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Abstract—Recently, we have witnessed the emergence of in-
termittently powered computational devices, an early example is
the Intel WISP (Wireless Identification and Sensing Platform).
How we engineer basic security services to realize mutual au-
thentication, confidentiality and preserve privacy of information
collected, stored and transmitted by, and establish the veracity
of measurements taken from, such devices remain an open
challenge; especially for batteryless and intermittently powered
devices. While the cryptographic community has significantly
progressed lightweight (in terms of area overhead) security prim-
itives for low cost and power efficient hardware implementations,
lightweight software implementations of security primitives for
resource constrained devices are less investigated. Especially, the
problem of providing security for intermittently powered compu-
tational devices is unexplored. In this paper, we illustrate the
unique challenges posed by an emerging class of intermittently
powered and energy constrained computational IoT devices for
engineering security solutions. We focus on the construction and
evaluation of a basic hash primitive—both existing cryptographic
hash functions and non-cryptographic hash functions built upon
lightweight block ciphers. We provide software implementation
benchmarks for eight primitives on a low power and resource
limited computational device, and outline an execution model for
these primitives under intermittent powering.

Index Terms—Hash functions, Benchmarks, Ultra low power
microcontrollers, Power harvesting, Computational RFID, Inter-
mittently powered devices, Energy constrained devices, Intermit-
tent execution model

I. INTRODUCTION

The realization of new applications from studying the
behaviors of bees [1] to healthy aging of our species [2]
with tiny computing and sensing devices are providing the
impetus for new growth areas in the field of Internet of Things
(IoT). However, provisioning of fundamental security services
such as authentication, confidentiality and message integrity
remains a challenge for resource limited environments such
as with IoT devices.

Computational batteryless or passive technologies, exem-
plified the Intel WISP and the Farsens Spider illustrated
in Fig. 1, are a class of emerging low power embedded
systems and communication technologies attracting increasing
attention from both academia and industry sectors driven by
their ability to operate, potentially, indefinitely and often in

(a)

(b)

Fig. 1. Examples of intermittently powered computations and energy con-
strained devices operating on harvested power. (a) Intel CRFID device:
WISP4.1DL [4], [5]; and (b) Farsens Spider CRFID device [6].

deeply embedded applications [3] where battery replacements
are not practicable. The challenge of providing basic security
services to this emerging class of devices employing ultra low
power computing platforms is significantly more difficult as
a result of intermittent powering, and severe computation and
energy limitations.

To date, mostly hardware cost minimization—implementing
security primitives with, for example, less transistors for
application specific integrated circuits (ASICs)—is considered
for realization of lightweight security primitives. However, the
problem of supporting security services for tiny computational
platforms exemplified by low power and reduced instruction
set microcontrollers increasingly being used to realize Internet
of Things (IoT) devices has received less attention; while,
the problem of providing security for intermittently powered
computational devices is unexplored.

In this paper, we investigate the unique challenges posed
by an emerging class of intermittently powered computations
and energy constrained computational devices for engineering
security solutions. While encryption and decryption primitives
for ultra low power microcontrollers have received some
attention [7], [8], we focus on the unexplored software im-
plementation and evaluation of hash primitives—both existing
hash functions and non-cryptographic hash functions built
upon lightweight block ciphers—on ultra low power micro-
controllers suitable for energy constrained devices. For the firstc© 2019 IEEE. Permission from IEEE must be obtained except personal usage.
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Fig. 2. (a) The generic architecture of an energy harvesting device and (b)
the intermittent power cycle (IPC) resulting from the reservoir capacitor’s
charge-discharge characteristics.

time and to the best of our knowledge, we provide benchmarks
of hash functions expected to yield a lightweight imple-
mentation in a reduced instruction set architecture (RISC)
microcontroller. It is hoped that such benchmarks will pro-
vide a useful guide to engineering crytographic solutions
for resource constrained devices. We also briefly discuss an
execution model for hash primitives based on [9] for operating
under intermittent powering. We begin with an illustration of
the unique challenges posed by intermittently powered and
resource limited devices.

II. INTERMITTENTLY POWERED PERVASIVE DEVICES

In contrast to depleting chemical energy in a battery, energy
harvesting and battery free devices scavenge power from
ambient sources, such as radio waves, vibrations, and solar
radiation or are remotely energized through wireless powering.
A generic architecture of a device operating on harvested
energy is shown in Fig. 2 (a). An input oscillating voltage is
rectified—and often boosted through a charge pump—to Vcap

and regulated to voltage Vreg used to operate a load, e.g., an
ultra low power microcontroller.

