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Abstract—The communication technology revolution in this
era has increased the use of smartphones in the world of
transportation. In this paper, we propose to leverage IoT device
data, capturing passengers’ smartphones’ Wi-Fi data in conjunc-
tion with weather conditions to predict the expected number
of passengers waiting at a bus stop at a specific time using
deep learning models. Our study collected data from the transit
bus system at James Madison University (JMU) in Virginia,
USA. This paper studies the correlation between the number
of passengers waiting at bus stops and weather conditions.
Empirically, an experiment with several bus stops in JMU, was
utilized to confirm a high precision level. We compared our
Deep Neural Network (DNN) model against two baseline models:
Linear Regression (LR) and a Wide Neural Network (WNN). The
gap between the baseline models and DNN was 35% and 14%
better Mean Squared Error (MSE) scores for predictions in favor
of the DNN compared to LR and WNN, respectively.

Index Terms—IoT (Internet of Things), Transit Systems, Ma-
chine Learning (ML), Data Analytics, Intelligent Transportation
Systems (ITS)

I. INTRODUCTION

For the Transit Bus Management System, data-driven fleet
management strategies empowered by precise models that
predict the number of passengers waiting at the bus stops
are essential. On a university campus, students often have
to wait in additional time when a packed bus arrives. To
solve the problem, we have developed the Internet of Things
(IoT) system [1]] that estimates the number of passengers
by analyzing passengers’ smartphones’ Wi-Fi frames. Even
though the system can grasp the bus stop’s occasion, it still
has not been spun out from a research prototype with the lack
of feasibility in the real field. Other data sources captured from
the bus (e.g., camera feed) can be considered ground truth [2].

This paper proposes a machine learning utilization tech-
nique that employs the IoT passenger counter system to
provide the labeled training data. The learning phase inputs
the weather data, transportation information, campus schedule,
and the number of passengers waiting at the bus stop. After
building the machine learning model, it can estimate the
number of passengers without the IoT system. Our group
has noticed a significant relationship between the number of
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passengers waiting for the bus at a particular bus station and
the weather conditions. Using these machine learning models,
we can achieve a realistic fleet management system without
having IoT sensors installed permanently at each bus stop.
The experiment took place in public transit systems at James
Madison University (JMU) in Harrisonburg, Virginia, USA,
in Spring 2017. With a month of data collected at seven bus
stops, the Mean Squared Error (MSE) of Deep Neural Network
(DNN), Wide Neural Network (WNN), and Linear Regression
(LR) were 1.15, 1.34, 1.77, respectively. As a result of the
experiment, we achieved the best MSE with the DNN.

II. RELATED WORK

Several researchers have used IoT in the intelligent trans-
portation world. Applications inside cities such as Smart Park-
ing, Bus Monitoring have been easier to deploy with the inte-
gration of IoT devices to sense data [3]], [4]]. At the same time,
other highway applications (e.g., highway monitoring and
incident detection) advanced with the use of IoT devices [5]],
[6]. The IoT devices’ role has improved with the advance of
power batteries and reliability of IoT [[7]. Our system depends
on IoT devices to improve the public transit system’s quality
of service [8]]. Several researchers have integrated the power
of communication and public transportation to improve service
quality (e.g., ridership and waiting time in public bus transit)
[9], [10]. Dunlap et al. [9] estimated passenger origin and
destination (OD) information for transit lines using IoT sensors
to collect Wi-Fi and Bluetooth beacon.

The rise of data-mining-based studies and machine learning
techniques has recently improved research quality in many
fields. In Intelligent Transportation, Lathia et al. proposed a
machine learning technique to enhance the the passenger’s
ticket choice by studying travel history patterns and mining the
public transport fare data collected from the bus system [11]].
On the other hand, Amato et al. studied car parking occupancy
with deep learning techniques [|12]]. Tahere et al. predicted five
crowding levels with rich data such as ridership 15 minutes
ago [13]. Machine learning techniques and deep learning will
open the door toward more improvement to big data and data-
driven systems.

