
Multi-Provider Secure Processing of Sensors Data
Enrico Bacis∗, Sabrina De Capitani di Vimercati†, Dario Facchinetti∗, Sara Foresti†,

Giovanni Livraga†, Stefano Paraboschi∗, Marco Rosa∗, Pierangela Samarati†
∗ Università degli Studi di Bergamo, Italy – Email: name.surname@unibg.it
† Università degli Studi di Milano, Italy – Email: name.surname@unimi.it

Abstract—We describe the implementation of an approach
for supporting secure query processing over sensors data in a
multi-provider scenario. Our solution relies on the definition
of authorizations regulating access to data according to three
different visibility levels (no visibility, encrypted visibility, and
plaintext visibility). Data processing is performed by multiple
providers based on the restrictions imposed by authorizations,
which may require to adjust data visibility on the fly. We describe
the structure of the query optimizer and show how the operations
of a computation can be assigned to different cloud providers to
build an efficient, secure, and economical plan for collaborative
data processing.

I. INTRODUCTION

Sensors pervasiveness makes it possible to collect huge
amounts of data for the most diverse services and uses.
The management of such data requires to address several
challenges related to their storage, sharing, and processing
[1]. In many cases, it is critical to perform complex analysis,
possibly integrating data coming from different sources, in
an efficient and secure way. In fact, sensors may generate
sensitive information [2] that not all parties can access and
may also be subject to law restrictions, such as those imposed
by the EU General Data Protection Regulation (GDPR). The
availability of modern and flexible distributed frameworks
(e.g., Apache Spark [3]) permits to build efficient solutions
able to manage large data collections in multiple formats
and under the control of different authorities, using tools
compatible with the structure of cloud architectures.

In this paper, we address the problem of supporting a
secure and efficient query processing over data collected and
controlled by different parties (data authorities). In particular,
our reference scenario (Figure 1) is characterized by mul-
tiple data authorities collecting data from sensors that aim
to collaborate for the evaluation of queries over their data,
possibly involving cloud providers that offer computing power
at limited prices but that are not necessarily fully trusted to
access the data content [4]. Our approach allows the data
authorities to independently define authorizations over their
data regulating their release to users, other data authorities,
and cloud providers. Such authorizations can grant plaintext
or encrypted visibility over the data. Query processing can
then involve different data authorities and/or cloud providers,
according to authorizations, to minimize economic costs or
maximize performance. On-the-fly encryption/decryption is

This work was supported by the EC within the H2020 Program under grant agreement
825333.

Fig. 1. Reference scenario

applied to allow or to block data visibility as required by
the authorizations and the operation requirements. To perform
complex data analysis, our approach supports the integration of
User Defined Functions (UDFs) with traditional SQL queries.
UDFs are modeled as black boxes that correspond to procedu-
ral computations constructed using a variety of programming
languages and paradigms.

In the remainder of this paper, we describe the query
optimizer designed for manipulating and transforming query
plans to satisfy the authorizations and to apply the correct
protection technique. We design a two-step cost optimizer that
is easily pluggable within a real query optimization chain. Our
implementation demonstrates the advantages of collaborative
query execution in the open cloud market and shows the
effectiveness of a two-step query optimization approach, which
integrates security requirements while balancing the economic
cost of query execution and optimization times. With our
solution, an organization can take advantage of inexpensive
computing power to bring down the costs and increase the
flexibility and scalability of data analysis in sensor networks.

II. REFERENCE MODEL

We assume that the data collected and controlled by data
authorities are organized in relational tables and that com-
putations and analysis over these data can be expressed as
SQL queries, extended to support arbitrary UDFs. Figure 2(a)
illustrates an example of two relation schema storing informa-
tion generated by a portable ECG monitor and a fit tracker.
To enable data authorities to specify which subject (i.e., data

HEART(Date, ECG, Alert) ; ACTIVITY(Day, Steps)
(a) Relations schema

SELECT UDF(ECG, Steps)
FROM HEART JOIN ACTIVITY

ON Date = Day
WHERE Alert = ‘true’

(b) Query

[{Date}, {ECG}] → Amazon
[, {Day, Steps}] → Amazon
[{Date}, {ECG, Alert}]→ Google
[{Day}, {Steps}] → Google

./Date=Day

UDF(ECG,Steps)

Heart(Date,ECG,Alert) Activity(Day,Steps)

σAlert=0true0

(c) Authorizations (d) Query tree plan

Fig. 2. Running example

authority, cloud provider, final user) can access their data, in
plaintext or in encrypted form, we rely on the authorization
model in [4]. According to this model, an authorization
[P,E] → S over relation R allows subject S to access the
set P of attributes in plaintext and the set E of attributes in
encrypted form. S is not authorized for all the other attributes
in R. For instance, authorization [{Date}, {ECG}]→ Amazon
in Figure 2(c) states that Amazon has plaintext visibility over
Date, encrypted visibility over ECG, and no visibility over
Alert.

