
Inattention-Management Middleware for
Human-in-the-Loop Multi-Display Applications

Max Nicosia
Department of Engineering

University of Cambridge
Cambridge, United Kingdom

lmn27@cam.ac.uk

Per Ola Kristensson
Department of Engineering

University of Cambridge
Cambridge, United Kingdom

pok21@cam.ac.uk

Abstract—Operator inattention is an important and unsolved
problem in mission critical multi-display systems where a single
or a group of operators continuously monitor information flows
on distributed displays. In this paper we present a novel system
solution to this problem and a middleware for supporting flexible
attention-aware applications for a variety of domains. Some of
the most significant functionality includes direct querying of
the application’s attention state, custom callback definitions to
be executed on specific attention events or application updates,
inter-application message routing, and pushing custom notifica-
tion with relative location information to any other registered
application. We evaluate our middleware by developing three
applications that both demonstrate the efficacy and versatility of
the system and provide performance estimates in terms of latency
as a function of payload size.

Index Terms—inattention management, human-in-the-loop,
multi-display, middleware

I. INTRODUCTION

In many domains there is a need for a single or a group
of operators to continuously monitor information flows on
distribution displays. For example, an operator could be tasked
with monitoring several concurrent video feeds of sensor
data for objects of interest. Examples of application domains
for the above problem specification include automatic hazard
identification systems in military vehicles, closed-circuit tele-
vision (CCTV) detection of suspicious activity, human-aided
monitoring of stock market feeds, command and control, etc.

To aid operators in their monitoring task such human-in-
the-loop systems are often coupled with machine learning
algorithms that attempt to automatically flag potential objects
of interest to the operator. However, this does not fully mitigate
the problem. In particular, in situations when it is vital an
object of interest is correctly identified, such machine learning
algorithms must be configured to have a true positive rate
(probability of accurate detection) near 100%. However, since
machine learning is imperfect, such an extreme operating point
on the Receiver Operating Curve (ROC curve), inevitably
results in a very high false positive rate (probability of false
alarm). In practice, this results in an operator becoming over-
loaded with false alarms. The problem is further exacerbated
the more video streams an operator is required to attend do.
For instance, if a military vehicle has six continuous visual
sensor feeds scanning for suspected explosives, the operator

will need to attend six concurrent visual feeds. While it is in
theory possible to mitigate this problem by employing further
operators, this is expensive and may not be possible due to
constrained space in the vehicle and difficulty of recruiting
and training skilled operators.

In this paper we present a system solution to this human-
in-the-loop problem, which complements existing machine
learning-aided systems. We view the problem as an inattention
management problem. Instead of relying on an operator as be-
ing able to attend all incoming objects of interest immediately,
we propose developing attention-aware applications that can
base their behaviour on whether or not an operator attended a
particular object of interest.

Our system solution couples each display with at least
one sensor, currently either a commodity eye-tracker or a
Kinect depth sensor. The sensors infer whether an operator
is attending a display, and if so, which display region an
operator is attending. This information can then be used to
develop distributed attention-aware applications using an easy-
to-use programming application interface (API) provided by
our middleware. For example, if an operator fails to attend
a flagged object of interest, this event can be used by an
inattention-aware application to carry out a variety of actions,
such as for instance notifying the operator on the display the
operator is attending to, signalling that a particular display
require operator attention, stacking unattended objects into a
queue for revision later, or flagging an unattended object to
another operator, etc.

II. RELATED WORK

Displaying notifications to users and their potential adverse
disruptive effects have been extensively studied in the human-
computer interaction (HCI) field (e.g. [1]–[3]). Common mit-
igation solutions include avoid interrupting the user’s current
task [1] and using context-sensing and the contents of the
message to infer a suitable moment to notify the user [3]. Such
strategies complement our work and may inform applications
running on top of our inattention management middleware.

