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Abstract—The recent increase in ageing population in countries
around the world has brought a lot of attention toward research
and development of ambient assisted living (AAL) systems. These
systems should be inexpensive to be installed in elderly homes,
protecting their privacy and more importantly being non-invasive
and smart. In this paper, we introduce an inexpensive system that
utilises off-the-shelf sensor to grab RGB-D data. This data is then
fed into different learning algorithms for classification different
activity types. We achieve a very good success rate (99.9%) for
human activity recognition (HAR) with the help of light-weighted
and fast random forests (RF).

Index Terms—Assisted Living, Kinect, Naı̈ve Bayes, Multi
Layer Perceptron, Random Forest, Human activity recognition.

I. INTRODUCTION

Many countries around the world are facing ageing popu-
lation. This fact inevitably necessitates an innovative develop-
ment of more efficient low-cost ambient assisted living (AAL)
monitoring system with the use of optimised infrastructure.
Essentially, an AAL system comprises a number of subsystems
requiring a multi-disciplinary approach in terms of research,
design, development, integration and deployment. The motiv-
ation behind an AAL system is to provide elderly or disabled
people with affordable chronic health care monitoring facilities
in their own homes and thereby promote well-being and
independence. To realise this vision, the research community
is currently actively working in various related fields such as
sensor technologies (wearable, environmental, physiological,
audio and video), activity identification and analysis of be-
havioural patterns for long-term predictive health-assessment
analytics. Identifying human behaviour requires appropriate
sensors of which there are of three main types: wearable,
distributed environmental and vision-based.

Abnormal activity detection and classification (e.g. fall
detection) is a subject of interest in research communities
including computer vision. The ultimate goal of AAL tech-
nologies is to have a robust, inexpensive, non-invasive and
accurate system [1], [2]. One of the earliest studies; pre-Kinect
era; [3] involves a 3D video camera for human activity recog-
nition (HAR) which is used to classify three activities. The
Microsoft Kinect sensor is an inexpensive ( 100 GBP) RGB-D
video camera of relatively recent invention (2010). The depth
information can be used to construct a skeleton model of a
human subject in a real-time fashion. Most significantly, facial
and body features are stripped away and can be hidden from

view or storage. The Kinect sensor in the context of HAR can
be truly regarded as a game changing device.

In [4], a hierarchical two-layer maximum entropy Markov
model is introduced to infer activities from the Kinect sensor
data. It assumes an activity comprises a set of sub-activities.
Tests were performed on four people carrying out twelve activ-
ities. A different method of detecting activities is presented in
[5] where a k-means clustering algorithm forms clusters from
features, which are then processed by hidden Markov models
(HMMs). Reference [6] considers activity detection in terms
of interactions between a sub-activities sequence and objects,
by modelling data from the Kinect RGB-D video and using
a structured support vector machine (SSVM). The approach
in [7] is to identify significant sub-activities using support
vector machine (SVM). Using HMM, each high-level activity
is then represented as a sequence of known sub-activities. A
useful literature review on semantic HAR can be found in
[8], [9]. Postural control assessment where physical function
and fall risk can be assessed using Kinects 3D joints data
[10], [11]. Fall risk identification by measuring gait parameters
is another area of earnest research. Further readings can be
found in [9], [12], [13], [14]. Some of these studies employ
Bayesian classification probabilistic modelling for estimating
gait parameters.

In this paper, a low-cost system for HAR is presented.
This system utilises Microsoft Kinect V2 sensor for data
acquisition and learning algorithms: naı̈ve Bayes (NB), multi
layer perceptron (MLP), random forest (RF). For this purpose,
details of experimental set-up to record RGB-D data are
presented in Section II. Classification results are in Section
III while Section IV concludes this paper.

II. EXPERIMENTAL SET-UP

The system architecture comprises some main component
sub-systems as shown in Figure 1:

• Microsoft Kinect sensor interfaced to a local processing
hub for RGB-D processing of depth images for the
purpose of activity monitoring. The Kinect safeguards the
privacy of people by capturing body skeleton poise data
only. No video images need be captured or saved.