In this paper, we leverage machine learning models to study
bus ridership in one of the USA’s college cities. We integrate



several parameters such as class schedule and weather infor-
mation to predict hourly passengers waiting at bus stops.
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Fig. 1. System overview

III. FRAMEWORK

The proposed system estimates the number of passengers
with a machine learning technique taking as an input anony-
mous and abstracted Wi-Fi capture data at each bus stop and
weather data as shown in Figure[I} Some of the Wi-Fi captured
data might correlate with the number of persons since they
have a Wi-Fi enabled smartphone. On the other hand, we
should keep in mind the privacy concerns during capturing
Wi-Fi frames, including MAC addresses. Weather data is
also informative for estimating the number of passengers. For
example, students would not wait for a bus for several minutes
on a sunny day. The research question is whether the weather
data and the campus schedule data effectively work as an input
to machine learning for estimating the number of passengers.

A. System Design and Rational

The proposed system is based on an IoT cloud computing
model. The edge nodes are Raspberry Pi 3 (located at 7
different stations as shown in Figure [2) with a monitor mode
enabled Wi-Fi interface that captures frames and uploads them
to the cloud-based database. Since edge nodes do not require
heavy computational need, it works with a solar panel and
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Fig. 2. Edge nodes located through the bus route

a rechargeable battery. These edge nodes’ main functions
are to capture the unencrypted frames, anonymize the MAC
addresses with SHA-1, and upload the data to the cloud-based
database. The other processes work on the cloud as follows:

o Cleaning: Filter only the passengers’ smartphones
frames. Many Wi-Fi frames have noises due to MAC
randomization, smartphones passing by a bus stop, and
devices in personal vehicles and buildings.

o Learning: Training the model by learning weather data,
Wi-Fi sensor data, and some categorical information for
estimating the number of passengers waiting for the bus
at the bus stop.

o Estimating: Estimating the number of passengers from
weather information and categorical information.

Our system makes sure that only light processing tasks are
done on the edge nodes, while the heavy tasks of machine
learning and computing are done on the cloud. We installed
an IoT node at each bus stop to capture the Wi-Fi frames of
passengers’ smartphones. There are mainly two ways to set
the IoT devices in the field. One is to install them inside the
bus (hereafter call it mobile sensing), the other is to place
them at each bus stop (fixed point sensing). Estimating the
ridership is relatively easy with the mobile sensing against the
fixed point sensing because the mobile sensing can track all
the passengers inside the bus during driving. However, mobile
sensing has no way to know the number of passengers waiting
at the bus stop when the bus is not at the bus stop. The number
of required devices is the same as the number of buses and bus
stops with mobile sensing and fixed point sensing. The fixed
point sensing is reasonable in our field because the number of
bus stops is less than the buses.

TABLE I

WEATHER DATA
Name Content
dt Time of data calculation, unix, UTC
temp Temperature
feels_like Accounting for the human perception of weather
temp_min Minimum temperature among sensors in city
temp_max Maximum temperature among sensors in city
pressure Atmospheric pressure (on the sea level), hPa
sea_level Sea Level, meters
grnd_level Ground Level, meters
humidity Humidity, %
wind_speed Wind speed. Unit Default: meter/sec
wind_deg Wind direction, degrees (meteorological)
rain_1lh Rain volume for the last hour, mm
rain_3h Rain volume for the last 3h, mm
snow_1lh Snow volume for the last hour in liquid state, mm
snow_3h Snow volume for the last 3h in liquid state, mm
clouds_all Cloudiness, %
weather_id Weather condition id
weather_main Rain, Snow, Extreme etc.
weather_description | Weather condition within the group

B. Data Preparation

As described in Figure [I] the proposed system employs
four types of data for estimating the number of passengers:
the weather data (Table m) obtained from OpenWeather [|14]],



TABLE II
RAW SENSOR DATA

Name Type
Bus stop String
Date and time in UTC | YYYY-MM-DD hh:mm:ss
MAC Address 6 Octet
Signal Strength (dBm) | Integer