A. Intermittent Powering

A typical battery free device operation can be described by
the intermittent power cycle (IPC) illustrated in Fig. 2(b). The
voltage Vcap across the reservoir capacitor gradually ramps
up until Von, the startup voltage of the booster circuit. As the
regulator delivers the necessary power to the load, the charge
on the reservoir capacitor and hence Vcap is rapidly drawn
down, subsequently, the booster cuts off when Vcap drops
below Voff ; that is when the rectifier circuit cannot replenish
the reservoir capacitor faster than its draw down. When Vcap

falls below Voff , a brownout event occurs resulting in complete
state loss and restarting of the microcontroller—Load in Fig. 2.
Hence, only within the period highlighted in light blue, can
the Load be actually powered. Such a period is called the
intermittent power cycle (IPC), which is short and fragmented
over time in practice [9].

Fig. 3 demonstrates an example of intermittent powering
affects on the operation of a batteryless device running on
harvested power. In this example from [10], a WISP4.1DL
CRFID device is wirelessly powered and executing firmware
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Fig. 3. Sudden power loss of a CRFID device with two sensors. During
the sensor sampling operation, multiple occurrences of power loss (brownout
events) are observed (indicated by the green arrows).

to sample two on-board sensors—an accelerometer and a
barometer—and backscattering data to an RFID reader to
support sensor data retrieval; the sudden power loss event
during the sensor sampling process is highlighted by green
arrows. All operations must be completed prior to a brownout
event or within an IPC; otherwise the device will loose its
state immediately. This problem becomes more severe in
the engineering of a security layer given the computational
complexity and power consumption of security primitives.

Given a power loss event, the device will be rebooted
once the reservoir capacitor is charged and the control flow
restarts from the entry point of the application instead of the
moment before power failure. In the worst case, the application
program always encounters power failures, and may never
completely execute a task.

B. Available Clock Cycles

Given intermittent powering, devices are also limited by the
computations—measured by clock cycles—that can be exe-
cuted before a brownout event. Theoretically, available energy
to the load Elaod within one single IPC can be expressed by
(1), with ERF the energy available from the energy harvester
during an IPC, and C the reservoir capacitor’s capacitance.
This capacitor starts discharging when its terminal voltage
reaches Von, and stops discharging below Voff . Since C, Von

and Voff are all constant, when ERF � 1
2 · C · (Von − Voff)

2,
the energy available to the load is dominated by the size of
the reservoir capacitor. Otherwise, the reservoir capacitor is
replenished before getting discharged and the device could
operate continuously.

Eload =
1

2
· C · (Von − Voff)

2 (1)

Total available clock cycles Nck that the CPU could execute
before power loss can be expressed by:

Nck =
Eload

Pload
· fCPU (2)

with Pload the average power of the load including the
computational elements and sensors, and fCPU the selected
operating frequency of the CPU.
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Fig. 4. An experimental evaluation of the available clock cycle distribution
within a IPC of a batteryless WISP. Data was collected at 50 cm from a
radiating RFID reader antenna.

To quantify the available clock cycles within one IPC,
we follow the method and setup described in [11]. In our
measurement, a hash function is executed without any RFID
communications to reduce the influence from uncontrolled
variables—such as energy loss during backscattering, clock
frequency change when executing RFID protocol commands
and random inactive times due to the random time slot
selected for communicating with an RFID reader—on the
measurements. We can see the typical distribution of clock
cycles under intermittent operating conditions in Fig. 4. We
can see that due to reasons such as variable energy available
from the energy harvester ERF and the ability of power
harvesting circuits to replenish the reservoir capacitor, the
available number of clock cycles vary in practice.

III. RELATED WORK

Research studies have benchmarked block ciphers [7]
with clearly defined testing frameworks and publicly avail-
able source code aimed at embedded systems including
AVR8051 [12] and ATinny45 [13]. However, we observe that
the method of logging clock cycles is not explicitly mentioned;
for example, we can see differences in reported results between
[8] and [7].

Although, benchmarks such as the recent work in [14] which
consists of 22 password hashing functions, are reported for
desktop platforms, to our knowledge, there are no software
implementation benchmarks of hash functions on resource
limited microcontrollers. For resource constrained devices,
hash function evaluations have focused on hardware imple-
mentations such as on ASIC (application specific integrated
circuits) such as RFID ICs (integrated circuits) or FPGA (field-
programmable gate arrays) platforms as in [15], [16]. In our
study, we focus on recent ultra low power computing platforms
such as the the MSP430 series from Texas Instruments where
the need is to build lightweight—both in terms of computa-
tions and energy—security primitives such as hash functions
in software as opposed to hardware.

