SwarmCity Project: Can an Aerial Swarm Monitor
Traffic in a Smart City?

Juan Jesus Roldan, Pablo Garcia-Aunon, Elena Pefia-Tapia and Antonio Barrientos
Centre for Automation and Robotics (UPM-CSIC)
Technical University of Madrid
José Gutiérrez Abascal, 2, 28006, Madrid, Spain
jj-roldan@upm.es, pablo.garcia.aunon@upm.es, elena.ptapia@alumnos.upm.es and antonio.barrientos @upm.es

Abstract—Smart Cities have emerged as a strategy to solve
problems that current cities face, such as traffic, resource man-
agement, waste, pollution, etc. Most of the Smart City proposals
are based on placing sensors in fixed locations of the city or,
at the most, in public transportation systems. These strategies
can produce blind zones, given that the sensors are fixed or their
movement cannot be controlled. The SwarmCity Project proposes
the use of an aerial swarm to monitor the city state, including
traffic, crowds, climate and pollution. This paper is focused on
traffic and tries to answer the question: “Can an aerial swarm
monitor the traffic in a Smart City?”. The work presents a data
processing algorithm developed and optimized to fuse the data
provided by the drones and build maps of traffic in real time.
The proposed method is integrated with a surveillance algorithm
and tested under different conditions in a city simulator. The
results demonstrate the viability of SwarmCity Project and the
potential use of aerial swarms as tools to collect data and model
traffic in Smart Cities.

Index Terms—Smart City, Robot swarm, Traffic monitoring,
Data processing.

I. INTRODUCTION

The growth of cities worldwide is an undeniable fact: the
population of urban areas will increase from the current 54%
to a 66% in 2050, according to United Nations reports [1].
This growth of cities can be accompanied by an improvement
of efficiency in the management of resources, such as the dis-
tribution of goods, transportation and consumption of energy.
Nevertheless, it may also cause traffic jams, security issues,
pollution, noise, waste management issues and infrastructure
deterioration. Acquiring, processing and visualizing data cor-
rectly will be key to achieve higher levels of efficiency and
safety.

Smart Cities present a relatively new approach to deal with
these challenges [2]. This idea involves the use of information
and communication technologies to ensure a sustainable devel-
opment of urban areas, optimize the management of available
resources, improve the life quality of citizens and promote
civic participation. A prototypical Smart City consists of many
subsystems devoted to monitoring the city, understanding its
state and predicting its evolution [3].

The most common solution for Smart Cities is based on
the Internet of Things (IoT) and involves the deployment of
a sensor network throughout the city [4]. Those sensors are
normally fixed in specific places and, therefore, only able to
collect data in their locations. This feature introduces bias in

the data and reduces the robustness of the whole system. An
explored solution for this issue is the integration of sensors
in the public transportation systems, which allows to take
measures in more locations, but the downside is that these
sensor’s positions cannot be controlled.

The SwarmCity Project proposes the use of a swarm of
aerial robots to monitor the state of a city, collecting relevant
data about traffic, pedestrians, climate and pollution. This
project is being developed by the Robotics and Cybernetics
Research Group of the Centre for Automation and Robotics,
which is formed by the Technical University of Madrid and
Spanish National Research Council. Why aerial robots? Be-
cause they are fast, agile and practical, and they have a limited
impact on the daily life of citizens. Why a swarm? Because
a group of simpler and lighter robots can perform a greater
amount tasks, covering wider areas and consuming less time.

This paper explores the viability of the SwarmCity Project,
trying to answer the following question: “Can an aerial swarm
monitor the variables of a Smart City?”. The work is focused
on traffic monitoring, since this task is one of the most im-
portant challenges in Smart Cities and a relevant environment
to validate the developed algorithms. However, it is expected
that the results of traffic monitoring can be applied to other
tasks, such as crowds monitoring, free parking space search,
garbage detection and pollution monitoring.

In previous works, we developed a city simulator with
realistic traffic, pedestrians, climate and pollution [5], as well
as a behavior-based algorithm that allows the swarm to carry
out search and surveillance tasks [6], [7]. In this work, a new
algorithm has been developed and optimized to fuse the data
collected by the drones and build a traffic map of the city. This
algorithm has been integrated with the previous contributions,
allowing for the first time to compare the information obtained
from the swarm with the real state of the city. The results show
the potential of aerial swarms as tools for collecting data and
model traffic in Smart Cities.

