
Uncovering Security Vulnerabilities
in the Belkin WeMo Home Automation Ecosystem

Haoyu Liu, Tom Spink, and Paul Patras
School of Informatics, The University of Edinburgh, United Kingdom

Email: {s1783038@sms, tspink@inf, ppatras@inf}.ed.ac.uk

Abstract—The popularity of smart home devices is growing as
consumers begin to recognize their potential to improve the qual-
ity of domestic life. At the same time, serious vulnerabilities have
been revealed over recent years, which threaten user privacy and
can cause financial losses. The lack of appropriate security protec-
tions in these devices is thus of increasing concern for the Internet
of Things (IoT) industry, yet manufacturers’ ongoing efforts
remain superficial. Hence, users continue to be exposed to serious
weaknesses. In this paper, we demonstrate that this is also the
case of home automation applications, as we uncover a set of pre-
viously undocumented security issues in the Belkin WeMo ecosys-
tems. In particular, we first reverse engineer both the mobile app
that enables users to control smart appliances and the commu-
nication logic implemented by WeMo devices. This enables us to
compromise the passphrase guarding the communication over the
local wireless network, opening the possibility of eavesdropping
on user traffic. We further reveal how an attacker can present a
fake device to a WeMo user, through which cross-site scripting
can be exploited in order to mislead the user into disclosing
private information. Lastly, we provide a set of security guidelines
that can be followed to remedy the vulnerabilities identified.

Index Terms—Belkin WeMo, smart homes, security, privacy

I. INTRODUCTION

The home automation scene is rapidly gaining in popularity,
with more and more smart devices entering the market every year,
which is expected to be valued at almost $80 billion by 2022 [1].
Up until recently, home automation systems were typically
proprietary installations, with closed, wired, and centralized
control. Originally, these systems were only specified for new-
build homes, as retrofitting into existing buildings was complex
and costly. However, with the advent of wireless and cloud
technology, the significant reduction in sensing and computing
costs, and the emergence of rapidly growing do-it-yourself (DIY)
“hacker/maker” communities, Internet-connected home automa-
tion products have started to reach the market for all consumers,
regardless of their housing type or technical knowledge.

Typically, these smart home products utilize an already
existing wireless network (e.g. home Wi-Fi), connect to a
cloud-based service (normally operated by the manufacturer),
and enable their users to control various appliances, such as
interior lighting, mains plug sockets, and ancillary systems such
as burglar alarms, fire alarms, and door bells. As useful as these
systems become, many companies are now competing in this
relatively new niche. Unfortunately, in a rush to release products
that provide new functionality and more convenience, coupled
with a lack of rigorous understanding of embedded systems
and network protocols, security and concern for user privacy

This research was funded in part by the UK National Cyber Security Center.
The authors would like to thank the Belkin security team for their collaboration.

have taken a back seat. Precisely, poor implementations can
leave devices open to exploitation, not only permitting attacks
on the objects themselves and jeopardizing their operation, but
also side-channel attacks that leak private information, opening
up further attacks on a user’s personal network and their data.

In this paper, we focus in particular on the Belkin range of
WeMo smart home devices. Belkin WeMo has become a market
leader that commercializes smart sockets, light bulbs, video
cameras, etc. that can be controlled with smartphone apps, or
via personal assistants such as Amazon Alexa. We reveal that
shortsightedness in the design of the pairing procedure these
implement can lead to the leakage of a user’s Wi-Fi passphrase.
In addition, issues in the design of the mobile application can
lead to phishing attacks, permitting further access (through
social engineering) to a user’s credentials. Although we focus
on the Belkin WeMo ecosystem, there are certainly lessons to
be learned by all manufacturers entering the home automation
market. This leads to the following key contributions:
1) We reverse engineer the WeMo smartphone app, uncovering

an exploit that enables to disclose the passphrase guarding
the communication secrecy in users’ home Wi-Fi networks.