• Raspberry Pi 2, a low-cost single board computer which
performs as an IoT hub for interfacing environmental
monitoring and body sensing devices. The small size and



low cost enable multiple such devices to be installed as
needed in a practical AAL environment.

• Microsoft Azure, an open and flexible leading cloud infra-
structure offering integrated services such as computing,
database, networking, storage, web services, analytics and
IoT.

Figure 1. The proposed low-cost AAL system architecture

The Microsoft Kinect v2 grabs a high-definition
(1920×1080) RGB map and a depth map (512×424) at
30fps, and a microphone array to provide audio data. The
depth camera comprises an infra-red (IR) emitter and a
detector that provides depth information in millimetres. The
IR emitter projects into the 3D scene a dot pattern which is
reflected and received by the IR detector. The depth sensor
has a physical range from 0.5m to 8m. However, reliable
body detection range is from 0.5m to 4.5m (0.8m to 3.5m
is recommended). The depth angle of vision is 60 degrees
vertical and 70 degrees horizontal. The sensor API is provided
by Kinect for Windows 2.0 which can be downloaded from
the Microsoft development website1. The API allows up to
six people to be tracked (30fps) as whole skeletons, each
with 25 body joints. Seated skeletons are tracked with the
upper 10 body joints only. Each joint has an orientation and
3D position in space.

One useful feature of the Kinect is to capture IR images
which exclude ambient light. These can be very useful for
machine learning approaches in computer vision processing
applications. In this paper, to satisfy the privacy requirements,
only the skeleton joints data is used for activity monitoring
purposes. Specifically, the RGB colour image frames are not
used. Body frame data is captured once every second. Pre-
processing of the raw captured frame data produces a total of

1https://www.microsoft.com/en-gb/download/details.aspx?id=44561

four datasets as follows: Raw data as captured by the Kinect
sensor, normalised data with the spine body joint at the origin
of a 3D coordinate system, normalised data with the three axis
normalised as well, and normalised data with only the y−axis
(representing height) normalised.

The Kinect Windows Application is used to create an
activity dataset which is then later utilised in the training
of machine learning algorithms for activity classification pur-
poses. Fifteen human volunteers were recruited to help with
activity tests, and were provided with a participant information
sheet and signed consent obtained from each of them to
satisfy the ethics requirements. Each test subject performed, in
turn, thirteen structured activities in front of the Kinect. Body
joints positional data was recorded for each activity lasting
30 seconds. Data capture rate was 1 frame per second. Pre-
processing of the raw dataset is programmed in the software
application, and this produces a total of 4 datasets as follows:
Raw data as captured by the Kinect sensor, normalised data
with the spine body joint at the origin of a 3D coordinate
system, normalised data with the three axis normalised as
well, and normalised data with only the y−axis (representing
height) normalised. In this paper, the simulated environment
for activity recording is a simplistic representation of real-
world scenarios, necessitated by the constraints in available
resources and project needs. However, the approach is judged
to be adequate for demonstrating the basic methodology and
analysis of results. Crucially, a real-world home environment
would present greater challenges, such as: multiple activity
locations, distance limitations, presence of multiple persons,
variable viewing angles and body view obstructions. In this
paper, 13 activity classes have been described which are:
1) standing, 2) sitting, 3) lying down in sleep position, 4)
drinking from a mug, 5) eating with knife and fork, 6) using
a mobile phone, 7) brushing teeth, 8) vacuuming, 9) ironing,
10) washing hands in a bowl, 11) brushing hair, 12) exercise
foot cycle and 13) floor fall position. A sample of activities is
shown in Figure 2.