Attention-aware systems attempt to manage users limited
perceptual and cognitive abilities [4]. Such systems can man-
age attention in various ways, such as by developing toolkits
for pushing notifications to peripheral displays [4], or for



sensing users’ position in relation to a set of displays and
expose it for proximity-aware applications [5], [6]. Research
indicates that appropriate management of user attention can
increase performance [4]. Various strategies have been in-
vestigated, such as reducing interruptions, managing context
switches and tagging actively used objects [7], [8]. Air traffic
control research has studied effects of visualising pertinent
information to operators [9]. Overall, such visualisations im-
prove performance in the main task but can be obstructive
and do not generalise well. Sometimes simple and subtle
visualisations, such as pulsating objects, can be a good middle
ground [9]. Recent work has used eye-tracking to highlight
unseen changes in radar tasks [10]. They find that several
application-dependent factors are vital for successful attention
management, such as workload, task and the situation [10].

Dostal et al [11] developed Diff Displays: an inattention-
aware multi-display system which used computer vision and
RGB cameras to sense whether a user attended a display or
not. They then developed several visualisations which dimmed
unattended displays in order to reduce user distraction. How-
ever, in order to still enable the user to observe changes
in unattended peripheral displays, the system provided four
visualisations for visualising changes on the dimmed displays
[11]. A case study in which a single user used this system
as their daily programming desktop station revealed that the
system substantailly reduced the number of display switches
for the user [11]. The same technology was later turned into
a toolkit with attention-aware graphical user interface (GUI)
controls [12].

III. SYSTEM OVERVIEW

The inattention management middleware consists of three
software components: 1) the world renderer; 2) the local
service; and 3) API and sensor data feeder. The sensor data
feeder has currently drivers for three sensors: 1) Tobii eye-
trackers; 2) Microsoft Kinect v2 depth sensor; and 3) Google
Tango Tablet with integrated structure sensor. An operational
system requires one instance of the world renderer, one local
service instance per machine and one sensor data feeder per
sensor for each machine connected to the sensor in question.
Finally, each application will need to include the API library.

The primary objective of the middleware is to allow devel-
opers to easily deploy distributed attention-aware applications
that can amplify operators ability to process visual information
on multiple displays. The middleware performs this function
by running distributed applications that react to information
on which display the user is attending to, and by extension,
which displays are left unattended. Applications can thereby
for example 1) ensure an operator notices changes (reducing
change blindness [13]); 2) ensure an operator does not fail
to detect events or changes (reducing inattentional blindness
[14]); 3) arrange so that an operator does not become over-
loaded with information, as unwarranted interruptions can have
severe detrimental impact on memory and concentration [15].
In addition, the system supports extensive logging which can
be used for instance for compliance or for collecting user

attention data which can later be used to train or optimise
machine learning algorithms or derive new metrics for mea-
suring operator capacity.

The middleware abstracts information sharing across ap-
plications to allow more complex application logic, which
can then be used to manage information presentation and
user attention information without adding complexity to the
application itself.

The middleware provides application support via two fun-
damental constructs.

The first is event rules, which are callbacks that are triggered
on specific events, such as attention changes, application data
updates, notification requests, messages received, etc. Any
number of callbacks can be associated with each event type.
Any type of decision logic can be associated to the event, thus
providing an entry point for the application. For example, if
the user fails to attend a critical update in one of the displays
the application can use the API to notify the user.

The second construct is information filters, which are call-
backs that visualise information in a particular way. When
an event rule fires, the callback can call an information filter
to display information in an appropriate way for the state
change. For example, an information filter can highlight a
visual object change that has surpassed a particular threshold
or dim unattended display to reduce distractions.

Although the middleware is general, four use-cases have
been targeted specifically:

1) Operator missed important information change: The ap-
plication can use the API to insert an event rule which
will evaluate the data change and highlight it to the user
if necessary. The API can also be used to notify the user
on an unattended event.

2) Operator must act on a time-critical event: The API
can trigger an information filter from an event rule to
highlight the event or use the API to push a notification
immediately to an attended display, or alternatively sound
an alarm.

3) Operator reacted to an event with incorrect input: If the
application can identify the incorrect input, it can use
the API to trigger (through an event rule) an information
filter to show the incorrect input, push a notification to
an attended display, or send a message to show related
information that may help addressing the error.

4) Operator is making a decision that requires cross-
referencing across many displays: An application can
use the API’s messaging call and message callbacks
handler to instruct other applications to highlight or notify
relevant information in other displays.