Some works found in the literature propose to monitor cities
using aerial robots, each one focusing on a certain part of the
system: drones, sensors, infrastructures and communications.
A framework for monitoring a Smart Cities with drones is
presented in [8]. The work described in [9] is focused on
planning the routes of aerial robots to optimize the task
of traffic monitoring. An application of drones for traffic



monitoring with experiments that test communications and
video streaming is reported in [10]. Finally, the work described
in [11] considers an aerial swarm for monitoring multiple
variables of cities, focusing on the communications between
the agents and the data processing.

The remainder of the paper is organized as follows: Section
IT describes the city simulator, focusing on the traffic model
and its main variables. Section III explains the algorithm
that allows the swarm to cover the city and monitor traffic.
Section IV presents the algorithm developed and optimized
for data fusion and information discovery. Section V reports
the simulations performed to estimate the performance of this
algorithm in various scenarios. Finally, Section VI summarizes
the main conclusions of the work and the future steps of the
project.

II. CITY SIMULATOR

The city simulator, also known as SwarmCity, reproduces
a small European city with a central district, two residential
neighborhoods, an industrial area, a big park and several public
infrastructures (airport, train station...), as shown in Figure
1. Additionally, this simulator includes models of traffic,
population, climate and pollution with variable behaviors. For
instance, the temperature and humidity depend on the date and
time, the levels of pollution are higher in industrial areas than
in residential neighborhoods, and there are agglomerations of
people in work places in weekdays and in leisure places during
the weekends. SwarmCity has been developed using Unity
Game engine and City Adventure, Road & Traffic System and
Population Engine assets.

The most relevant part of SwarmCity for this work is the
traffic model. The city consists of 20 streets with different
lengths (from 50 to 800 meters) and shapes (straight and
curves) and 22 intersections with different shapes (T intersec-
tions, cross intersections and roundabouts) and rules (priority
and semaphores). At the beginning of the simulation, a certain
number of cars, which can be set by the user, are spawned
randomly on the roads. During the simulation, every car moves
throughout the city at a certain speed that depends on the
situation of traffic (light, heavy or jam), the type of section
(straight, curve or intersection), and the speed limit of the
road (set by the user). When a car arrives to an intersection,
it decides randomly where to continue, and, depending on the
situation, it moves immediately or waits until it has priority. As
in real cities, the intersections tend to accumulate cars, which
can lead to traffic jams. In addition, the user can generate
traffic jams just by setting their locations and times.

Traffic models study the relationships between vehicles
and infrastructures, seeking to understand transport systems
in order to optimize their designs. These models combine
theoretical and empirical techniques and usually use three
variables: density, speed and flow [12]. In order to study the
traffic, the roads of SwarmCity have been discretized in square
cells of S-S m2. Every detected car will be assigned to any
of these cells, so all the traffic variables here estimated will
be referred to these cells.
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Fig. 1: SwarmCity: (a) Bird’s eye view of the city, (b) A drone
monitoring traffic in an intersection.

Traffic density is the number of vehicles per length unit
that occupy a certain section of road at a given moment. As
described by Equation 1, this variable (k) can be computed
in our scenario as the number of cars detected in a cell (V)
divided by the length of the side of the cell (S) and the number
of lanes in the road (L).

N
k= .S (€))

Traffic speed represents the distance covered per unit of
time. There are two methods to obtain this variable from the
instantaneous speeds of the cars: time mean speed and space
mean speed. The first one takes into account the cars that go
through a certain point in the road during a certain period
of time. The second one takes into account the cars that are
located in a certain section of the road at a certain moment.
This second approach is easier to implement in our scenario,
since the drones are continuously covering sections of roads.



The Equation 2 shows its computation: traffic speed (V) is
the average value of the individual speeds (v;) of the vehicles
detected in a cell (V).

1 N
v = W'Z”i 2)
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Traffic flow is the number of vehicles that crosses a section
of road per unit of time. This variable (q) can be computed as
the product of traffic density (k) and speed (v) as described
by Equation 3.

g=k-v 3)

Figure 2 shows the traffic variable measurements after
simulating in SwarmCity for eight hours: the pairs of flow
and density values of multiple cars in different places and
moments, together with the curves that represent the maximum
and average values of flow for every density. This data is
coherent with previous works of traffic modeling [13], since it
includes multiple roads with different features. For instance,
the flow in intersections will be less than in streets and in
curved sections less than in straight ones, since the vehicles
have to reduce their speed in these sections.