2) We craft simple software to emulate a WeMo device, causing
it to appear on the smartphone user interface, and then open
up a cross-site scripting based phishing attack.

3) We discuss a number of mitigation approaches to address
the vulnerabilities found in the Belkin WeMo range of smart
devices, along with recommendations generally applicable
to commodity home automation products.

Responsible Disclosure. Prior to submitting this paper, we
have disclosed to Belkin all the security vulnerabilities identified.
The company’s engineering team has reviewed all our findings
and are working on patches to address the issues we discovered.

II. RELATED WORK

As the adoption of IoT technology accelerates, research
identifying the security and privacy risks facing smart devices
and services has intensified, spanning industrial IoT [2], home
automation [3], and wearable gadget ecosystems [4]. In this
section, we briefly review efforts that reveal weaknesses specific
to Belkin WeMo devices, on which our work focuses.

Barcena and Wueest analyzed fifty connected home
devices, including the WeMo switch, documenting the lack
of authentication when connecting to such equipment and an
attackers’ ability to inject code [5]. Researchers at TwoSix
labs demonstrated that it is possible to obtain bootloader-level
console access to Belkin Wemo switches, via hardware

exploitation [6]. Following this, the flash contents could be
dumped and root access to the device becomes possible.

Exploits of the firmware update mechanism have been also
documented. In particular, Buentello showed that arbitrary
firmware could be uploaded to Belkin switches without
authorization [7]. This prompted the release of official patches,
following which new firmware updates must be signed. Unfortu-
nately, the firmware-signing key later appeared to be included in
the firmware itself; this makes it possible to extract the key and
sign and push again malicious firmware to victim devices [8].

Due to the lack of message authentication in the Universal
Plug-and-Play (UPnP) protocol implementation, Dhanjani shows
that any users in the LAN can negotiate a SmartUniqueID
with a WeMo baby monitor, and then use this to register on
the remote server, which enables remote interception of the
video stream [9]. The same approach is employed in [10] to
facilitate permanent remote control of Belkin WeMo motion
sensors and switches.

The feasibility of executing arbitrary JavaScript code within
the mobile app by which users control WeMo devices was also
demonstrated [11]. This enabled attackers to extract the location
of a device and download pictures stored on the phone. Although
this vulnerability was patched by Belkin with the WeMo
Android app version 1.15.2, in this work we show that Cross-site
Scripting (XSS) remains possible and an attacker can exploit this
to trick the user into revealing sensitive personal information.

III. THE BELKIN WEMO ECOSYSTEM

To understand the scope of our reverse engineering work,
and where the vulnerabilities that we uncover are rooted, we
first give a brief overview of Belkin WeMo system architecture
and the communications model, which underpin the operation
of this range of devices.

A. System Architecture
The range of automation devices we study include the WeMo

Switch (a smart socket that can be used to control appliances),
the WeMo Link (a controller for smart LED light bulbs), and the
WeMo NetCam HD. The WeMo Smart Home devices considered
are powered by the OpenWrt operating system for embedded de-
vices,1 which is an open-source Linux distribution extensively uti-
lized as replacement firmware for wireless routers. OpenWrt pro-
vides over 3,000 standardized application packages, and allows
manufacturers to customize their devices with specific function-
ality. Using OpenWrt as the embedded system greatly decreases
the cost of development, and to some degree guarantees the
security of the devices, in part due to regular firmware updates.

WeMo devices incorporate wireless communications modules
that can connect to the user’s home network via Wi-Fi. This
enables consumers, after initial configuration, to interact with
their smart devices directly using their mobile phones, instead
of relying on additional bespoke controllers. In the initial
configuration stage, a WeMo device opens a wireless access point
in non-encrypted mode (a hotspot), which allows any smartphone
to connect to it and configure the home network settings into the
device. Once the configuration has been completed, the device
will turn off the hotspot and automatically connect to the home
network via Wi-Fi. We illustrate this procedure in Figure 1.