IV. SYSTEM DESIGN

The system supports three coordinate systems. The world
coordinate system is situated in the physical world and relates
displays and operators in metres from a fixed origin. The
display coordinate system is defined within each individual
display and measures on-screen objects’ absolute location
on an individual display in pixels. The relative coordinate



z

x

y

normal

normal

App 1

App 2 App 3

App 1

App 3App 2

x

y

App 1

normal

Fig. 1: The three coordinate systems the system uses to manage operator attention. The world coordinate system (left) is
situated in the physical world and relates displays and operators in metres from a fixed origin. The display coordinate system
(middle) is defined within each individual display and relates objects within a display in pixels relative to the upper-left corner
of the display. The relative coordinate system (right) is based on adjacency.

system relates displays to each other by adjacency and these
relationships are encoded in an adjacency matrix.

The middleware supports three different types of decision
logic for calculating attention focus and for effectively sup-
porting different sensor configurations and use-cases. Applica-
tions can choose any decision logic provided that the sensors
support it. However, applications can only receive events in
a particular coordinate system if they subscribe to it. For
example, an application residing on a display that has not
provided its own world coordinates in the world coordinate
system can receive information from the eye-tracker attached
to it (which uses the display coordinate system), but cannot re-
ceive information from a structured light sensor that registers a
user approaching the display (which uses the world coordinate
system). The system will also downgrade the decision logic
to the best possible option in the event of sensor failure. The
three types decision logic are:

1) Local Knowledge Decisions: Local decisions are made
at the local service level. Sensor information is fed directly
to the local service, which makes the decision on that data
only. As a consequence of only having access to local sensor
data, local knowledge decisions cannot handle false-positives
or multiple detections from multiple sensors.

2) Global Knowledge Decisions: Global decisions are used
when detection information needs to be aggregated to be
accurate. Detections are forwarded to the world renderer which
then builds a world model that can then be used decide the
current world state. Global decisions can then be used to make
a decision that for instance removes duplicated detections or
false-positives by fusing information from multiple sensors
connected to different local services.

3) Arbitrated Decisions: Arbitrated decisions are local
knowledge decisions that are verified by global knowledge
decisions. They are used to confirm previously unconfirmed
local knowledge decisions. For example, a gaze detection can
be marked as unconfirmed until a global decision arrives that
confirms that the user was indeed attending the particular
display with the gaze detection.

A. Transaction and Event-based Architecture

The only constant traffic that the system has to manage
is sensor data. Applications only receive messages if either
another application sent them a message or a state change
affecting that application occurred, such as an attention change
or a service change. Such changes will trigger unique trans-
action messages.

B. Display Configurations

The middleware is designed to provide support for multiple
display environments and sensor configurations. This allows
the system to support the following three fundamental envi-
ronments.

1) Room Setup: The system can track the attention of a
user, or several users, walking around in a room with displays,
which are not necessarily of the same type or size. It is
not feasible to use eye-tracking in this setup, currently the
system relies on a set of depth sensors. The middleware can
currently manage up to two tiers of displays (subject to latency
limitations) around a centre point with eight depth sensors in a
room measuring 3.5 m×3.5 m. The latency restrictions are due
to the noise of the sensor used (Kinect v2) and the fact that a
Support Vector Machine (SVM) classifier is required to make
global decisions on user attention acceptably accurate. Other
configurations are possible but multi-tier setups will require
training a new classifier.

2) Desk Setup: This setup consists of a user sitting in front
of up to five displays. Each display is fitted with an eye-tracker.
All three types of decision logic can be used in this setup.

3) Combined Room and Desk Setup: This setup is a
combination of the previous two setups which allow more
versatile sensing than the previous desk setup. Users can be
sensed walking towards a display and when they are in range
of an eye-tracker the system can seamlessly switch to close
proximity detection for higher accuracy. Applications need
to be subscribed to both the world and desktop coordinate
systems and use either global or arbitrated decision logic.



C. Middleware Supported Features

1) Global Operator Focus of Attention Detection: Applica-
tions subscribed to the world coordinate system can receive an
attended state if the world renderer infers the user is attending
the display the application is running on.

2) Local Operator Focus of Attention Detection: Applica-
tions with access to eye-trackers can receive an attended state
if a gaze detection intersects an application’s working area. In
addition, the location of the intersection is given if it intersects
registered data in the application.