TABLE III

THE NUMBER OF PEOPLE DATA

Name Type
Bus stop String
Date and time in UTC | YYYY-MM-DD hh:mm:ss
Count Integer

the transportation data (e.g., the locations of the bus stops),
the campus schedule (e.g., class schedule), and the number of
people data converted from the raw data. Table [[] shows the
specification of the raw data. The IoT sensor data is cleaned
and transformed into the number of people data (Table [[TI) to
feed the machine learning. In the training phase, the machine
learning model inputs all the data, while in the testing phase, it
does not input the passenger count data since it is the expected
output of the model.
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Fig. 3. Overview of the segmentation and the filtering

We have cleaned the data as follows:

1) Random MAC Address: For a privacy measure, i0OS 8
and Android 8 started to provide a MAC randomization
feature, randomizing a source MAC address when the
device is trying to find a Wi-Fi network with a probe
request frame. When we identify the devices with the
probe request frame, the random MAC address will be
noise. We have removed such frames by checking G/L
and /G bits in the MAC address. [1]

2) MAC Addresses observed at only one bus station:
The passengers’ smartphone’s Wi-Fi frames should be
captured at two or more bus stations. If a MAC address is
found at only one bus stop, we assume that a person only
passed by the bus stop or a device is installed around the
bus stop (e.g., Wi-Fi enabled PC in a building). We know
that a passenger phone battery may die while riding the
bus; we assume that this case can be ignored with big
data.

'Our data collection was done while iOS versions implementing random-
ization were not yet released.
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Fig. 4. MAC addresses every minutes at 017 (PhysChem) on 4/21

3) Segmentation and filtering based on the duration:
As shown in Figure [3] samples are split into segments
with a given threshold time. If the segment’s period is
shorter than Dy, or longer than Dy, it is discarded.
The rest of the segments will be stored in the cloud-
based database.

4) Unrealistic RSSI: Usually, the waiting passengers’
length is within ten or more meters. In this condition,
Received Signal Strength Indication (RSSI) will be in a
certain range.

Figure [ shows the result of cleaning the data of bus stop 017
(PhysChem) on April 21% in 2017. We used 2 and 30 minutes
for Dpin and Diax, respectively. And we assumed the RSSI
range for capturing Wi-Fi frames from smartphones within 10
meters is between -30 dBm and -80 dBm. Against the raw data
shows the unrealistic numbers of unique MAC addresses all
over the time, the cleaned data shows like a transition of the
number of passengers in a day. Though we have not confirmed
the cleaned data’s correctness due to the lack of the ground
truth, it will be no problem because it is generally consistent
with the trends we have seen visually at the bus stop.

To prepare machine learning data, we derived features (e.g.,
academic week) as a week of the semester from the date.
Also, we derived the morning/evening feature from time. We
further created dummy variables for all values of categorical
features (e.g., weather_description and Bus_stop) in Tables E|
and [l respectively. For example, the weather_description
having ”Rain” and ”Cloud” will be True/False values of
weather_description_Rain, and weather_description_Cloud.

C. Machine Learning

For the Transit Bus Management System, data-driven fleet
management strategies empowered by precise models that pre-
dict the number of passengers waiting at transit bus stops based



on real-time weather conditions are essential. For example, the
system could suggest dispatching many buses to a particular
route depending on the weather conditions, instead of hav-
ing near-empty buses some days and full one’s others. We
highlight the following machine learning techniques: Linear
Regression (LR) analysis is a predictive modeling technique
that estimates the relationship between two or more variables.
Recall that a correlation analysis does not assume the causal
relationship between two variables.

Y= f(Xi,0) +¢ 9]

where for k features and n data points, ¢ = 1,...,mn and 6 =
(01,...,0k)T is the vector of the parameters to be estimated.
The error ¢; are with a mean equal to zero and an unknown
o2. LR can be used when the features measured have a linear
correlation with the dependent variable. Since not all features
are having a linear relationship with the passengers’ count to
be predicted, it is expected that good results cannot be obtained
using a plain LR model.