1OpenWrt - Wireless Freedom, https://openwrt.org/

Fig. 1. Initial configuration of a WeMo device: (1) user connects to a hotspot
spawned by the smart device, and transmits home network credentials; (2)
device connects to home network and switches off hotspot; (3) user discovers
and connects to WeMo device using mobile app.

Fig. 2. Typical UPnP communication between WeMo mobile app and WeMo
Switch. Device discovery performed over UDP, device description obtained
through HTTP request/response, device control achieved through SOAP messages.

B. Communications Model

The communication between the WeMo mobile app and smart
devices is built upon UPnP, a set of networking protocols includ-
ing User Datagram Protocol (UDP), Hyper-text Transfer Protocol
(HTTP), Simple Object Access Protocol (SOAP), and Simple Ser-
vice Discovery Protocol (SSDP). Each of these protocols are used
for different purposes, but together implement the functionality
required for device discovery, description, control, and eventing.
UPnP control and eventing messages can only occur after the
mobile app has obtained the UPnP description of a WeMo device.
We illustrate a typical UPnP session between a smartphone and
WeMo Switch in Figure 2 and discuss the different phases next.

1) Device Discovery: The process of locating smart appliances
available on the Local Area Network (LAN) is referred to as
device discovery and takes place every time a new device is
connected. The discovery process starts with the mobile app
sending an SSDP/UDP-multicast packet. This contains a field
called supplied type (ST) that indicates the specific type of
device or service, which the app is searching for. Any device
that receives this packet (and matches the supplied type) will
reply with its IP address, and the port on which the UPnP server
is running. Figure 3 shows an example of real traffic generated by
the mobile app and respectively a WeMo Switch device during the
discovery stage, which we intercepted by running network packet
capture on the home Wi-Fi access point. Note the device location
returned at line 10, which will be used in subsequent messages.

1 M-SEARCH * HTTP/1.1
2 ST: urn:Belkin:service:basicevent:1
3 MX: 1
4 MAN: "ssdp:discover"
5 HOST: 239.255.255.250:1900
6
7 HTTP/1.1 200 OK
8 CACHE-CONTROL: max-age=86400
9 DATE: Sat, 01 Jan 2000 00:03:32 GMT

10 LOCATION: http://10.22.22.1:49152/setup.xml
11 OPT: "http://schemas.upnp.org/upnp/1/0/"
12 ST: urn:Belkin:service:basicevent:1
13 USN: uuid:Socket-1_0-XXX

Fig. 3. WeMo Mobile app ↔ Switch communication during discovery phase.
App sends multicast message indicating type of device searched (line 2);
matching device responds with IP address and port of UPnP server (line 10).

2) Device Description: After a WeMo device has been
discovered, the mobile app will send standard HTTP requests to
the UPnP server running on that device. Through such requests,
the mobile app queries for the device’s basic information,
including device name, serial number, Medium Access Control
(MAC) address, and supported services. This information is
stored in several Extensible Mark-up Language (XML) files in
the device’s firmware, which are returned when a request is made.
Figure 4 shows parts of the response from a WeMo Switch device
sent during discovery (the actual contents of certain fields having
been purposely altered/obfuscated for confidentiality reasons).

1 <friendlyName>WeMo Switch</friendlyName>
2 <serialNumber>221531K1000000</serialNumber>
3 <UDN>uuid:Socket-1_0-XXX</UDN>
4 <UPC>123456789</UPC>
5 <macAddress>XX:XX:XX:XX:XX:XX</macAddress>

Fig. 4. Snippet of device description returned by a WeMo Switch after a HTTP
GET request. The values have been obfuscated for confidentiality reasons.

3) Device Control: After retrieving the list of services
supported by a WeMo device, users are able to send control
messages to query or alter the attributes and behavior of that
device. Such a control message is formed as a SOAP message.
SOAP is a protocol that largely relies on HTTP and XML,
and defines a unique HTTP header called SOAPAction,
indicating the intended service, which such a HTTP request will
manipulate. An example SOAP message is shown in Figure 5,
which is used to query for the device name (lines 5–7).