IV. EVALUATED HASH FUNCTIONS

We refer to existing hash functions as cryptographic hash
functions since their security has generally been well assessed.
In general, one-way compression functions built from block
ciphers can also be used to construct hash functions—for
a brief introduction see [29]. Among the methods used for
building one-way compression functions are the well known

TABLE I
A LIST OF HASH FUNCTIONS EVALUATED

Name Structure digest size (bits) Attack complexity Attack ref
BLAKE2s [17] HAIFA 256 C=2184 [18]
MD5 [19] M-D 128 C=218 (2-block),P=2123.4 [20], [21]
SHA-1 [22] M-D 160 C=263.1 [23]
SHA-3 [24] Sponge 256 C=285.3,P=2128 [25] [26]
DM-PRESENT [27] DM 64 C=229.18 [28]
DM-SPECK M-D 128
MMO-SPECK M-D 128
MP-SPECK M-D 128

Best known attacks against the cryptographic hash functions at the time
of writing. M-D: Merkle-Damgård construction, C: Collision resistance,
P:preimage resistance

Fig. 5. construction of hash functions using (a) Davies-Meyer (DM), (b)
Matyas-Meyer-Oseas (MMO) and (c) Miyaguchi-Preneel (MP) configuration.

constructions of Davies-Meyer (DM), Matyas-Meyer-Oseas
(MMO), and Miyaguchi-Preneel (MP)1. In this context, the
computational complexity of the constructed hash function
increases with the complexity of the underlying block cipher.
Therefore, we selected the SPECK block cipher since it
showed the least overhead—see evaluations in Table II. We
refer to hash functions we have derived based on compres-
sion functions built from lightweight block ciphers using
the popular Merkle-Damgård construction method as non-
cryptographic hash functions. The full list of all hash func-
tions evaluated in this work is summarized in Table I. Here,
BLAKE2s, MD5, and DM-PRESENT are cryptographic hash
functions. In the following, we describe the construction
of non-cryptographic hash functions: DM-SPECK, MMO-
SPECK, and MP-SPECK.
DM-SPECK: The configuration of Davies-Meyer (DM) com-
pression function based construction is depicted in Fig. 5 (a).
The input message m is first sliced into n blocks with k-bits
each—k is the key size of the cipher E. In case the message
is not an integer multiple of k, zero-padding is appended to
the end of the message m. At each DM compression stage,

1Although there are other methods as in [15], in this preliminary study, we
are interested in comparing the representative implementation overhead from
constructed hash functions from lightweight block ciphers with cryptographic
hash functions on a resource limited device. Therefore we will not discuss
details of hash function designs and limit ourselves to DM, MMO and MP.



the output hash value of the previous stage Hi−1 is fed into
E to obtain the intermediate value Vim. Subsequently, Vim is
XORed with Hi−1 to obtain Hi. A fixed initialization vector
(IV) is input at the initial stage.
MMO-SPECK: The Matyas-Meyer-Oseas (MMO) based
hash function configuration is depicted in Fig. 5 (b). Unlike
the DM construction, the message fragment mi is fed to the
plaintext port of the cipher E instead of the key port. The
output from the previous stage is first re-arranged through the
g function to match the size of key port of cipher E. The
output of E is XORed with message mi to produce the next
value Hi.
MP-SPECK: The Miyaguchi-Preneel (MP) is a variant of the
MMO configuration, where the next hash value Hi is obtained
by XORing the previous hash value Hi−1 with Vim and mi.

Notably, when dealing with necessary a-size-to-b-size bit
length conversions in the implementation of the g function,
we can follow two types of implementations: i) padding zeros;
and ii) duplicating inputs to perform a n-to-2n mapping.

V. BENCHMARKING

A. Hash Function Implementations

We selected the MSP430FR5969 microcontroller (MCU) for
evaluating the performance of software based hash function
implementations. We selected this 16-bit ultra low power MCU
due to the following attributes:

• 100 µA/MHz active mode current: low energy consump-
tion per clock cycle and, thus, the possibility to execute
more instructions within one IPC.

• 0.25 µA sleep mode current with an RTC (real-time
clock): low power deep sleep mode can be used to
accumulate harvested energy for future computationally
intensive tasks whilst preserving state.

• 64 KB of on-board FRAM (ferroelectric random ac-
cess memory) based non-volatile memory: FRAM can
be operated under a low supply voltage compared to
more popular non-volatile memories such as EEPROM
(electrically erasable programmable read-only memory).
Thus, more suitable for energy limited platforms.

