimize the nuclear norm of V

𝑘
∑

1
𝜎𝑘(V) ≈

𝑚𝑖𝑛(𝑛,𝑚)
∑

1
𝜎𝑘(V) (6)

so that

Fig. 2: Matrix formulation

∑𝑘
1 𝜎𝑘(V)

∑𝑚𝑖𝑛(𝑛,𝑚)
1 𝜎𝑘(V)

≥ 0.98 (7)

In order to utilize more effectively the temporal correla-
tion of the vehicle sensor data measurements in the time
domain we further impose Laplacian constraints in the
initial optimization problem in order to move the missing
sample 𝑣𝑖 with index 𝑖 to the weighted average of its known
neighbors:

𝑥𝑖 − 𝑤𝑟
𝑤𝑙 + 𝑤𝑟

𝑥𝑖−𝑤𝑙
− 𝑤𝑙

𝑤𝑙 + 𝑤𝑟
𝑥𝑖+𝑤𝑟

(8)

where the weight 𝑤𝑟 is equal to the temporal distance
between 𝑥𝑖 and the next available entry and correspond-
ingly 𝑤𝑙 denotes the temporal distance between 𝑥𝑖 and
the previous available entry. The aforementioned opera-
tion can be expressed in matrix form by formulating the
Laplacian matrix L of dimensions 𝑛𝑚 × 𝑛𝑚 defined as

L =

⎧{{
⎨{{⎩

1 𝑖 ∉ 𝐾, 𝑗 = 𝑖
− 𝑤𝑟

𝑤𝑙+𝑤𝑟
𝑖 ∉ 𝐾, 𝑗 = 𝑖 − 𝑤𝑙

− 𝑤𝑙
𝑤𝑙+𝑤𝑟

𝑖 ∉ 𝐾, 𝑗 = 𝑖 + 𝑤𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

To minimize the distance between the i-th component
of the reconstructed time series 𝑥𝑖 and the weighted mean
𝑦𝑖 of the available nearest neighbours we need to minimize
the following expression:

‖L𝑣𝑒𝑐(Y)‖2
2 (9)

C. Matrix completion with Laplacian constraints
Therefore, the nuclear norm minimization problem after

the addition of the Laplacian constraint can be written as
follows:

min
Y

‖Ω ∘ (Y − V)‖𝐹 + 𝜏 ‖Y‖∗ + 𝜇 ‖L𝑣𝑒𝑐(Y)‖2
2 (10)



where the first term minimizes the error between the
known values and the estimated, the second term imposes
the low rank constraint to the recovered matrix and the
last term moves the estimated value to the weighted
average of the nearest available neighbours. Y is the
optimization variable, the parameter 𝜇 is the regular-
ization parameter for the Laplacian constraint and ‖.‖𝐹
corresponds to the Frobenius norm.

The Lagrangian of the splitting version of the optimiza-
tion problem in (10) can be written as

ℒ(Y,U,Z) = 1
2 ‖Ω ∘ (U − V)‖2

𝐹 + 𝜏 ‖Y‖∗ +

+ 𝜇 ‖L𝑣𝑒𝑐(U)‖2
2 + 𝜌

2 ‖Y − U‖2
𝐹 (11)

where U, Z are the dual variables and 𝜌 is the penalty
parameter. The solution of (11) can be efficiently obtained
after using the Alternating Direction Method of Multi-
pliers (ADMM) [13] which can be summarized into the
following steps:

Y(𝑙 + 1) =𝑎𝑟𝑔 min
Y

ℒ(Y,U(𝑙),Z(𝑙)) (12)

U(𝑙 + 1) =𝑎𝑟𝑔 min
U

ℒ(Y(𝑙 + 1),U,Z(𝑙 + 1)) (13)

Z(𝑙 + 1) =Z(𝑙) + 𝜌(Y(𝑙 + 1) − U(𝑙 + 1)) (14)

For equation (12) the minimizer is given by the SVT
operator Y(𝑙 + 1) = 𝐷𝜏(U(𝑙) − 𝜌−1Z(𝑙)).

The minimizer of equation (13), it can be easily shown
that is given by the following formulation:

Ω ∘ (U − V) + 𝜇(L𝑇L)U + 𝜌(U − Y − 𝜌−1Z) = 0 (15)

The solution of (15) is found after executing iteratively
for 𝑙 = 0, … , 𝑙𝑚𝑎𝑥 the following steps:

1) Equation (15) is formulated as

[𝐷(𝑣𝑒𝑐(Ω)) + 𝜇(L𝑇L) + 𝜌I] 𝑢 =
𝑣𝑒𝑐(Ω ∘ V + 𝜌Y + Z) (16)

2) Compute

Y(𝑙 + 1) = 𝐷𝜏(U(𝑙) − 𝜌−1Z(𝑙)) (17)

3) Employ over-relaxation parameter 𝛾 so that

W = 𝛾Y(𝑙 + 1) − (1 − 𝛾)U(𝑙)) (18)