1 POST /upnp/control/basicevent1 HTTP/1.1
2 SOAPAction: "

urn:Belkin:service:basicevent:1#GetFriendlyName"
3
4 <s:Envelope xmlns:s="http://schemas.xmlsoap

.org/soap/envelope/" s:encodingStyle="http:
//schemas.xmlsoap.org/soap/encoding/"><s:Body>

5 <u:GetFriendlyName
xmlns:u="urn:Belkin:service:basicevent:1">

6 <FriendlyName></FriendlyName>
7 </u:GetFriendlyName>
8 </s:Body> </s:Envelope>

Fig. 5. Example of a SOAP-formatted UPnP control message, used to query
the name of a device.

SOAP message bodies are encapsulated in XML, and in this
case the request contains the specific action that the WeMo
device should perform. Upon receipt of the message, the WeMo
device will respond in a similar fashion, to inform the controller
of the result of the action.

IV. ADVERSARIAL MODEL

Next, we discuss the capabilities that we expect an attacker to
have in order to tamper with WeMo devices and identify a set of
attack scenarios. With these in mind, we will discuss our reverse
engineering efforts and reveal new ways in which the WeMo
ecosystem can be exploited for nefarious purposes (Section V).

A. Attacker Capabilities

We assume the attacker is within wireless communication
range of the victim’s home infrastructure and has the necessary
tools to sniff wireless traffic (e.g. the Wireshark network packet
analyzer). With such tools, the attacker will be able to intercept
victim’s traffic during the smart device setup phase. We also
expect the attacker has basic knowledge of the Android app
ecosystem and is familiar with mobile app decompiling tools (e.g.
apktool). We further assume the attacker has already downloaded
a copy of the official WeMo Andoroid app. As such, the attacker
may be able to identify vulnerable parts in the app code, which
handle home Wi-Fi passphrase encyphering. Lastly, we expect the
attacker is familiar with HTTP and UPnP, and can write simple
code to send UPnP requests/responses, or uses specific open-
source tools that reduce this implementation burden (e.g. Flask).

B. Attack Scenarios

We distinguish two main classes of attacks on the WeMo
ecosystem: (1) causing unwanted stress and damage; and (2)
gaining access to victim’s home Wi-Fi network, to exfiltrate
private data.

1) Causing Unwanted Stress and Damage: There is the
possibility that third parties may wish to cause unwanted stress
to the target user, or attempt their psychological manipulation,
for instance following relationship breakups or to affect
someone’s decision making abilities through sleep deprivation
and harassment; being able to take control of appliances would
certainly enable this. Furthermore, an attacker may wish to
interfere with household appliances, causing damage to them
or to their users, e.g., by frequently switching on/off a smart
device or activating it under unsafe conditions.

2) Unauthorized Network Access and Data Exfiltration:
As we will show in Section V-B, by utilizing flaws in the
WeMo device setup protocol, it would be possible to steal the
passphrase guarding the confidentiality of the communications
across a victim’s home Wi-Fi network. To achieve this, an
attacker could either emulate a “fake” device or resort to social
engineering practices, e.g., send a “free” device to a target user.
With this, a range of attacks with severe implications to user
privacy could be mounted, as follows:
1) Phishing: A bait device could be used to trick a user into

revealing personal information, such as the username and
password for their WeMo account. Such details could be
subsequently used to guess a victim’s credentials for other
services. Indeed, recent studies indicate 43-51% of users
reuse the same password for different web sites, or employ
simple transformations over the same password to derive
others, which an attacker can easily guess [12].

2) Data and Identity Theft: Once a person’s Wi-Fi passphrase
is compromised, an attacker could deploy a packet sniffer
configured on a promiscuous wireless interface, along
with an automated script launching ARP spoofing between
the default gateway and targeted users, to intercept all
user traffic over the wireless network, which can be later
inspected closely offline. This could further permit access to
the home Wi-Fi access point and the deployment of Secure
Socket Layer (SSL) stripping tools that compromise the
confidentiality of HTTPS sessions [13]. Ultimately, this
could result in exfiltration of sensitive data, including bank
account information or personal details in view of fraud,
and in worst case scenarios may lead even to identity theft.