A total of four datasets are created from the captured body
frames as follows: 1) Raw data as captured by the Kinect
sensor, 2) normalised data with the spine body joint set at
the origin of a 3D coordinate system, 3) normalised data with
the three axis normalised (-1000mm to 1000mm) as well,
and 4) normalised data with only the y − axis (representing
height) normalised (-1000mm to 1000mm). These datasets
are labelled as: Rawdata, NOdata, NAdata and NAYdata.
Each of the four activity datasets is made up of one row
per activity per person. With 15 participants each performing
13 activities for a duration of 30 seconds, at one frame-per-
second, gives a total of 5850 rows per dataset. Each row
represent one frame of body joints poise data. Each joint
position in 3D space is represented by x, y and z co-ordinates.
With 25 joints per frame, this gives 75 columns, each column
in the dataset is considered as a feature for supervised machine
learning purposes. A sample skeleton single frame datasets is
shown in Figure 3.



Figure 2. Sample activity used in this paper: standing, floor fall position,
vacuuming and brushing teeth are shown.

Figure 3. Sample skeleton single frame datasets.

III. CLASSIFICATION

In this section, we present the results and analysis for naı̈ve
Bayes, multi layer perceptron and random forest for training
classification models for human activity recognition. Multi
layer perceptron is a feed forward artificial neural network
model that maps sets of input data onto a set of output. Multi
layer perceptron consists of multiple layers of nodes in a
directed graph,with each layer fully connected to the next one.

Multi layer perceptron utilises a supervised learning technique
called back-propagation for training. Two key advantages of
multi layer perceptron are generalisation and fault tolerance
[15]. Naı̈ve Bayes is another classification technique which
assumes that the value of a particular feature is independent
of the value of any other feature, given the class variable.
For some types of probability models, these classifiers can
be trained very efficiently in a supervised learning setting.
One advantage of naı̈ve Bayes is that it only requires a small
number of training data to estimate the parameters necessary
for classification. Random forest is an ensemble classifier
that operates by constructing a multitude of decision trees at
training time and outputting the class that is the mode of the
classes of the individual trees. Unlike decision trees, random
forest tackles over-fitting of training set.

Before presenting the results, the performance metrics used
for evaluating performance are defined as:

• True Positive (TP) : The activity class has been correctly
identified.

• True Negative (TN) : The activity class has been correctly
rejected.

• False Positive (FP) : The activity class has been incor-
rectly identified.

• False Negative (FN) : The activity class has been incor-
rectly rejected.

• Precision (positive predictive value) : The correctly iden-
tified proportion in predicted activities which is:
Precision = TP/ (TP + FP)

• Recall (sensitivity) : The correctly identified proportion
in actual activities which is:
Recall = TP / (TP + FN)

• Overall Accuracy : The correctly identified proportion of
the total activities.

• F1 Score : Weighted average of precision and recall is
calculated as:
F1 = 2 (Precision × Recall) / (Precision + Recall)

All the four activity datasets (one raw and three normalised)
were experimented with. The results presented here are from
one dataset NOdata which gave the best results. Each dataset
comprises 5850 samples, randomly divided as 50% for training
and 50% for testing. Table I compares the performance metrics
of recall, precision and F measure for each activity class.
On all three measures, the RF model performs better with
the precision of 99.9%. It is fair to say that activity a9
(ironing) negatively impacts the performance. But overall, the
RF appears to be the more preferred approach, especially
when the model will have to be enhanced to cope with more
complex sequence of activities, as would be expected in a real
living environment. RF is trained with 5-fold cross validation
and it has 11 trees. The precision measure of multi layer
perceptron is the second best in this paper (98.7%). Compared
to random forests, multi layer perceptron performance is less
for activities: a1 (standing), a4 (drinking from a mug), a6
(using a mobile phone), a7 (brushing teeth), a9 (ironing),
a10 (washing hands in a bowl) and a11 (brushing hair).



Table I
NAÏVE BAYES (NB), MULTI LAYER PERCEPTRON (MLP) AND RANDOM FOREST (RF) TRAINED MODELS PERFORMANCE COMPARISON: SHOWN RESULTS

ARE FOR TESTING DATASETS (50% OF OVERALL DATA).