Each relation (base or resulting from the evaluation of a sub-
query) is associated with a profile modeling its information
content. The profile of a relation includes plaintext attributes,
encrypted attributes, and equivalence relationships among at-
tributes (i.e., attributes involved in a condition comparing
them). Indeed, the values of attributes compared in query
evaluation are related in the resulting relation, and are all
exposed even if the schema includes only one of them. Note
that a relation profile keeps track of attributes represented
both explicitly (i.e., appearing in the schema) and implicitly
(i.e., involved in conditions or grouping) in the relation. For
instance, consider the query in Figure 2(b), the relation profile
of the result includes ECG and Steps, explicitly represented
in the relation schema, but also Alert and the equivalence
between Date and Day.

A subject S is authorized to access a relation R iff S
has: i) plaintext visibility over (visible and implicit) plaintext
attributes in R’s profile; ii) plaintext or encrypted visibility
over (visible and implicit) encrypted attributes in R’s profile;
iii) uniform visibility over equivalent attributes (i.e., either
plaintext or encrypted visibility over all equivalent attributes).
Given a query formulated by a final user and its query tree
plan (e.g., see Figure 2(d)), it is necessary to assign each
operation in the tree to a subject respecting the authorizations,
while maximizing performance and minimizing economic
costs. Note that, as illustrated in [4], encryption can be
profitably used to enable the assignment of operations to less
expensive, but also less trusted, cloud providers. For instance,
considering the example in Figure 2, encryption of attribute
ECG would enable Google to evaluate the selection condition.
The working of query optimizers, traditionally designed to
maximize performance [5]–[7] needs then to be revised to
enable the enforcement of authorizations, the injection of

Performance
optimizer

Plan
generator

UDF
manager

Query optimization

Statistics
module

Security
enforcer

Recursive
allocator

Economic
cost optimization

Query Single-provider
optimized plan

Multi-provider
query plan

Fig. 3. Two-phase optimization process: i) single-provider optimizer (light
blue), ii) economic cost optimizer (orange)

encryption/decryption operations in the query evaluation plan,
and the minimization of economic costs (see Section III).

III. QUERY OPTIMIZER: IMPLEMENTATION

Given a query, we aim at generating a query plan that
minimizes economic costs. Building on the Apache Spark
SQL [8] optimizer, we propose a solution based on a two-
phase approach (Figure 3). Intuitively, in the first phase the
optimizer computes an optimal plan assuming the presence
of a single provider, authorized for plaintext visibility over
all base relations. The second phase is dedicated to economic
costs optimization, by assigning operations to cloud providers,
possibly introducing encryption/decryption operations to guar-
antee authorization enforcement. The estimation of the eco-
nomic cost takes into consideration relational operations/UDFs
execution, data encryption, and data transfer. The main advan-
tage of our approach, compared to solutions aimed to integrate
authorization enforcement and cost optimization in existing
query optimizers, is that it can be easily integrated with
existing DBMSs without the need to redesign their internal
architecture and modules.

A. Cost optimizer

The economic cost optimizer first performs preliminary
checks (e.g., on attribute names) and builds an oracle plan,
by extending the single-provider plan with UDF time statistics
and authorizations. The structure of the oracle is then cloned,
to keep track of assignment attempts. Indeed, for each operator
in the query plan, the economic optimizer aims at identifying
the best candidate among the available cloud providers, that
is, the provider minimizing economic costs of query evalu-
ation. Our solution for the design of an efficient economic
cost optimizer adopts a greedy approach, choosing for each
operation the candidate that minimizes the evaluation cost of
the considered operation. Such an approach identifies a good,
even if not always optimal, assignment of operations to cloud
providers. The assignment process performs a post order visit
of the query tree plan and, for each operation, it performs the
following four steps (see the state machine in Figure 4).

Operation
fetch

Wrapping
generation

Encryption
application and

simulation

Assignment

Forced
 assignment

Pop
stack

pass

fail
Recursive
correction
procedure

pass
Pop

stack

fail

Push
stack

Oracle
clone

Oracle

Oracle
clone

Oracle
clone

Push
stack

Binary search
exploration

doubt

Fig. 4. State machine description of the operators assignment algorithm

1) Identify valid candidates: the algorithm identifies the set
of cloud providers that satisfy both the authorizations
and the execution needs, assuming the possibility to
inject encryption and decryption operations.