4) Solve

[𝐷(𝑣𝑒𝑐(Ω)) + 𝜇(L𝑇L) + 𝜌I] 𝑢 =
𝑣𝑒𝑐(Ω ∘ V + 𝜌W + Z(𝑙)) (19)

5) Reshape u to matrix U
6) Set Z equal to

Z(𝑙) + 𝜌(Y(𝑙 + 1) − U(𝑙 + 1)) (20)

IV. System Architecture
For properly evaluating the aforementioned method

through real data from vehicle sensors the system archi-
tecture of Figure 3 was deployed. Vehicle-oriented data
collected by the embedded sensors of the car were ob-
tained using an On-Board Diagnostics (OBD) module,
supported by every major manufacturer following specific
EU regulatory guidelines. Without the loss of general-
ity, only data regarding vehicle speed, engine rounds-
per-minute (RPM) and throttle position were collected
for creating matrices stored in a per-trip fashion. The
OBD module was connected over Bluetooth protocol to
an Android smartphone, on which a specialized, tailor-
made application was running2. This application acted as
a data aggregator that accumulated sensor values, added
a timestamp and created a .CSV file. After each trip,
the application transmitted the .CSV file through throt-
tled 802.11g/4G LTE connections for emulating network
congestion into a specially designed [14] online repository
for further process. The online data undergo the process
described in the previous section for accurately evaluating
the effect of Matrix Completion method.

On-Board 
Diagnostics 

(OBD) Module

Engine
Integrated

Vehicle 
Sensors

VEHICLE

Cellular Network / WiFi
Bluetooth Connection

Direct Internal Connection

Communication Interfaces

Online Storage Repository

D
R

IV
ER

Smartphone

Fig. 3: System Architecture

V. Experimental Results
This section provides the performance analysis for the

proposed method described in section III. Experiments
were carried out after using real-world data of vehicle
speed, engine RPM and throttle position. The matrices
were filled with data corresponding to six driving sessions
of the same driver over the same route. The time series
of all driving sessions were synchronized according to the
time the vehicle started, while the duration of each driving
session was approximately 26 minutes.

In order to execute matrix completion, the time series
of data were reshaped in a matrix of size 138 × 138
for all three types of sensor data namely speed, engine

2https://play.google.com/store/apps/details?id=app.gamecar.
sparkworks.net.gamecardatalogger



RPM and throttle position. Each column of this matrix
corresponds to approximately 1 minute of driving. The
matrices with missing entries were obtained from the
initial matrices of data after the removal of values at
random. The missing entries percentage started from 5%
and reached 60% with 5% step. For each percentage of
missing values the proposed approaches are executed in
100 different permutations. The final result is the mean
value of all permutations results per missing percentage
value.

The reconstruction accuracy was evaluated using the
Normalized Mean Square Error and the Normalized Root
Mean Square Error for the different number of missing
entries for the three aforementioned cases.

The first case study, related to the RPM measurements
showed that the matrix of engine RPM data has high cor-
relation thus resulting in a low rank matrix as can be easily
seen by inspecting the eigenvalue distribution in Figure 4.
This attribute explains also the accurate reconstruction of
the matrix with even 60% missing entries, justified by the
relatively small NMSE that is presented in Figure 5.

Fig. 4: Eigenvectors importance for matrix of engine
RPM data.

The matrix completion approaches provide better re-
construction results in the case of vehicle speed data. The
main reason is again the low rank of the vehicle speed
matrix Figure 6. It is worth noting that the NMSE is close
to zero even with 60% missing entries as shown in Figure 7.

The rank of the throttle position matrix is not as low
as in the previous two cases of engine RPM and vehicle
speed Figure 8. The results in this case are worse, but the
difference between the regularized and the conventional
MC approach remains obvious Figure 9.

VI. Conclusions
This paper introduced the Laplacian Matrix Completion

method and demonstrated is superior performance com-
pared to MC in three cases of vehicle-related sensor data.
At 60% missing entries the Laplacian Matrix Completion
reconstructs the matrices with half NMSE of conventional
Matrix Completion.

By capitalizing on the low rank property of the sensor
data retrieved by the OBD module, we permeat benefits

(a)

(b)

Fig. 5: Comparison of proposed Laplacian based MC
with conventional MC at various percentages of known
entries for engine RPM dataset:(a) NRMSE (b) NMSE

Fig. 6: Eigenvectors importance for matrix of vehicle
speed data.

from low rank matrix completion, allowing the recon-
struction of the vehicle speed, RPM and throttle position
from a small subset of the recorded measurements. The
exploitation of this property could potentially allow the
identification of data outliers using robust pca, since it
also exploits the low rank property of the data.

The proposed approaches are expected to manage ef-
fectively several uncertainties that could be attributed to
sensing and communication failures, minimizing at the
same time the storage and transmission requirements of
Multi-access Edge Computing applications.
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(a)

(b)

Fig. 7: Comparison of proposed Laplacian method with
conventional MC at various percentages of known entries

for vehicle speed dataset:(a) NRMSE (b) NMSE

Fig. 8: Eigenvectors distribution for matrix of throttle
position data.
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