Recall Precision F1 Score
Class NB MLP RF NB MLP RF NB MLP RF
a1: standing 0.991 1 1 0.996 0.996 1 0.993 0.998 1
a10: washing hands in a bowl 0.981 1 1 0.963 0.991 1 0.972 0.995 1
a11: brushing hair 0.482 0.991 1 0.566 0.978 1 0.521 0.984 1
a12: exercise foot cycle 0.965 1 1 0.909 1 1 0.936 1 1
a13: floor fall position 0.908 1 1 0.857 1 1 0.882 1 1
a2: sitting 0.898 1 1 0.818 1 1 0.856 1 1
a3: lying down in sleep position 0.85 1 1 0.903 1 1 0.876 1 1
a4: drinking from a mug 0.834 0.995 0.986 0.503 0.981 1 0.627 0.988 0.993
a5: eating with knife and fork 0.764 1 1 0.847 1 1 0.803 1 1
a6: using a mobile phone 0.924 0.924 1 0.846 0.987 1 0.884 0.954 1
a7: brushing teeth 0.425 1 1 0.696 0.922 1 0.527 0.96 1
a8: vacuuming 0.966 0.92 1 0.996 1 1 0.981 0.958 1
a9: ironing 0.786 1 1 0.99 0.976 0.986 0.876 0.988 0.993
Average 0.83 0.986 0.999 0.841 0.987 0.999 0.828 0.986 0.999

However, multi layer perceptron advantages like extracting
meaning from complicated and imprecise data especially in
HAR research make them very popular in this field. MLP has
38 nodes and activation function is tanh. Finally, the naı̈ve
Bayes lacks performance noticeably in: a4 (drinking from a
mug), a7 (brushing teeth) and a11 (brushing hair). Drinking
activity with naı̈ve Bayes is often misclassified as brushing
hair or brushing teeth. Brushing teeth with naı̈ve Bayes is also
misclassified as brushing hair and drinking from mug. Lastly,
brushing hair with naı̈ve Bayes is misclassified as exercise
foot cycle, drinking from a mug and brushing teeth. This
is an evidence that naı̈ve Bayes cannot deal with noisy and
incomplete data properly.

In another experiment, principal component analysis (PCA)
is applied to the feature set. PCA is a statistical procedure that
uses an orthogonal transformation to convert a set of possibly
correlated features into a set linearly uncorrelated principal
components. The number of principal components is less than
or equal to the smaller of the number of original variables or
the number of observations. This transformation is defined in
such a way that the first principal component has the largest
possible variance, and each succeeding component in turn has
the highest variance possible under the constraint that it is
orthogonal to the preceding components. In this paper, the
number of feature set for training algorithms is reduced to
10 principal components. The first 5 major components are
(Variables are shown in Figure 3):

• P1 = −0.169X14− 0.168X15− 0.165X13− 0.165X19−
0.164X18.
It takes X co-ordinates of Left Ankle, Left Foot, Left
Knee, Right Foot and Right Ankle into consideration.

• P2 = −0.195Z1 − 0.192Z12 − 0.191Z0 − 0.188Z10 −
0.188Z16.
It takes Z co-ordinates of Mid Spine, Left Hip, Base
Spine, Right Wrist and Right Hip into consideration.

• P3 = 0.254X4 + 0.25X2 + 0.248X5 + 0.246X20 +

0.243X3.
It considers x co-ordinates Left shoulder, Neck, Left
Elbow, Shoulder Spine and Head.

• P4 = −0.287Y19 − 0.279Y18 − 0.276Y15 − 0.258Y14 +
0.244Z19.
It considers y co-ordinates of Right Foot, Right Ankle,
Left Foot, Left Ankle and z co-ordinate of Right Foot.

• P5 = −0.318X22 + 0.294Y24 − 0.283X23 − 0.279X7 +
0.264Y11.
It considers x co-ordinates of Left Thumb, Right Hand
tip and Left Hand. It also takes y co-ordinates of Right
Thumb and Right Hand into consideration.