Classification and regression trees (CART) are binary deci-
sion trees. The tree is constructed by splitting the entire data
into subsets by using all the independent variables. The goal is
to produce terminal leaves that are as homogeneous as possible
with respect to the target variable. Regression trees can be
notable accurate in the case of nonlinear problems. For every
node ¢, 1/n Y 7, (Y; — Y;(t))? is the node sum of squares. In
other words, it is the total squared deviations of Y; in ¢ from
their average. The regression tree is formed by splitting the
nodes iteratively so that the decrease in R(T) is maximized,
where R(T) sums up all the sums of squares within all the
nodes.

Neural networks (NN) are models in which input features
flow through hidden layers towards the output [[15]. The neural
network learns new feature spaces by first computing the affine
(linear) transformations of the given inputs and then applying
a nonlinear function (rectified linear unit ReLU), which will be
the next layer’s input. This process will continue just before the
output layer when a linear transformation will be applied for
predicting the hourly passenger demand. NN with no hidden
layers can only learn how to solve linearly separable problems.
NN with two or more hidden layers capture non-linearity
is a natural aspect. NN with three hidden layers is usually
considered a deep-neural network. For this study, we expect
the performance of a deep neural network (DNN) model that
consists of an input layer, three hidden layers, and an output
layer to outperform LR, CART, and Neural Networks with one
hidden layer (WNN).

In the first layer, layer 1 of the NN architecture, each
neuron receives a set of X-values (numbered from 1 to n)
from input vector X and computes the predicted Y value.
Vector X contains the weather’s value and the bus features,
for one example, from the training set. Each node in layer
1 has its own set of parameters, usually referred to as W
(column vector of weights) and b (bias), as shown in Figure@
In each iteration, the neuron calculates a weighted average of

X Z=WT.X+b

l
(| >

Fig. 5. Neural Network Neuron

TABLE IV
EXPERIMENTAL DATA SPECIFICATION

Name Value
Date From 2017-04-05 to 2017-05-04
Bus stops 7
Raw data records 210,161,203
Cleaned data records 9,981,883

the vector X, based on its current weight vector W. Then, it
adds bias where weights and bias change during the learning
process to minimize prediction error. Finally, the result of this
calculation is passed through a ReL.U.

The equation in Figure used X and }7, which are the
column vector of features and the predicted value, respectively,
for a node in layer 1. The X vector is, therefore, layer O (input
layer). When switching to the general notation for layer k,
like layer 2 and layer 3, we use a*=11 and a!*¥!, which are the
input to the hidden layer £ and the activated output predicted
value of layer k, respectively (activation function g used is
ReLU). Accordingly, for any hidden layer k& with n!*! neuron,
each neuron performs a similar calculation according to the
following equations:

ZM = W a1 4p, )
a)l = gM(z}") 3)

The activation function g for any hidden layer is ReLU,
except for the output layer, which is a linear function to predict
the hourly passenger demand. The model learns through
iterations of forward-feeding and backward propagation from
the input layer, hidden layers, to output and back. Back-
propagation is seen as a common approach where random
weights are assigned; the output seen is compared with the
test data; the output error is calculated comparing the two (i.e.,
actual output vs. expected output in MSE loss function). The
layer immediately closer to the output layer adjusts its weights,
leading to weight adjustments in the subsequent inner layers
until the error rate is reduced [15]. NN models extract features
by weight allocation and weight decay through iterations of
forward-feeding and backward propagation techniques.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We have collected the experimental data for a month, as
shown in Table IoT devices were installed at the seven
bus stops shown in Figure 2| from April 5" to May 4" in
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Fig. 6. Estimated numbers of passengers waiting at each bus stop with the
cleaned data.

0.3
3
5 0.2
£
>
=
=
20.1
0 . H E =
Bus Stop  Week Day  Pressure Minimum  Humidity Clouds Week of
Temperature Semester
Predictors

Fig. 7. Predictors Impurity Index

2017. Figure [6] shows the estimated numbers of passengers
waiting at each bus stop with the cleaned data. The numbers
of passengers were around 20.