3) Access to Restricted Material: Conceivably, the victim
may be a government employee or the home automation
infrastructure could belong to a competitor business. A user
that can compromise the supporting Wi-Fi infrastructure by
exploiting WeMo device on such premises, could subsequently
access classified material or data with high commercial value.

V. SECURITY ANALYSIS

In this section we present our reverse engineering
methodology that allows us to extract a home Wi-Fi passphrase
and compromise user privacy. We then explain our efforts to
emulate a fake WeMo device and subsequently launch XSS
attacks to obtain personal data.

A. Reverse Engineering the Mobile App
Mobile applications (“apps”), and especially Android apps,

are typically more easily accessible than embedded devices’
firmware. If app developers neglect to apply adequate protections
when compiling the source code to an apk file (an Android
application package), others can easily decompile it, and obtain
the majority of the source code. Compared with analyzing
machine code, decompiled source code, due in part to its
readability, enables security researchers to swiftly gain a deep
understanding on the structure of the mobile app, and to start
exploring its potential vulnerabilities.

In this study, we have utilized apktool, dex2jar, and jd-gui
to decompile the WeMo Android App version 1.20.1. In this
process, we confirmed that the WeMo app is developed on the
Apache Cordova platform, which is an open-source mobile app

1 <allow-navigation href="http://*" />
2 <allow-navigation href="https://*" />
3 <allow-intent href="http://*/*" />
4 <allow-intent href="https://*/*" />
5 <access origin="mailto:*" launch-external="yes" />
6 <access origin="*" />

Fig. 6. Whitelist configuration extracted from WeMo app config.xml.
Launch of external URIs is permitted (line 5).

development framework, and allows developers to use Hyper-text
Markup Language (HTML), JavaScript, and Cascading Style
Sheets (CSS) to design the user interface. Unfortunately, this
also enables several common front-end attacks. A number of
plugins are provided by the platform to help bridge front-end
interactions with the mobile device’s underlying functionality,
such as file I/O, and network communications. By using apktool,
we obtained the complete set of HTML, JavaScript and CSS
files, and additional relevant configuration files.

Through reading the configuration file config.xml, we dis-
covered that WeMo developers have included a plugin (cordova-
plugin-whitelist) that is capable of preventing Cross-Intent
scripting and XSS attacks, by prohibiting unwanted Uniform
Resource Identifier (URI) requests, even if the HTML and
related JavaScript code may be vulnerable. However, as shown in
Figure 6, WeMo developers misconfigured this plugin that allows
both external and internal URIs, making possible the XSS attack
that we later uncover. In order to gain a deeper understanding of
the underlying functionality of this app, we harness the dex2jar
tool to convert compiled dex files to jar files, and further
used jd-gui to obtain most of the Java source code.

B. Home Wi-Fi SSID and Passphrase Leakage
Recall the communication model and the device setup stage

shown in Figure 1. By packet analysis, we observe that the home
Wi-Fi passphrase is sent to the WeMo device from the mobile
in this phase, and this connection is unencrypted. We further
find that a packet containing partially encrypted data enclosed
by the XML tag <password> is sent to the mobile app at the
end of this stage. Analysis of the decompiled Java code reveals
methods involved in cryptographic packet generation. Although
the decompiled code does not preserve parameter names, and the
control flow is not 100% accurate, we are still able to understand
the original encryption scheme, by observing several class names
in these two methods and by making a few simple assumptions.