3) Observed-Unobserved Information Change Tagging:
The middleware tracks which application updates have been
observed by the user by sub-dividing the application’s view-
port into a grid. Display cells are marked as observed if a gaze
detection intercepts the cell and the decision logic permits it.

4) Unattended Display Detection: The system detects unat-
tended displays and makes this information available to appli-
cations.

5) Relative Position in Display Notification: Applications
can push notifications to other applications using the request
attention call. The notification can optionally appear on other
displays in such a way that it physically directs the user to the
display requesting attention by for instance an arrow pointing
towards the display.

6) Service Update Notification: When a connection to a
critical component or sensor is lost, affected applications are
notified and all decision logic is recalculated. Once the failure
is resolved the system updates all applications with the new
service state.

7) Timed Event Rules: In addition to event rules, the
middleware allows for callbacks to be called at configurable
intervals. For example, they can be used to trigger an infor-
mation filter to highlight unobserved points that have been left
unattended fur a certain duration.

8) Operator Focus and Applications Event Log: The mid-
dleware can efficiently log all user and application events. This
can be used to make the middleware act as a data tap for
machine learning algorithms, for auditing purposes or to allow
interfacing with other systems.

9) Inter-Application Messaging Support: The system pro-
vides a message delivery abstraction that applications can use
to share information. This functionality can be combined with
event rules. For example, when a data point change is over
a threshold, the application can instruct other applications to
highlight related information.

10) Legacy Application Support: Legacy applications are
supported by using an overlay application that intercepts
data feeds, detects changes and draws on top of the legacy
application to show information filters as a translucent overlay.

V. IMPLEMENTATION

The current developer API is implemented in JavaScript.
The application’s callbacks must be registered before initialisa-
tion since the initialisation process depends on the coordinate
systems the application is registering.

The remaining components in the system is implemented
in C++, with the exception of the Tango Service, which is
implemented in Java using the Google Tango API. The SVM
is trained using the gesture recognition toolkit (GRT) [16].
All C++ components follow a pipeline architecture where
each message is represented as a transaction going through
the pipeline. Each pipeline stage run in its own thread and is
connected with signal-dependant queues.

The system can be used both when a user is walking
around in a display configuration within a room and in a
desk environment where the user is sitting down in front of
a set of displays. The latter configuration is realised by the
system using eye-tracking. The former environment requires
an instrumented room with a sensor network of Kinect depth
sensors.

The Kinect depth sensor-generated skeletons are insufficient
for correctly inferring which display a user is attending to
in the vertical plane when displays are stacked vertically. To
allow this feature our system complements depth sensing with
a pitch classifier which infers two class labels: top display
and bottom display. As a feature vector we use detection
position in metres (x, y, z), pitch from each Kinect in the
system, yaw, and the previous Kinect reference. We trained
the SVMs based on data from 12 participants (6 male and 6
female). Participants were instructed to identify a target drawn
on a single display at at time. Once the target was detected
participants were instructed to gaze at it until it disappeared.
The SVMs generate raw predictions of the pitch of the user
every 24 frames. The system filters these predictions over a
sliding window using two majority voting filters with different
minimum votes. The latency for detecting an attention switch
in this configuration is approximately 500 ms.

The system consists of the following implemented func-
tions:

1) Kinect Sensor Data Collector: This collector extracts
the position and rotation of the user based on the Kinect
tracking skeleton (head joint) and face tracking data at 30 Hz.
Rotations are filtered using an adaptive low-pass filter [17]
(β = 1000, fcmin = 0.0001).

2) Eye-tracker Sensor Data Collector: This collector re-
trieves gaze and head rotation data from the eye-tracker using
the Tobii’s low-level C API at maximum sample rate (90 Hz).

3) Local Service: This service is a mediator and router
between the world renderer in the server and local client
applications. All messages from and to the application pass
through this component. Its secondary role is to process and
forward eye-tracker gaze detections to the application and head
rotations to the world renderer. As an optimisation, gaze data
is only sent to the application if the gaze data changes the
attention state or if it intercepts a cell in the application’s
view-port with data in it.

4) World Renderer: The world renderer calculates inter-
sections, handles global decision logic, routes messages and
propagates attention signals and notifications.