III. SWARM INTELLIGENCE

The team of drones is led by an algorithm originally
developed for search tasks in open environments [6], and later
adapted for traffic monitoring in SwarmCity [5]. In order to
organize the surveillance, the area is divided into cells, and the
drones move between their centers. Similarly to the previous
works, we consider that the drones fly at a height of 20 meters
and, therefore, they can detect all the cars within a circle with a
radius of 10 meters. Given that the amount of energy available
in the batteries of the quadcopters is limited, 5 recharging
bases are placed throughout the city. Each agent visits those
bases with a period of 5-10 minutes and recharges its batteries
during 60 seconds.

The algorithm works in a distributed fashion, that is, every
drone shares specific information with the other agents and
individually decides the next cell to visit. The algorithm is
based on a network of 6 behaviors, see Figure 3, each of
which was designed for a specific purpose and counts with a
set of variables to be chosen.

Based on previous experiences optimizing the original al-
gorithm [7], the surveillance adapted version was optimized
with a genetic algorithm for the case in which there are 150
cars in the city, and the team of agents is made up with 10
drones. We observed that high variations of cars and drones
do not impact on the performance of the algorithm.

IV. TRAFFIC MODELING

Let us consider Np drones moving throughout the city and
measuring traffic density and speed. Every drone will provide
measurements of density k; and speed v, every time ¢ at its
location (z,y). The objective of the proposed algorithm is to
fuse these measurements (kq(x,y,t) and vq(x,y,t)) obtained
by the drones (d = {1, ..., Np}) and building maps (K (¢) and

V' (t)) as similar as possible to the ground truth measurements
(Kyef(t) and V,.cf(t)). For this purpose, we propose three
methods to create a map M at the time 7T from a set of
measurements my obtained in previous instants ¢ < 7', where
M and my can represent densities, speeds or any other variable
of interest.

e Method 1: This method builds the map taking into
account the most recent measurements of the drones.
Initially, the map is a matrix with all the elements equal to
-1. Then, when a drone obtains a measurement at a certain
location, it is added to the map replacing the previous
value. The result is a map that contains the most recent
data for every cell, but may be vulnerable to the noise
produced by traffic disturbances and sensing errors.

o Method 2: This method builds the map M computing the
mean of the measurements M; in a certain time window
before the current time ¢ =T — W, ..., T, as defined by:

T
M = % . Z M, %)
t=T-W

If the drones take some measurements at a point and,
during the time window, they do not come back there,
the mean of these last measurements remains in the map.
The time window W is a parameter to be tuned in order to
minimize the error between the estimated and real maps.
This method provides more stability and robustness, but
may take a long time to detect changes in traffic. As it
can be checked, the method 1 is a particular case of the

method 2 when W = 1.

e Method 3: As the previous one, this method builds the
map M taking into account the measurements M; in
a certain time window W, and keeps the most recent
measurements when there are not new ones in this period.
However, this method applies a weighted mean to give
more importance to recent measurements. As shown by
Equation 5, the weights are generated through a negative
exponential function whose behavior depends on a time
constant 7:

T—t
_ Z;[:wa e T - M
- T—t
Z?:wa e T
In this way, two parameters (/W and 7}.) must be tuned to
minimize the error between the estimated and real maps.
This method is still robust against noise and it may adapt
better to the changes. Method 2 is a particular case of
method 3 with infinite 7.

Eight one-hour long simulations were performed to obtain
data to test the three methods with multiple parameters. In
these simulations, a fleet of 10 drones monitored the city with
150 cars. We chose these values because the surveillance algo-
rithm was optimized for them, and we wanted to optimize the
data processing algorithm in the best scenario. Nevertheless,
the surveillance algorithm showed good performance in other
scenarios [5], and the data processing method will be also
tested with other configurations, in Section V.
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Fig. 3: Control scheme based on a set of behaviors presented
in [6], originally developed for search tasks and later adapted
to surveillance ones.

As it can be seen in Figure 4, four maps are obtained every
second: two that show the real traffic densities and speeds in
the city, and two that collect and process the values measured
by the drones. As shown in Equation 6, we can define the error
e as the difference between real and estimated maps (M, and
M):

e= | X (M) -MP) ©
P
(4,5)€R:M (P)=0

Only the points that belong to the roads and have been
measured (P € R|M(P) > 0) are taken into account, being
Np the number of points that meet these conditions. This
variable is useful to measure the performance of data process-
ing algorithms, but may produce disturbances when evaluating
swarm control algorithms. For instance, a configuration that
leads the drones to be static at certain points could produce
less error than another one that allows a wider exploration of
the map.