The weather predictors (Table [) and the passenger counts
(Table I are recorded hourly and every second, respectively.
We aggregated the passenger counts data on an hourly basis
and averaged the reading for the predictors. We then merged
the aggregated bus data with the weather data to have our gran-
ularity of analysis on the hourly level. We further normalized
our data and derived new predictors like weekdays/weekends
and morning/evenings. We also extracted the week of the
academic semester from the date, which is shown to be
informative predictive features, as in Figure [7]

After the data preparation and transformation stage, we
benchmarked our DNN model (an input layer, three hidden

—— Training loss
—— validation loss
2.01
—~ 1.5 1
w
%)
=3
(%]
[
S
1.0 A1
0.5 1
0 20 40 60 80 100
Epochs
Fig. 8. Deep Neural Network MSE
—— Training loss
3.0 —— validation loss
2.5 A
m)
(2]
=3
~ 2.0
wn
3
1.5 1
1.0 1
0 20 40 60 80 100
Epochs
Fig. 9. Wide Neural Network MSE
layers, and one output layer) against baseline models: a

WNN model with one hidden layer only and traditional LR.
Unlike traditional computational intelligence approaches, deep
learning predictive performs much better with large datasets.
The model learns features to look for and to make better
predictions. We split the data randomly to 80% training and
20% testing.

For better prediction, we further fine-tuned the DNN and
WNN through another round of random splitting of the train-
ing dataset into 80% training and 20% validation. We then
plotted and analyzed the MSE of the training and validation
datasets for WNN and DNN over 100 epochs, as shown in
Figures [§ and

As a final step, and after fine-tuning the parameters of
NN models using the validation dataset, we compared the
DNN model against the two baseline models using the testing
dataset. The MSE for the testing dataset for the DNN model
was 1.15, compared to 1.34 and 1.77 for WNN and LR
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models, respectively, as shown in Figure @ We offer em-
pirical evidence on DNN models’ effectiveness for predicting
the hourly number of passengers waiting in bus stations by
achieving 35% and 14% better prediction for the DNN model
over LR and WNN models, respectively.

Furthermore, to study the influence of our dataset’s informa-
tive features, we use an ensemble of gradient boosting decision
trees. A benefit of using ensembles of decision tree methods
like gradient boosting is that they can automatically estimate
feature importance from a trained predictive model. Decision
trees provide more information about the relationships of the
features than a standard correlation index. We rank the pre-
dictive power of the input features, and we find that there are
seven most decisive features for partitioning the decision tree
to predict the number of passengers waiting at the bus stop.
The seven features as shown in Figure [/| are Bus Stop, Week
Day, Pressure, Minimum Temperature, Humidity, Clouds, and
Week of Semester. It summarizes the reduction in the impurity
index over all trees when a particular feature is pointed during
the trees’ internal space partition over several epochs.

V. CONCLUSION

This paper studied the correlation between the passengers
waiting at bus stations and the weather conditions using a deep
learning algorithm. This paper gives empirical evidence on the
importance of incorporating predictive modeling in intelligent
transportation to maximize fleet utilization. We highlighted
the importance of applying deep learning models to precisely
predict the number of passengers waiting at bus stops in
intelligent transportation systems. This research also leveraged
a broad set of features from IoT devices like smartphone Wi-
Fi data in conjunction with detailed weather information. Our
results show four of the top seven decisive features (Pressure,
Minimum Temperature, Humidity, and Clouds) were related
to temperature and weather. It gives empirical evidence on the
importance of weather information in influencing riders’ be-
havior and, hence, better predicting the number of passengers
waiting at the bus stops.

We studied only one month of campus-level data in 2017.
In future work, data collection could take place yearly and on
the city scale to confirm the generalization of the predictive
model’s performance. A limitation of this study is that we

did not take into consideration any unusual event like a
pandemic. In future work, we will incorporate data of 2020
and investigate more informative features. Among the features
to be explored are the government’s restriction levels (stay-at-
home, business is open with restrictions or no restrictions, etc.)
The study should also incorporate features like the number of
daily reported cases reported in the city and lockdown dates
to improve the prediction of the number of passengers waiting
at bus stops during the COVID-19 pandemic.
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