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Abstract—Understanding how and why people use their smart-
phones has enabled use cases ranging from correlating behaviour
with psychological states through to on-device tasks such as
app recommendations. However, being able to effectively and
pervasively capture usage behaviour is challenging due to the
wide range of functions, apps and interactions that are possible.
In this paper, we examine how embedding physical user-app
activity (e.g., taps and scrolls) can provide a rich basis for
summarising device usage. Using a large dataset of 82,758,449
interaction events from 86 users over an 8-week period we
combine feature embedding and unsupervised learning to extract
prominent interactions within clusters of smartphone usage
sessions. We find that high-level features such as session length,
unlock state, and app switches are not representative of these
clusters and can give a false sense of similarity or dissimilarity
between sessions. The results motivate further exploration of the
utility of using user-app interaction behaviour as the basis for
the aforementioned use cases.

Index Terms—smartphone, smartphone usage, mobile, user
behaviour, interaction

I. INTRODUCTION

Smartphone usage has been of rising research interest as a
means of finding linkages between behaviour and cognitive
states such as focus, mood, and interruptibility, as well as in
designing intelligent systems surrounding future usage (e.g.,
next app prediction [1]). Previous works have sought to reduce
and summarise usage data to determine common ‘types’ of
sessions (e.g., [2, 3]) and have found that while usage is diverse,
distinct but variable clusters can be found. Similar findings have
emerged considering ‘types’ of smartphone [4] or web [5] users,
and identifying personal habits in order to produce content
recommendations [6]. However, this has primarily been limited
to using high-level information such as screen-time, app-time,
and lock-state (e.g., [7, 8]), sometimes in combination with
ambient information (e.g., [9]), which may not be representative
of the physical activity and engagement taking place.

While high-level features result from series of low-level
events, they are not a proxy for the intricacy of interaction
that takes place during smartphone use. This can create the
potential for sessions with comparable length or with equivalent
apps used to be considered similar, despite displaying very
different levels of interaction or engagement (see example in
Figure 1), and vice versa. This creates the ability for usage

Fig. 1: Example of 2 sessions from the dataset of similar length
with diverse frequency of interaction events (e.g., taps, scrolls)
and idle time. Session 1: 53 events, 9 types, Session 2: 17
events, 5 types. (Different event types represented by colours)

to be misrepresented and motivates capturing and embedding
additional interaction and engagement information. This is
a challenge in its own right due to the highly variable
and unlabelled task structure within individual applications.
Previously insight has shown individuality of some aspects
of usage (e.g., [8]), and homogeneity of other aspects within
groups or across a population (e.g. app switching behaviours
[10, 11] or notification management [12]).

A key task across these is being able to effectively summarise
and capture a representation of usage over a time period. The
data underpinning these works have primarily consisted of
application driven information streams including screen time
(e.g., [2]), the amount of apps used or how they are used in
sequence/revisited [8]. However, further contextual factors have
also been examined including battery level [9], Bluetooth use
[9], cellular or WiFi signal status and strength [9], GPS location
[13], received text messages [13, 2] and other notifications
[12]. We note that previous works infrequently embed low
level interaction events (e.g., taps, scrolls, and typing).

In this paper, we propose a new method for embedding
smartphone usage behaviour that accounts for the diversity
and noisiness in physical interaction events (e.g., taps, scrolls,
and typing), but without the need for understanding the task
structure of individual apps. Using a large dataset of real-world
smartphone usage, we compare the method against various
high-level features in discovering types of smartphone usage



TABLE I: An overview of prior studies that define what a session is and how it uses that information to determine forms of
usage.

Study Session boundaries Frequency of data collection Use cases

Kang et al., 2011 [9] Start to end of network use or voice
call

Periodical polling Grouping into sessions and battery life
prediction

Soikkeli et al., 2011 [3] Application launch to quit Not specified Sessions in a user context
Oulasvirta et al., 2012 [7] Unlock to lock event Polling up to every 3 seconds Differentiate between rapid, repeated

and specifically triggered sessions
Ferreira et al., 2014 [10] Application boundaries Real-time application events Identification and supplementation of

micro usage
Jones et al., 2015 [8] Application launch to quit and screen

unlock to lock
Real-time application events App revisitation analysis

Banovic et al., 2014 [13] Screen on to off (merged if less than 5
seconds)

Screen and application events, notifica-
tions, GPS and activity data

Glance, review and engage categorisa-
tion

Jesdabodi et al., 2015 [14] Active device use bounded by mean
pause time

Mix of Real-time application events and
polling.