Two types of maps can be used as ground truth during
the optimization: one with instantaneous and other with mean
values. As shown in Figure 5, the first ones practically show
the location and speed of every car or group of cars in the
city at a given moment. However, the second ones are more

useful to characterize the traffic in the city, since they reveal
not only instant phenomena (such as traffic jams), but also
permanent situations (e.g. average use of streets, bottlenecks,
fastest and slowest routes...). Therefore, we use a time window
of 30 seconds for the real maps hereinafter.

We applied the three methods with different parameters to
the data obtained simulating 8 hours. Method 2 was tested
with W = {10, 20, 30, 40, 50, 60, 90, 120, 150, 180, 210,
240, 300, 360, 420, 480, 540, 600}s, whereas Method 3 was
checked with the same time windows W and T, = {10, 50,
100, 500, 1000} s. The errors for densities and speeds obtained
with the proposed methods and their dependence on the time
windows are shown in Figure 6. As it can be observed, method
3 with W > 150 and 7T, = 10 provided better results than the
rest of methods and configurations. Hereafter, W = 150s and
T. = 10s are therefore selected.

V. EXPERIMENTS

Twenty simulations were performed to analyze the per-
formance of the algorithm in multiple scenarios, that is,
modifying the number of cars and drones. We considered
fleets of 5, 10, 15 and 20 drones and cities with 50, 100, 150,
200 and 250 cars. As shown in Figure 7, the errors slightly
increase with the number of drones, whereas their dependence
on the number of cars is not clear. As mentioned above,
visiting regularly a few points can be better than exploring
the whole map taking into account the metric of error used in
this work. This fact is consistent with the similarities between
the graphics of covered area and density and speed errors. In
future works, we are going to study both the application of
other error metrics and normalization of the traffic variables
to avoid this problem.

Additionally, four simulations were conducted to check if
the algorithm was able to detect traffic jams. A traffic jam
increases the density and, at the same time, reduces the speed
in a certain area (see Figure 4). Thus, a simple method to detect



Density (real)

150
10
20 100
30
40 50
50

0

10 20 30 40 50

Speed (real)

10 15
20

1
30
40 0.5
50

0

10 20 30 40 50

Density (measured)

- 140

10 120

100
20

80
30

60
40 40
50 L] 20

0

10 20 30 40 50

Speed (measured)

10 a5
20 )
30 15
40 1
0.5

50

10 20 30 40 50

Fig. 4: Real and measured maps of traffic density and speed obtained during one of the simulations. The white circumference

surrounds the area where a traffic jam is occurring.

Density: Instantaneous (W=1) Density: Mean (W=60s)

1 15 20 25 30 35 40 45 50 55 5 10 15

20 25 30 35 40 45 50 55

Fig. 5: Effects of applying a time window on a density map.

it is to compute these variables by regions and compare them.
In the simulations, an accident is triggered at 120 seconds, the
traffic jam can be observed in the real map at 232 seconds,
and the algorithm can discover it at 538 seconds.

VI. CONCLUSIONS

This work analyzes the feasibility of aerial swarms as tools
for monitoring traffic in Smart Cities. For this purpose, a new
algorithm has been developed to fuse the data collected by the
drones and build the traffic maps of the city. This algorithm
has been integrated in a city simulator with a realistic traffic
model and an aerial swarm controlled by a behavior-based
surveillance algorithm. Then, a set of experiments have been

performed to optimize the algorithm and test the whole system
under different conditions.

The results show that the best strategy for data processing
is computing a weighted mean of the last measurements and,
specifically, using a time window W = 150s and a time
constant 7, = 10s. This algorithm provides similar results
in the simulations with different numbers of cars, but its
performance decreases when higher numbers of drones are
managed. This fact can be explained because the bigger fleets
explore wider areas, which is desired when monitoring cities,
but increases the probability that the information in some
points is not updated.

In future works, we are going to study the application of
models that consider input noise such as Gaussian processes
for data fusion and traffic modeling. Additionally, we want
to adapt the algorithms to work with crowds, climate and
pollution monitoring. Finally, we will develop an adaptive&
immersive interface to allow users to monitor the city. The final
goal of SwarmCity Project is to integrate the city simulator,
swarm intelligence, data processing and advanced interface,
and perform a real-time demonstration in which an operator
commands the swarm and monitors the city.
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