Figure 7 shows the pseudocode of WeMo’s encryption scheme
that we discovered. In particular, WeMo uses Password-based
Encryption (PBE) to generate a cryptographic key for symmetric
encryption before encrypting the Wi-Fi passphrase. A password
is generated based on information that an attacker could infer
(e.g. device’s MAC and serial number). The password is used to
derive parameters that are subsequently employed by industry-
standard hashing and encryption algorithms, in order to encipher
the Wi-Fi passphrase. Finally, the Wi-Fi passphrase is encrypted
with a standard Advanced Encryption Standard (AES) algorithm,
using the symmetric key generated in the previous step (line 6).

Finding: As this algorithm utilizes a device’s MAC address
and serial number to construct the symmetric key used for en-
crypting the Wi-Fi passphrase, and both MAC address and serial
number will be transmitted unencrypted, anyone who intercepts

1 function encrypt(WiFiPassphrase):
2 Password <- MACAddress

[0:6] : SerialNumber : MACAddress[6:]
3 Salt <- Password[0:8]
4 IV <- Password[0:16]
5 SymmetricKey <- MD5(Password, Salt)
6 CiphertextBits <- AES_CBC_PKCS5Padding

(WiFiPassphrase, SymmetricKey, IV)
7 return Base64_Encode(CiphertextBits)

Fig. 7. Pseudocode of the encryption algorithm implemented by the WeMo
app to encypher the Wi-Fi passphrase sent to WeMo devices at setup.

the traffic during the setup stage is capable of reconstructing
the symmetric key, thereby obtaining the Wi-Fi passphrase in
plaintext. In essence, the IoT device set-up procedure is insecure.

C. Emulating Fake Devices
Emulating a fake device involves listening for, and responding

to UPnP requests. To accomplish this, we first intercept the net-
work traffic between the mobile app and a WeMo Switch device,
and collect several XML description files that the mobile app
would request, as well as the responses to UPnP control messages.
A UPnP server is in essence an HTTP server, since data packets
are encapsulated in HTTP-style message. Therefore, in this study,
we use Flask2 (a light-weight web framework written in Python),
to emulate the UPnP server found on WeMo devices. The Flask
server broadcasts SSDP responses with its own local IP address.
Once a mobile app sends an SSDP request to discover devices,
the Flask server would respond to the mobile app and start com-
municating with it. Because only limited functionality was imple-
mented on WeMo devices, it is not difficult to completely emulate
a full device. Provided a subset of the communications model is
implemented correctly – notably UPnP discovery, description and
control – the mobile app would add a fake device to its list seam-
lessly, which opens the door to XSS attacks, as we discuss next.

D. Cross-site Scripting Attack
Previously XSS attacks [11] could be launched, because the

mobile app did not implement appropriate input sanitization.
The app extracts the required information (such as device
name and MAC address) from the received XML file into a
JSON string at the back-end, and then passes this string to the
front-end, where the JavaScript implementation takes over for
the following operations. A simple injection attack would be to
alter the FriendlyName field, by inserting several quotation
marks and a curly bracket to end the JSON string, followed
by malicious XSS code.

We discovered that WeMo has patched this vulnerability with
a very simple approach. Input sanitization was only partially
implemented, by checking the existence of single and double quo-
tation marks. If these are present in the FriendlyName field,
the string inside the quotation marks (along with the quotation
mark characters themselves) will be stripped, but the remainder
of the string will be considered to be legal, and passed on to the
subsequent processes. We could not recover the entire sanitization
logic because the corresponding part of the source code proved
unfeasible to decompile. However, after running several tests,
we discover that the latest version of the mobile app likely only

2Flask - web development one drop at a time, http://flask.pocoo.org/

applies rules towards quotation marks, and no filtering rule for
angle brackets is implemented (which should be considered as a
necessity to prevent XSS attacks). Note that FriendlyName
will be enclosed in HTML and displayed in the app. Due to the
relatively permissive standards of HTML (and HTML parsers in
general being quite forgiving), we successfully construct a basic
XSS payload without using quotations, as shown in Figure 8.

1 <u:GetFriendlyNameResponse
xmlns:u="urn:Belkin:service:basicevent:1">

2 <FriendlyName><script src=http://10.0.2.18
:49152/ll/xss.js></script></FriendlyName>

3 </u:GetFriendlyNameResponse>

Fig. 8. XSS payload constructed without quotation marks.