Extracting usage states (e.g. routines or
long stretches)

sessions using unsupervised learning. In doing so we address
the following research questions:

RQ1 Do high-level features surrounding screen-time, lock-
state, and app switches misrepresent the complexity of
smartphone usage?

RQ2 To what extent do features surrounding user-app inter-
actions better capture distinct ‘types’ of usage sessions?

The results show that summarising usage sessions using
lower-level interaction data in this way can create distinct
clusters of sessions in comparison to higher-level time and app-
based features. This suggests that these high-level features are
only weakly representative and overgeneralise usage behaviour.
Overall, this motivates exploring the utility of this represen-
tation for use cases where it is required to draw conclusions
between usage and psychological states such as advancements
in designing intelligent recommendation systems.

High-level features such as session length and unlock time
are easy to obtain and therefore the first step towards examining
user behaviour. However using a smartphone is a complex
combination of low and high-level interactions. The literature
is currently still limited in analysing more of the low-level
interactions and how these can be effectively embedded into a
representation that summarises behaviour. Towards this, there
have been advances for specific tasks such as behavioural
biometrics for authentication purposes [15] or to retrieve
emotional states from keystrokes [16]. While these studies
make use of low-level interactions to find answers to their
respective questions they do not give insight in how they might
be used for a more general overview of the respective user and
session types.

II. DATA OVERVIEW

We use the Tymer dataset [17] as the basis for this study.
It consists of app-window, device and user-interaction events
collected from 86 users over an 8-week period. In total it
contains 82,758,449 events of 19 types, including screen on /
off, tap, typing and scroll events (see Table II).

Several steps were taken to clean and structure the data for
analysis. Firstly, any duplicate events in the data were removed
as were scroll events that occur within 200ms of a previous

scroll event (as they are generated verbosely and a user is
unlikely to react within this time [18]). After this, we group
all events that occur between pairs of screen on and screen off
events (N=415,505) to define a ‘session’, based on the work
by Banovic et al. [13]. As we are interested in capturing all
defining characteristics of device interaction within sessions,
we add additional pseudo-events representing moments where
the user is ‘idle’. An idle event is created where there is a
time gap of more than 30 seconds between any two other
events. Inconsistent entries in the dataset (N=13,441) where
screen events are followed by another of the same type (e.g.,
screen on followed by screen on) are removed. Sessions that
started shortly after the previous session ended were not joined,
but considered separately. Finally, sessions are removed from
consideration if the time between pairs of screen on and off
events (i.e. the session length) is longer than one hour (n=4), as
these are considered extreme outliers that may have occurred
due to gaps or faults in data collection.

We are interested in user interactions so remove the
screen events themselves from further analysis. This highlights
n=111,951 cases where the user turned the screen on and off
without further interaction. These are on average only 5.97
(SD=5.86) seconds long which corresponds an automatic screen
timeout of 5 seconds and could be qualified as either accidental
or short glance sessions (e.g. for incoming notifications). These
are arguably a ‘type’ of usage session in themselves but provide
no basis for user interaction analysis so are excluded from the
subsequent analysis, leaving N=290,109 sessions.

Frequency statistics across all sessions are shown in Table III
with similar findings to previous studies (compare sessions from
studies in Table I) in sessions being short (<3 minutes) and
involving a small number of app switches. However, these
distributions are long-tailed with a number of outliers and total
event count in particular has notably high variance despite
similarity in session length. This speculatively suggests that
the lower-level events (as described in Table II) may play a
substantial role in defining the characteristics of a session.



TABLE II: Event types and counts in the dataset.

Event categories Event types, N=19 Description

Taps Tap (23m), long tap (3m) Direct touches on the screen.
Scroll Scroll (30m) Interface elements are scrolled off or into the currently visible screen region.
Typing Text box change (11m), text selection (10m) Typing and text-box interaction.
Other UI View interaction (25m) A list item being selected, or a check-box ticked, etc.
Window events Window state change (3m) Changes to application windows or the system UI.
Notifications System notification (2m) Notifications arrive or are updated
Screen Screen on & off (removed), unlock (201k) Changes to the device’s screen state.
Power Battery low/okay (2.8k/.4k), power on/off (.5k/.1k),

device connected/disconnected (13k/12k)
Changes involving battery (e.g., low-battery) or power state (e.g., charging).

Idle Idle (7,882,061) Occurs every 30 seconds if no other events occur while the screen is on.

TABLE III: Frequency statistics of features. Session length and unlock time after screen on in seconds.