3.50m

3
.5
5
m

1
.7
5
m

1.70m

Fig. 2: Room setup with eight Kinect depth sensors (left). A combined desk setup with five displays and two Kinect depth
sensors (right).

TABLE I: Latency by Payload Message Size

Size (Byte) mean (ms) stddev (ms) min (ms) max (ms)
10 41 16 13 78
100 43 15 16 74
1000 50 15 18 83
10000 51 11 33 77

VI. EVALUATION

We evaluated our system in two different environments. In
the first environment the displays were distributed across a
room and the user could walk around freely while the system
tracked the displays the user attended. In this environment
the user could also optionally hold a tablet device, which the
system also tracked (see Figure 2 left).

The setup occupied an area of 3.50 m × 3.55 m with two
tiers (0.92 and 1.42 m) of eight displays around the area’s
centre and eight Kinect v2 sensors suspended from a fixture
hanging from the ceiling equidistant to each other above the
displays at ~1.7 m from ground, 1.5 m away from the centre.

The Kinect sensors were calibrated by taking several read-
ings of a user standing in different locations and running them
through a non-linear least square solver to minimise the error
of the computed transformation matrices across the sensors.

In total there were 13 target displays, 12 displays with a
display area of 35 cm×33 cm each and one Google Tango
tablet with a display are of 19 cm×11 cm.

In the second environment the user sat in front of five dis-
plays set up bezel-to-bezel on a desk, each display connected
to a separate computer driving a single eye-tracker. Two Kinect
sensors were placed with tripods above the monitors to detect
users approaching the setup (see Figure 2 right).

After verifying accurate detection of display attendance in
both environments, we proceed to evaluate the latency of the

system. Testing was carried out on machines with Intel i7-4790
processors and 8GB RAM running Windows 10 64-bit.

A. Switch Latency

We measured latency when the system handled display
switches both between adjacent displays and displays that
were the furthest away in the adjacency matrix. Mean adjacent
display switch latency was 8 ms (n=44, sd=6 ms). The mean
latency for display switches between displays the furthest away
was 14 ms (n=17, sd=5 ms).

B. Gaze Locking Latency

Assuming perfect operator behaviour the mean latency for
a point to be detected as attended by the user was 20 ms
(n=35, sd = 6 ms). In realistic operational situations the system
detected a point as attended by the user in 80 ms (n=75, sd =
41 ms). The latter measurement is based on a user attending
15 points over five trials.

C. Transaction Latency

Transaction latency tests were carried out in a closed
network with a high-speed switch with 50 transactions with
a 50 ms delay in between each transaction. Table I shows
latency by payload message size. Mean latency by request
varied between 69 and 84 ms.

D. Applications

We implemented three applications to test the system’s
functionality and demonstrate the use of event rules and
information filters. The first application was a connected graph
application that used an information filter to display the history
of changes in the graph in different alpha values (node and
edge sizes) and an event rule that called an information
filter to dim itself (which dimmed the display) when it was



Change history

Current location

Last observed location

Fig. 3: The application shows an object moving along a fixed trajectory (left). When the display is unattended it is automatically
dimmed to reduce operator distraction using an event rule (right). In the dimmed display, delta changes in the underlying
application are made available to the operator’s peripheral vision by being visualised using an information filter.

unattended by the user. The second application was a variation
of the previous application, which, in addition used an event
rule requesting a notification when a visual change in a
display exceeded a threshold. The third application showed
a point moving through checkpoints. This application used an
information filter to display its movement history and an event
rule to notify the user at specific checkpoints. In addition, it
dimmed the display when unattended (see Figure 3).

VII. DISCUSSION AND CONCLUSIONS

Operator inattention is an important and unsolved problem
in many mission-critical multi-display systems. In this paper
we have presented a novel system solution for operator inatten-
tion in situations where a single or a group of operators contin-
uously monitor information flows on distributed displays. We
have presented the design of a flexible inattention-management
middleware which supports deployment of versatile distributed
attention-aware applications that can support multi-display
operators in a variety of domains for a wide range of tasks. We
implemented three applications that run on our middleware,
tested our system in two different environments, and evaluated
the latency of the system. We found that it had sufficiently
low latency to support operational requirements. This system
solution may be particularly beneficial in automatic hazard
detection systems in military vehicles, closed-circuit television
(CCTV) detection of suspicious activity, human-aided moni-
toring of stock market feeds, and command and control.