This XSS attack may appear less dangerous than the previous
documented one [11], as the WeMo developers have improved
the permission requirements of the application. However,
it is still possible to trick users’ into revealing sensitive
information, especially information related to Belkin, by
making the malicious script jump to a phishing site. Because
the user interface is actually inside an Android WebView
component, which implements most of the functionality of a
web browser (without the address bar), phishing becomes even
more unnoticeable to the users. Figure 9 illustrates such an
example, which is a fake Belkin login website displayed in the
mobile app. It is not uncommon that people tend to reuse their
passwords across several online services [12], thus this XSS
attack exposes WeMo users to dangerous credentials theft risks.

Finding: A fake device can exploit insufficient input
sanitization in tandem with lax HTML specification, to launch
XSS scripting attacks that can facilitate phishing.

Fig. 9. Fake Belkin login webpage served by an emulated device that exploits
XSS for phishing purposes.

VI. SECURITY RECOMMENDATIONS

Based on our security analysis, we make a number of recom-
mendations to mitigate the vulnerabilities that we discovered.

a) Stricter encryption: Passphrase leakage should be in
part attributed to the fragile encryption scheme that WeMo
chose. Even if we did not reverse engineer the mobile app, it
is still theoretically feasible to recover the encryption algorithm
and obtain the symmetric key through brute-forcing. Hence,
we recommend that WeMo should stop using the PBE with
a device’s MAC-address and serial number, to generate the
cryptographic key. The Diffie-Hellman (DH) key exchange
algorithm [14] could constitute a more robust alternative, if only
aiming at mitigating this vulnerability at a software level. This
is because passive packet interception would become insufficient
for recovering the cryptographic key and subsequently
decrypting the Wi-Fi passphrase. We note however that active
man-in-the-middle attacks could still be used to compromise the
DH algorithm. In general, without the presence of a certificate
authority or pre-shared information between two parties, any
cryptographic algorithm may be vulnerable to man-in-the-middle
attacks during the initial handshake stage. Therefore, to
completely solve this security issue, we would recommend a
security by design approach, whereby a random Wi-Fi passphrase
is generated for each product upon manufacturing and tagged on
the product as the pre-shared key that will only be known to the
user and product. This way, at the setup stage an attacker would
be unable to decipher intercepted traffic, and subsequently
compromise the communication secrecy on the home network.

At the time of writing, Belkin are implementing a different
encryption algorithm to mitigate the issue we identified.

b) Source code obfuscation: Mobile apps may always
contain important information regarding the program structure
design and specific algorithms. In this study, we performed
reverse engineering on the WeMo app and recovered the
encryption scheme for the Wi-Fi passphrase. Code obfuscation
appears crucial if developers wish to ensure hackers cannot
easily decompile and read the source code. It is worth noting
that code obfuscation should not be perceived as an impeccable
protection against adversaries, since reverse engineering can still
be performed on heavily obfuscated code if investing substantial
amounts of time and human effort. However, this increases
the cost of mounting attacks and we recommend this approach
to be applied to strengthen the WeMo products. One common
solution used for this is to rename all the classes, fields, and
methods with meaningless names, so that understanding the
general structure of the program or locating a certain snippet
of code becomes challenging. For instance, ProGuard [15] is an
efficient tool recommended by the Android official site, which
could be used to shrink, optimize, and obfuscate Android code.