Features Min Max M Mdn SD Description

Session length 0.1 3595.8 148.3 37.3 342.7 Time between screen on and screen off.
Unlock time 0.1 3576.8 5.4 2 56.3 Whether the device was unlocked in the session and the time taken to do this.
App switches 0 1004 5.06 3 8.8 The number of switches between one app and another (e.g., via the home-screen).
Event count 1 104824 317.7 22 1320.3 The total number of user-app interaction,idle and device event.
Category count 0 16 1.9 2 1.5 The number of Google Play Storecategories across the applications used.

III. REPRESENTING SMARTPHONE USAGE USING DEVICE
ACTIVITY

We examine and compare different methods for summarising
smartphone usage sessions at a high and low granularity.
Firstly, we introduce a method for embedding device activity
data (shown in Table II) into a summative vector-based
representation for all sessions. During smartphone use some
of the low-level event types are much more common than
others, for example taps and scrolls would dominate any other
event if we analysed them based on raw counts. Instead of
frequency, we use the impact of particular event types to
highlight relevant features in a session. To achieve this we
utilise Term Frequency-Inverse Document Frequency (TF-IDF)
[19], an embedding method first introduced for natural language
processing tasks, that summarises term importance across a
collection of documents. In the following section we detail
how we adapted the method to session activity data.

A. Representing sessions as documents

The goal is to summarise sessions and the set of events within
them into a single vector of features. The feature vectors are
generated using TF-IDF where the inputs are are documents
(sessions) and words (the set of temporally sorted event types,
N=19). This approach has previously been used to vectorise
categorical data for usage sessions [20].

Formally, let e1, . . . , e19 be the set of event types (Table II).
We define the TF-iDF of event type e in session d as:

Tf-idfed = tfed × idfe

tfed = 1 + log (freq(e, d))

idfe = log

(
1 + n

1 + dfe

)
where freq(e, d) is the number of events of type e that
occured in session d, n is the total number of sessions
and dfe is the number of sessions that contain an event

Fig. 2: Comparison of cluster independence across number of
clusters (k=2, ..,7). Clusters are reduced to 2-dimensions using
Principal Component Analysis

of type e. Each session d is then represented by a feature
vector fd = (Tf-idfe1d, . . . ,Tf-idfe19d). The generated TF-
IDF scores supply us with information about how impactful
events are over others in terms of defining a usual usage session
i.e. considering both the frequency and diversity of events.

B. Clustering sessions

Our goal is to identify groups of similar sessions based on
their low level events by applying k-means clustering to their
feature vectors. A rudimentary method to choose an appropriate
number of clusters under k-means is to plot the inertia (sum of
squared error per cluster) and choose the point of its ’elbow’.
The inertia elbow in this case ended up relatively smooth but
shows a small dip at k=5 hence we consider k=5 as the closest
to best approximation but the elbow technique by itself is not
completely conclusive.

To visualise our 19-dimensional clusters in 2d, we apply
principal component analysis (PCA) (Figure 2), a technique to
make multivariate data in large datasets more interpretable [21].
In this paper we apply PCA simply as a tool for visualisation,
and therefore omit further analysis on its outcomes such as



TABLE IV: Frequency statistics of top 5 TF-IDF values.

Cluster 1 TF-IDF TF-IDF Count Count
n=98267; 34.08% M SD M SD

Text Box 0.5 0.15 98.07 240.03
Text Selections 0.45 0.21 94.26 217.91
Scrolls 0.29 0.16 168.31 817.38
Taps 0.26 0.12 204.9 462.4
App Switches 0.17 0.11 0 0

Cluster 2 TF-IDF TF-IDF Count Count
n=105571;36.61% M SD M SD

Scrolls 0.31 0.29 78.75 452.7
Taps 0.23 0.21 8.03 37.22
App Switches 0.17 0.17 0 0
Unlocks 0.17 0.24 0.76 0.56
View Selections 0.16 0.28 58.14 412.82

Cluster 3 TF-IDF TF-IDF Count Count
n=27115; 9.4% M SD M SD

App Switches 0.93 0.13 0 0
Taps 0.06 0.17 0.2 0.86
Unlocks 0.06 0.15 0.15 0.37
Notifications 0.02 0.11 0.04 0.21
App Switches 0.02 0.1 0 0

Cluster 4 TF-IDF TF-IDF Count Count
n=29945; 10.38% M SD M SD

Idles 0.83 0.17 6.9 12.81
Unlocks 0.19 0.2 0.68 0.65
App Switches 0.07 0.14 0 0
Notifications 0.05 0.14 0.33 1.61
Taps 0.05 0.12 0.67 4.11

Cluster 5 TF-IDF TF-IDF Count Count
n=27470; 9.53% M SD M SD

Notifications 0.81 0.19 16.3 101.7
App Switches 0.15 0.2 0 0
Taps 0.11 0.18 1.2 3.97
Scrolls 0.06 0.15 1.96 31.66
View Selections 0.05 0.17 6.03 67.38

TABLE V: Mean (SD) of high-level features per cluster. Session
length in seconds.