• Good compiler tool chain support.
All ciphers and hash implementations in this paper are

coded under the C99 standard. Majority of the code used is
based on an open source repository from [30] after fixing cer-
tain software bugs. The test environment is the TI CCS (Code
Computer Studio) 7.2.0 with candidate code being downloaded
to a MSP430FR5969 LaunchPad Evaluation Kit via a USB
interface. TI CCS provides a built-in GCC tool chain for
the hardware kit, which includes the GNU 6.4.0.32 win32
compiler.

B. Benchmark Metrics

The clock cycles required to complete a hash function
operation is the most significant measure. The clock cycles
are read out with the Profile Clock tool supported in the
CCS environment. For a fair comparison, the clock cycles

are normalized as clock cycles per byte. Two different input
message sizes are considered: a short message (Short) of
10 Bytes (notably, MD5 has 64 byte block size, and hash
functions constructed from SPECK has a 16 byte block size),
and a long message (Long) of 1,280 Bytes. The short message
can be digested within one single hash iteration. The dominant
factors in Short message performance is the initialization
string padding and data input/output. In the Long message
test, the message size is much larger than the block size and
the dominant factor influencing performance is the multiple
compression processes.

Memory footprint comprising of ROM usage and RAM us-
age is the other performance metric. ROM usage is indicative
of the code size, and the RAM usage represents the size of
the internal state necessary for the algorithm. The code size
was read from the .text block in FRAM using the Memory
Allocation tool in CCS, while the internal state was manually
counted for any local variables declared within the algorithm
routine.

C. Block Cipher Performance

The performance results of tested block ciphers are detailed
in Table II. Overall, we can observe that SPECK demonstrates
the best performance. This is the main reason that it is chosen
for constructing the non-cryptographic hash functions.

TABLE II
BLOCK CIPHER PERFORMANCE WITH COMPILER SETTING (-OS)

Name Block size Cycle count Cycle per byte ROM usage RAM usage
AES128 128 26822 1676 1136 18
Camellia 128 42959 2685 19866 268
CLEFIA 128 70658 4416 1784 292
LBlock 64 18769 2346 704 10
LEA 128 16646 1040 1678 44
PRINCE 64 14916 1865 1006 22
SEA 96 65177 5431 660 18
SIMON 64 13198 9939 326 5
SPECK 64 9939 1242 306 1
XTEA 64 24423 3053 410 24

D. Non-cryptographic Hash Functions: Security Performance

Unlike the cryptographic hash functions, the hash func-
tions built upon block ciphers might not necessarily pertain
the desirable security properties of a hash function. In this
context, we first assess their security related properties using
statistical tests, where the test suite SMHasher2 designed to
evaluate security performance of non-cryptographic functions
is adopted. The security performance is, in general, assessed
through evaluating the distribution and the collision properties
of the non-cryptographic hash functions. We briefly describe
these tests below.
Avalanche Tests: The avalanche test evaluates the degree to
which a hash value is affected by a single bit flipped in the
message.
Differential Tests: For all possible small n-bit subsets of a
k-bit key, generate 1,000 random key pairs that differ in only
those n bits and assess if any hashes to the same value; if so,

2https://github.com/aappleby/smhasher

https://github.com/aappleby/smhasher


TABLE III
EVALUATION RESULTS OF HASH FUNCTIONS

Hash
Security Performance1

Avalanche Cyclic TwoBytes Differential Sparse Permutation Window Zeros
Col. Dist. Col. Dist. Col. Dist. Col. Dist. Col. Dist. Col. Dist. Col. Dist.

MD5 0.78% 0 0.049% 0 0.493% 0 N/A 0 0.127% 0 0.096% 0 N/A 0 0.493%
DM-SPECK 0.84% 0 0.037% 66369615 36.633% 0 N/A 0 0.103% 2392648 1.548% 0 N/A 61440 66.149%
MMO-SPECK 0.81% 0 0.049% 66369615 36.621% 0 N/A 0 0.104% 2392648 15.639% 0 N/A 61440 66.260%
MP-SPECK 0.81% 0 0.051% 66369615 36.621% 0 N/A 0 0.108% 2392648 15.630% 0 N/A 61440 66.228%

Hash
Implementation Footprint

Clock per Byte ROM usage RAM usageShort. Long.
BLAKE2s 3423 485 3606 108
MD5 1020 84 7328 54
SHA-1 4882 760 16518 116
SHA-3 79338 6217 1430 410
BMW 4801 311 17742 138
DM-SPECK 9642 6020 1494 70
MMO-SPECK 9520 6020 1542 70
MP-SPECK 9642 6021 1542 70

1We assume that cryptographic Hash functions such as Blake2s, SHA-1, SHA-
3 have been well designed and verified; here we only test MD5 as a baseline.

the hash function is prone to far more collisions than expected.