2) Estimate economic costs: the algorithm simulates the
operation execution by the candidate and generates
the profile of the resulting relation, extended with an
estimate of the economic cost.

3) Check uniform visibility: since some operators compare
or combine attributes, the algorithm verifies the au-
thorization policy also a posteriori, to check whether
uniform visibility is satisfied [4], and possibly restricts
the set of valid candidates.

4) Assign candidate: the algorithm, according to the greedy
approach, assigns the operation to the valid candidate
with the lowest economic cost.

Note that the algorithm does not generate an assignment
with economic cost greater than the cost of the single-provider
plan. A recursive validation and cost correction procedure
is triggered when the assignment strategy fails to identify
a multi-provider strategy with lower cost than the single-
provider one.

B. Prototype

We developed a prototype to demonstrate the effectiveness
of the proposed cost optimization method described above1.

The required input files to run the optimizer are:
• Query.xml: the single-provider plan produced by the

query optimizer;
• DB.xml: the database schema;
• Providers.xml: the authorizations and the economic

costs of cloud providers.
The result produced by our optimizer is a multi-provider

plan that minimizes the cost (accordingly to the greedy strat-
egy), while satisfying authorizations. The result also speci-
fies the encryption and decryption operations extending the
original query plan. The tool currently understands relational
algebra and custom UDF operators, and supports the following

1The code is publicly available at https://github.com/unibg-seclab/query-opt

TABLE I
COST ESTIMATE FOR EACH UDF COMPLEXITY, FOR EACH MODE

UDF complexity Single-P Multi-P Multi-P no_uvr
linear 0.041$ 0.041$ (0.0%) 0.022$ (53.7%)

pseudo-linear 0.047$ 0.019$ (40.4%) 0.019$ (40.4%)
quadratic 3.465$ 3.465$ (0.0%) 0.497$ (14.3%)

three operation modes: debug_mode, which produces a full
stack report of execution, depth_mode, which performs an
exhaustive search over the space of alternatives by setting up
the maximum height of a binary prefix tree, no_uvr, which
removes the uniform visibility condition from authorization
enforcement.

C. Experimental results

Since there is no industrial benchmark that models a hybrid
workload (i.e., no TPC benchmark includes UDFs) we created
a set of demo plans (see the repository for full details). The
demo set includes queries with three types of UDF complexity:
linear, pseudo-linear, and quadratic.

The tests have been executed on an Intel i5 server with
16 GB memory and SSD drive running Ubuntu 18.04 LTS. A
summary of the computed economic costs for query evaluation
is shown in Table I. The average cost optimization time is
26.9ms, which is compatible with the needs of most applica-
tions.

IV. CONCLUSIONS

We have described the implementation of a two-steps query
optimizer for supporting secure and efficient query processing
in a multi-provider scenario. The experimental evaluation of
our approach has shown its effectiveness, especially for com-
putations of high complexity. Our work, therefore, shows how
to support efficient large-scale analysis by taking advantage of
economically convenient cloud provider.

REFERENCES

[1] M. Jahan, S. Seneviratne, B. Chu, A. Seneviratne, and S. Jha, “Privacy
preserving data access scheme for iot devices,” in Proc. of IEEE NCA,
Cambridge, MA, USA, 2017.

[2] D. Christin, A. Reinhardt, S. S. Kanhere, and M. Hollick, “A survey on
privacy in mobile participatory sensing applications,” Journal of systems
and software, vol. 84, no. 11, pp. 1928–1946, 2011.

[3] “Apache spark,” https://spark.apache.org/, accessed: 2018-11-26.
[4] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Para-

boschi, and P. Samarati, “An authorization model for multi provider
queries,” PVLDB, vol. 11, no. 3, pp. 256–268, 2017.

[5] A. Rheinländer, U. Leser, and G. Graefe, “Optimization of complex
dataflows with user-defined functions,” ACM CSUR, vol. 50, no. 3, p. 38,
2017.

[6] G. Graefe, “Volcano – an extensible and parallel query evaluation system,”
IEEE TKDE, vol. 6, no. 1, pp. 120–135, 1994.

[7] M. A. Soliman, L. Antova, V. Raghavan, A. El-Helw, Z. Gu, E. Shen,
G. C. Caragea, C. Garcia-Alvarado, F. Rahman, M. Petropoulos et al.,
“Orca: a modular query optimizer architecture for big data,” in Proc. of
ACM SIGMOD, Snowbird, UT, USA, 2014.

[8] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql: Relational
data processing in spark,” in Proc. of ACM SIGMOD, Melbourne, VIC,
Australia, 2015.