Session length Event count Switches Categories

Cluster 1 229.6 (427.4) 748 (1997.6) 8.6 (11.3) 2.55 (1.4)
Cluster 2 114.7 (290.8) 161.8 (877.5) 4.8 (7.9) 2.06 (1.5)
Cluster 3 9.3 (10.5) 2.3 (3) 1.6 (1.7) 1.1 (0.3)
Cluster 4 227.7 (396.2) 10.4 (18.8) 0.9 (2.2) 0.5 (0.9)
Cluster 5 36.7 (127.9) 28 (163) 1.5 (2.8) 0.8 (1)

the variance. The choice of k = 5 as an appropriate value is
also reinforced by using visual analysis of PCA clusters with
clusters formed for k = 2, 3, . . . , 7. To further support this, we
repeated the process using raw counts of each event type as
the feature vectors. However, for k = 5, this resulted in 99.8%
of all sessions being included in a single dominant cluster,
demonstrating the importance of the TF-IDF approach.

C. ‘Types’ of usage sessions

We applied TD-IDF on the low-level events to all sessions
and applied analysis based on higher level features to gain an
understanding of the interaction between the different levels of

features. These values have an intrinsic value themselves, con-
sidering that every session is a combination of all interactions
(events) by the user. Our first observation is that while users
are very diverse in their overall usage, they are consistent in
their types of session, with 98.84% of users having at least
one session of each of the five types. This shows that while
smartphone usage has previously been in the literature shown
to be driven by individual patterns (e.g. [3]), we find that
commonalities exist through these types of sessions.

Comparing the most important events to high-level features
(Tables IV and V) identifies coherent patterns in each cluster:

1) Sessions whose main events are focused around text input
and editing, also with a high session length, unlock time
and multiple app switches (i.e. not just text messaging).

2) Comparatively long sessions with a focus on scrolls, taps
and application switches, implying high activity for a
prolonged time.

3) Very short sessions (median event count of one), with a
heavy focus on an app switching, taps and notifications,
consistent with glances after receiving a notification.

4) Sessions of 3-4 minutes, with low interaction/app switch-
ing, and large idle time between events, potentially being
sessions that end up idling until the screen locks by itself.

5) Sessions with a strong focus on notifications but short on
all high-level features could be indicative of a session that
is changing media and triggering an internal notification.

Despite the process not including high-level features, the
typical sessions within each cluster also have a defining set of
typical high-level features. Kruskal-Wallis H-tests show that the
distributions for each high-level feature do vary significantly
across clusters, (session length: H = 86111.4, event count:
H = 147386.8, app switches: H = 86678.0, category count:
H = 79491.7, all p < 0.01), with Dunn post-hoc tests also
showing significance between all pairs for all features except
cluster 4 and 5 for event count.

IV. COMPARING CLUSTERS AGAINST SESSION FEATURES

The previous section detailed how low-level events can be
formed into sessions and how those sessions can subsequently
be clustered. Here we consider the overlap and divergence
between low-level clusters and high-level metrics of sessions
commonly used in the literature to summarise usage.

A. The role of lock-state

Another way to distinguish sessions is to consider the time it
takes a user to unlock (the time from screen on to unlock event)
or if a user unlocks their phone at all [8]. A fast unlock could
be considered to be attached to a different kind of interaction,
user or session than a slow one. In our records, approximately
a third of all sessions do not have an unlock event attached to
it (95,432 compared to 162,259 sessions). While this indicates
a decently sized split, when mapping the sessions across the
impact data of the TF-IDF results it seems that unlock time
actually plays a much smaller, or even counterproductive role in
grouping sessions. In the clusters the ratio of sessions having an
unlock event are as follows in order: ~84.3%, ~71.7%, ~15%,



Fig. 3: All sessions clustered by only using their high-level
features (session length, event count, unlock present, application
switches and count of app categories) instead of TF-IDF values,
plotted using PCA and showing the individual layers.