Following our disclosure to Belkin, their developers are
implementing source code obfuscation.

c) URI filtering: Currently, one of the most common
and efficient mechanisms of preventing XSS attacks is to set a
Content Security Policy (CSP), which contains a group of HTTP
headers to restrict unwanted cross-origin requests [16]. Cordova
has a standard plugin, cordova-plugin-whitelist,
that implements this functionality. However, although WeMo
developers have included this plugin in the app, they did not

properly configure it, therefore the latest version of the WeMo
app can still send requests to arbitrary origins. We suggest that
developers should re-configure this plugin, by only allowing
requests for domains relevant to WeMo’s remote access server.

d) Input sanitization: CSP is capable of prohibiting
unexpected URL requests and is usually configured on the server
side. However, this mechanism sometimes cannot be harnessed
correctly by developers, especially when a web app needs plenty
of cross-origin resources and developers have to set relatively
general rules. More importantly, this mechanism itself cannot
eliminate XSS injection points, but only restrict requests. Uber’s
website was once vulnerable to a XSS attack in spite of the
existence of CSP headers [17]. XSS could be triggered due to a
latent injection point and relatively permissive CSP rules. Hence,
it is still necessary to implement input sanitization for the purpose
of fully eliminating possible injection points. We recommend
that WeMo developers, and in general developers of mobile apps
for IoT device control, use an open-source XSS-sanitization
module, such as js-xss [18], to accomplish this.

Belkin are addressing the last two points through a UPnP
implementation update, which will include a secure element
to be required by firmware and apps for local communication.

VII. CONCLUSION

In this paper we undertook a security analysis of the Belkin
WeMo ecosystem. We reverse engineered the official mobile app
and communication protocols, which enabled us to uncover how
home Wi-Fi passphrases can be leaked. We further showed how
an attacker can emulate a fake device, and continue to exploit
XSS to lure the user into disclosing personal information. Based
on our findings, we gave a set of recommendations that can
help mitigate the vulnerabilities identified and prove useful to
the home automation industry at large.

REFERENCES

[1] Research and Markets, “Home automation system market - global forecast
to 2022,” April 2017.

[2] Q. Yan et al., “A Multi-Level DDoS Mitigation Framework for the Industrial
Internet of Things,” IEEE Comm. Mag., vol. 56, pp. 30–36, Feb 2018.

[3] P. Morgner et al., “Insecure to the Touch: Attacking ZigBee 3.0 via
Touchlink Commissioning,” in Proc. ACM WiSec, pp. 230–240, 2017.

[4] J. Classen et al., “Anatomy of a Vulnerable Fitness Tracking System: Dis-
secting the Fitbit Cloud, App, and Firmware,” ACM IMWUT, March 2018.

[5] M. B. Barcena and C. Wueest, “Insecurity in the Internet of Things,”
Security Response, Symantec, 2015.

[6] J. Tanen, “Breaking BHAD: Getting Local Root on the Belkin WeMo
Switch,” Apr 2016.

[7] D. Buentello, “Belkin Wemo - Arbitrary Firmware Upload,” Apr. 2013.
[8] M. Davis, “Belkin WeMo Home Automation Vulnerabilities,” July 2014.
[9] N. Dhanjani, Abusing the internet of things: blackouts, freakouts, and

stakeouts. O’Reilly Media, Inc., 2015.
[10] V. Sivaraman et al., “Network-level security and privacy control for

smart-home IoT devices,” in Proc. IEEE WiMob, pp. 163–167, Oct. 2015.
[11] S. Tenaglia, “Breaking BHAD: Injecting Code into the WeMo App Using

XSS,” Apr. 2016.
[12] A. Das et al., “The tangled web of password reuse.,” in NDSS, 2014.
[13] J. Clark and P. C. van Oorschot, “SoK: SSL and HTTPS: Revisiting Past

Challenges and Evaluating Certificate Trust Model Enhancements,” in
IEEE Symposium on Security and Privacy, pp. 511–525, May 2013.

[14] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[15] E. Lafortune, “ProGuard.” https://sourceforge.net/projects/proguard/, 2018.
[16] W3C, “Content Security Policy Level 3.” https://www.w3.org/TR/CSP3/,

Sept. 2016.
[17] StamOne, “DOM XSS - auth.uber.com,” Oct. 2017.
[18] Z. Lei, “XSS - Sanitize untrusted HTML with a configuration specified

by a Whitelist,” 2018.