REFERENCES

[1] E. Cutrell, M. Czerwinski, and E. Horvitz, “Notification, disruption,
and memory: Effects of messaging interruptions on memory and perfor-
mance,” in Proceedings of Interact, 2001, pp. 263–269.

[2] S. T. Iqbal and B. P. Bailey, “Effects of intelligent notification manage-
ment on users and their tasks,” in Proceedings of the ACM Conference
on Human Factors in Computing Systems, 2008, pp. 93–102.

[3] A. Mehrotra, M. Musolesi, R. Hendley, and V. Pejovic, “Designing
content-driven intelligent notification mechanisms for mobile applica-
tions,” in Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, 2015, pp. 813–824.

[4] C. Roda and J. Thomas, “Attention aware systems: Theories, applica-
tions, and research agenda,” Computers in Human Behavior, vol. 22,
no. 4, pp. 557–587, 2006.

[5] N. Marquardt, R. Diaz-Marino, S. Boring, and S. Greenberg, “The prox-
imity toolkit: Prototyping proxemic interactions in ubiquitous computing
ecologies,” in Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, 2011, pp. 315–326.

[6] J. Dostal, U. Hinrichs, P. O. Kristensson, and A. Quigley, “Spidereyes:
designing attention-and proximity-aware collaborative interfaces for
wall-sized displays,” in Proceedings of the 19th International Conference
on Intelligent User Interfaces, 2014, pp. 143–152.

[7] C. Roda and T. Nabeth, “Supporting attention in learning environments:
Attention support services, and information management,” Creating New
Learning Experiences on a Global Scale, pp. 277–291, 2007.

[8] S. D’Mello, A. Olney, C. Williams, and P. Hays, “Gaze tutor: A gaze-
reactive intelligent tutoring system,” International Journal of Human-
Computer Studies, vol. 70, no. 5, pp. 377–398, 2012.

[9] J.-P. Imbert, H. M. Hodgetts, R. Parise, F. Vachon, F. Dehais, and
S. Tremblay, “Attentional costs and failures in air traffic control no-
tifications,” Ergonomics, vol. 57, no. 12, pp. 1817–1832, 2014.

[10] B. R. Vallières, H. M. Hodgetts, F. Vachon, and S. Tremblay, “Sup-
porting dynamic change detection: using the right tool for the task,”
Cognitive Research: Principles and Implications, vol. 1, no. 1, p. 32,
2016.

[11] J. Dostal, P. O. Kristensson, and A. Quigley, “Subtle gaze-dependent
techniques for visualising display changes in multi-display environ-
ments,” in Proceedings of the International Conference on Intelligent
User Interfaces, 2013, pp. 137–148.

[12] J. E. Garrido, V. M. Penichet, M. D. Lozano, A. Quigley, and P. O.
Kristensson, “Awtoolkit: attention-aware user interface widgets,” in
Proceedings of the 2014 International Working Conference on Advanced
Visual Interfaces, 2014, pp. 9–16.

[13] D. J. Simons and R. A. Rensink, “Change blindness: Past, present, and
future,” Trends in Cognitive Sciences, vol. 9, no. 1, pp. 16–20, 2005.

[14] I. Rock, C. M. Linnett, P. Grant, and A. Mack, “Perception without
attention: Results of a new method,” Cognitive Psychology, vol. 24,
no. 4, pp. 502–534, 1992.

[15] E. C. M. C. E. Horvitz, “Notification, disruption, and memory: Effects of
messaging interruptions on memory and performance,” in Proceedings
of Interact, 2001, p. 263.

[16] N. E. Gillian and J. A. Paradiso, “The gesture recognition toolkit.”
Journal of Machine Learning Research, vol. 15, no. 1, pp. 3483–3487,
2014.

[17] G. Casiez, N. Roussel, and D. Vogel, “1C filter: A simple speed-based
low-pass filter for noisy input in interactive systems,” in Proceedings of
the ACM Conference on Human Factors in Computing Systems, 2012,
pp. 2527–2530.