~62.8% and ~25.7%. In comparison, when sorting sessions
by unlock time and then splitting it into 5 groups, 99.95% of
all sessions and 100% of all sessions without an unlock end
up in the first of those slices. Instead, with our method we
can show that the unlock times are diverse in each cluster by
applying a non parametric pairwise comparison test. We used
Kruskal-Wallis H-test followed by Dunn post-hoc comparisons
and applied it to the unlock state data, using the clusters as
sample groups. A 100% null hypothesis rejection rate (i.e. none
of the samples varies significantly from any of the others) with
H = 67097.67 and p < 0.01 suggests that the lock-states are
not from the same population for each cluster.

B. Comparing against high-level features

To show the additional utility from considering user-app
interaction behavior to characterize sessions, we examine how
usage sessions could instead be grouped from the distributions
of high-level features exclusively. Firstly, Table III shows that
the distributions of individual features have long-tails with
similar means and medians for most features. Splitting the
distribution to group sessions using the range of the distribution
results in most sessions being contained within a single group.
For example, ~96% of sessions are placed within the same
group for session length. Equally, splitting the distributions
into tertiles, quartiles, or quintiles results in a high degree of
similarity between most groups of sessions. This suggests
that additional granularity is necessary to capture notable
characteristics of usage and that the high-level features are not
a suitable proxy for user-app interaction behaviour (as shown
in the example in Figure 1).

To examine this further, Figure 4 shows how high-level
features correlate to one another and what TF-IDF cluster each
session is assigned to. Importantly, it shows that the TF-IDF
clusters overlap and span across the distributions of high-level
features, both individually and in pairs. This highlights that

Fig. 4: Pairwise comparison of correlations between high-level
features of sessions and TF-IDF clusters (Log-Log).

high-level features do not provide a suitable proxy for user-
app interaction activity and that observing this granularity of
behaviour is useful. We demonstrate this further by repeating
the clustering process discussed in section III (with k=5) using
a vector of all high-level features to represent a session, rather
than TF-IDF scores of the lower-level features. Figure 3 shows
how the clusters created by high-level features overlap poorly
with the TF-IDF clusters by fixing the individual sessions in
the same position as Figure 2.

V. CONCLUSIONS AND FUTURE WORK

The proposed methodology shows that clusters with similar
high-level features can be substantially different at the event
level, indicating the diversity of smartphone usage. It avoids
potential issues of bias from using raws by utilising TF-IDF
to increase the impact of significant events. We have analysed
a rich dataset, which is unique in the level of user events that
have been captured. Our results show that high-level features
on their own are not sufficient to accurately group sessions
that are indicative of the users cognitive goals. This is an
important result, as previous analysis in the literature largely
uses sessions defined by time between screen or application
events [14, 7]. With regards to RQ1, our results confirm that
clusters based only on high level features may misrepresent
the commonality between smartphone sessions.

In terms of RQ2 this means that the additional information
present when capturing low-level events is a useful tool to
infer more about a session beyond how active a user was. We
were able to capture and describe 5 different types of use that
would not be transparent with previous techniques. In addition,
these clusters represent usage that applies to almost all users,



with 84 out of 86 users in the dataset showing at least one
session in each cluster.

A. Future work
Although the dataset used is extremely detailed in terms

of events captured, a larger cohort of users may identify
further session types beyond the five identified here. Further
experiments with k (or alternative clustering techniques) may
also identify additional coherent sub-types of sessions. However,
as the data was collected in an in-the-wild environment, we are
confident that these session types are representative of natural
smartphone use.

Additionally, events are not singular actions that have no
context to each other. Sequencing is a large enough interest
point that it finds its way into other research areas of usage
(such as application switching). TF-IDF does not take into
account in which order words are structured in a document,
therefore the current findings have room for more work here.
To enable adding context to these events it would be possible
to use n-gram as a combining factor. The continuity between
events this provides might identify other clusters or groups of
usage that are not possible to capture when considering all
terms independently.

Currently all users are taken into account equally without
specifically targeting high/low usage or any other factors that
might contribute in how a user is interacting with their phone.
Instead of going with this catch all approach it would be
interesting to extend the low-level analysis with a more focused
per-user approach. Finally, another aspect of future work would
be to explore the predictability of the ‘types’ of session using
the first few seconds of usage. Doing so would enable the
ability to deliver interventions that may promote or disrupt the
predicted usage trajectory - e.g. for giving the user notice of
what other similar tasks are outstanding.
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