This is partly because the type of the actions discussed
in this paper implies the importance of these parameters.
For example, y co-ordinates play less important role becauce
of the human pose of these activities. The above-mentioned
classifiers are trained and tested considering PCA. The results
are shown in Table II. On all three measures, the RF model
performs better with the precision of 99.4%. The precision
measure of multi layer perceptron is the second best in
this paper (91%). Compared to random forests, multi layer
perceptron under-performance is noticeable for brushing teeth
and drinking from a mug.

The naı̈ve Bayes performance is much less (80.1%); com-
pared to random forest and multi layer perceptron; in activities:
brushing teeth, eating with knife and fork, drinking from a
mug, sitting and brushing hair. Misclassification of similar
activities like brushing teeth, drinking and brushing hair proves
the need for better data acquisition techniques to tackle noisy
or incomplete data. All the classifiers mentioned in this
paper are very fast in training, robust and easy to deploy in
single board computers like Raspberry Pi 2. The processing
power and memory requirements for these classifiers are not
remarkable hence they can be implemented with inexpensive
hardware for HAR purposes.



Table II
NAÏVE BAYES (NB), MULTI LAYER PERCEPTRON (MLP) AND RANDOM FOREST (RF) TRAINED MODELS PERFORMANCE COMPARISON FOR REDUCED

FEATURE SETS WITH PCA: SHOWN RESULTS ARE FOR TESTING DATASETS (50% OF OVERALL DATA).

Recall Precision F1 Score
Class NB MLP RF NB MLP RF NB MLP RF
a1: standing 0.973 1 1 0.846 0.991 0.996 0.905 0.996 0.998
a10: washing hands in a bowl 0.730 0.976 0.981 0.875 0.976 1 0.796 0.976 0.990
a11: brushing hair 0.545 0.703 0.982 0.654 0.821 0.995 0.595 0.757 0.989
a12: exercise foot cycle 0.882 0.921 0.982 0.939 0.925 1 0.910 0.923 0.991
a13: floor fall position 0.908 0.979 0.996 0.867 0.932 1 0.887 0.955 0.998
a2: sitting 0.898 0.961 1 0.679 0.895 1 0.773 0.927 1
a3: lying down in sleep position 0.863 0.975 1 0.900 0.947 1 0.881 0.961 1
a4: drinking from a mug 0.820 0.763 0.991 0.479 0.805 0.995 0.605 0.783 0.993
a5: eating with knife and fork 0.564 0.851 1 0.671 0.892 0.970 0.613 0.871 0.985
a6: using a mobile phone 0.924 0.924 1 0.936 0.973 0.996 0.930 0.948 0.998
a7: brushing teeth 0.248 0.881 0.996 0.683 0.724 0.987 0.364 0.794 0.991
a8: vacuuming 0.929 0.828 1 0.936 1 1 0.932 0.906 1
a9: ironing 0.915 1 0.996 0.863 0.922 0.984 0.888 0.959 0.990
Average 0.789 0.907 0.994 0.801 0.910 0.994 0.781 0.906 0.994

After training and validating the classifier, it is possible
for MATLAB to generate a packaged code module which
can be embedded to an external application. In a live HAR
system, this would then be used to infer the user activity type
by reading Kinect skeletal data stream in real-time. In this
paper and for cloud deployment, three software applications
(a) the Kinect simulator for live activity data generation, (b)
RPi2 simulator for environmental sensors data generation and
(c) cloud storage data simulator have been developed. They
provide simulated real-time test data on demand and generate
event data at an accelerated rate.

IV. CONCLUSIONS

This paper demonstrates the feasibility of a low-cost end-
to-end functioning AAL system. Scalability, data storage and
secure communications with IoT type devices are necessary
in AAL system which are addressed in this paper. Moreover,
data acquisition and classification results of this paper show
the reliability and accuracy of the overall system. Future
research include investigating other camera types, applying
new feature sets based on image/video and using other
learning algorithms, e.g. deep learning.
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