Keyset Tests: A set of keys are generated, hashed and the
resulting hash values are analyzed. The keyset tests generally
assess: i) how evenly the hash values spread over the 2n-
bit space; and ii) how often unrelated keys produce identical
hash values. Overall, the keyset test results are measured by:
i) collisions; and ii) distribution.

Collision (abbreviated as Col. in Table III), measures the
degree to which more than one message shares the same hash
value. Ideally, a hash function should be free of collisions,
regardless of the format of the input message. In practice,
the probability of finding a collision is given by Pcol in (3)3

where k is the the number of hashed values, and N is the total
number of possible hash values (for example, N = 2128 for a
hash with a 128-bit binary output).

Pcol ≈ 1− exp

(
−k(k − 1)

2N

)
(3)

Ideally, if one bit in the message vector is flipped, each bit
in the hash output should have an equal probability (50%) of
flipping its value. In the distribution measure (abbreviated as
Dist. in Table III), 0% implies that message bit information
is perfectly distributed across all hash value bits, and 100%
implies that at least one hash value bit ether has a direct
correlation with one specific message bit; or the hash value
is not affected by any message bit. A high distribution value
implies information leakage through the hash function.

E. Results

The tested results in terms of clock cycles per byte and
memory footprint are summarized in Table III. In terms
of clock cycle performance, we can observe that standard
cryptographic hash functions always outperformed the non-
cryptographic counterparts constructed from the lightweight

3https://preshing.com/20110504/hash-collision-probabilities/

SPECK block cipher, while the MD5 exhibits the best perfor-
mance among all tested hash functions. In terms of memory
footprint, the non-cryptographic hash functions appears to
have better performance than standard cryptographic counter-
parts.

However, SPECK non-cryptographic hash functions display
notable collisions in the TwoBytes, Permutation and Zeros
keyset tests. Meanwhile, non-cryptographic hashes tends to
present large undesirable bias in TwoBytes and Zeros keyset
tests. Although these results are not unexpected, we have found
that the construction of a hash from the lightweight block
ciphers we have evaluated have not delivered a lightweight
hash function in a soft implementation.

Therefore, based on the set of evaluation measures we have
employed, we can see that MD5 designed for software imple-
mentation provided the best overall suitability (performance
and security) for resource limited computational platforms.

VI. INTERMITTENT EXECUTION MODEL

Commodity MCUs generally support multiple operational
modes, including low-power (sleep) and power-down modes.
The intermittent powering leads to limited clock cycles within
an IPC, therefore, completion of e.g., hash, might not be
possible within one IPC. In this context, a low-power sleep
state [31] can be used to intermit execution to allow the reser-
voir capacitor restore its energy. This intermittent execution
model (IEM) can realize task execution in an energy limited
setting [9]. First, it stretches the time frame to complete the
task and hence allows the energy harvester to collect more
energy. Second, memory state is preserved during the low-
power sleep mode. IEM is illustrated in Fig. 6 (a-b) while the
success rate for performing BLAKE2s hash over a 1,280 byte
long message is shown in Fig. 6(c). We can see that the success
rate at the 40 cm operating distance is nearly tripled, and the
device could be used at a 60 cm range from an RFID reader
antenna; which otherwise would be unfeasible without IEM.

VII. CONCLUSION AND FUTURE WORK

In this work we have presented benchmarks for eight
software based hash function implementations aimed at re-
source constrained devices. Our benchmarks are evaluated on
a batteryless CRFID device. MD5 hash demonstrated the best
overall performance, in particular, clock cycle overhead; thus,
it is recommended4. In an energy constrained environment,

4We remark here that in many applications involving resource limited
devices, often, the security of the protocol impinges on the one-way property
and we do not need the property of collision resistance.
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Fig. 6. Vcap and intermittent power cycle (IPC) under (a) continuous
operation mode and (b) intermittent operation mode. (c) The success rate
of completing BLAKE2s-256 hash.

we advocate employing IEM to overcome the problems posed
by limited energy (clock cycles). Future work should con-
sider a more detailed investigation of non-crytographic hash
functions—including analyzing their security, optimizing code
to reduce the implementation overhead, further investigating
IEM settings along with their applicability and performance
improvements. Moreover, we have not considered side-channel
attacks, e.g., power- and timing-based, resilience when imple-
menting codes and we leave this for future work.
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