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Abstract— With the introduction of edge analytics, IoT devices
are becoming smart and ready for AI applications. A few modern
ML frameworks are focusing on the generation of small-size ML
models (often in kBs) that can directly be flashed and executed
on tiny IoT devices, particularly the embedded systems. Edge
analytics eliminates expensive device-to-cloud communications,
thereby producing intelligent devices that can perform energy-
efficient real-time offline analytics. Any increase in the training
data results in a linear increase in the size and space complexity
of the trained ML models, making them unable to be deployed on
IoT devices with limited memory. To alleviate the memory issue, a
few studies have focused on optimizing and fine-tuning existing
ML algorithms to reduce their complexity and size. However,
such optimization is usually dependent on the nature of IoT
data being trained. In this paper, we presented an approach
that protects model quality without requiring any alteration
to the existing ML algorithms. We propose SRAM-optimized
implementation and efficient deployment of widely used stan-
dard/stable ML-frameworks classifier versions (e.g., from Python
scikit-learn). Our initial evaluation results have demonstrated
that ours is the most resource-friendly approach, having a very
limited memory footprint while executing large and complex ML
models on MCU-based IoT devices, and can perform ultra-fast
classifications while consuming 0 bytes of SRAM. When we tested
our approach by executing it on a variety of MCU-based devices,
the majority of models ported and executed produced 1-4x times
faster inference results in comparison with the models ported by
the sklearn-porter, m2cgen, and emlearn libraries.

Index Terms—Offline Inference, Intelligent Microcontrollers,
Edge AI, Multi-class Classifiers, Efficient Model Deployment.

I. INTRODUCTION

The vast majority of edge devices use simple supervised
ML classifiers such as Decision Trees (DTs) and Random
Forest (RFs) to solve ranking, regression, and classification
problems locally at the device level. However, when users try
to execute complex tree-based models on edge devices such
as smart doorbells, HVAC controllers, smart energy meters,
etc., these high-quality models with a large number of tree
nodes often cannot fit within the memory of MCUs, resulting
in memory overflow issues. For any given m training samples,
implementation of the widely used stable scikit-learn DTs
has O(log(m)) as its inference complexity and O(m) for
its model size. Similarly, stable RFs have O (Ntree log(m))
inference complexity and O (Ntreem) model size. Any increase
in training samples results in an increase of the complexity
of ML models. Multiple studies [1,2] have shown that tree-
based algorithms can only be implemented on embedded sensor

systems or tiny IoT devices after their refinement and fine-
tuning (e.g. by reducing inference complexity and model size)
to comfortably fit within the specific hardware architecture.
To achieve high refinement levels, either the DTs and RFs are
pruned [3,4], or node parameters in the DTs are shared using a
directed acyclic graph [5]. Sometimes users design sparse and
shallow tree learners that only require a few kBs of memory
[6] to keep a low memory footprint. Such methods of learning
shallow trees or aggressive pruning to fit within a few kBs
often leads to degradation in accuracy due to approximation
of non-linear and complex decision boundaries using a small
number of axis-aligned hyperplanes. A few other studies have
proposed compression and optimization [6] methods, where
the models are trained in high resource setups, then a multi-
stage MCU-aware optimization (tailored) is performed before
deployment. In [7], authors have trained SVMs on MCUs. In
[8], authors present a generic pipeline named ‘RCE-NN’, that
can fit, deploy, and execute a broad spectrum of CNN-based
models on tiny IoT devices. For example, ‘RCE-NN’ has been
used to run ‘COVID-Away’ models [9] on smartwatches, as
well as DNNs trained for biometric authentication [10] on
Alexa smart speakers.

In this paper, in contrast to the aforementioned approaches,
we do not reduce the model complexity since it results in
highly engineered models that need special consideration and
optimization for different datasets and IoT scenarios, which is
not practically feasible. Instead, we propose a generic method
that applies to any dataset or framework trained classifiers.
The main contributions of our work are as follows:

• Our method is generic and can efficiently port and execute
a wide variety of ML classifiers on different resource-
constrained MCU- and small CPU-based devices.

• In order to preserve accuracy, unlike existing methods,
ours does not perform pruning, sparsification, compres-
sion, or alter any properties and parameters of the high-
resource ML framework trained classifiers.

• When any ML classifiers are ported to C and stitched
with IoT edge applications using our method, models
consume 0 bytes of SRAM when executed on MCUs,
thereby clearly superior to related methods.

• Contrary to the existing compression techniques, our
approach reduces the size of ML models without any



alterations and the standard classifiers trained using any
dataset can be efficiently deployed and executed on MCUs.

• Our method produce ultra-fast classification results on
MCUs. Thus, even the autonomous tiny IoT devices can
efficiently control real-world IoT applications by making
timely predictions/decisions.

• Despite the reduced memory footprint, our approach
guarantees the same level of performance (accuracy, F1
score, etc.) as its original models (before porting) when
compared to high-resource lab setups.

II. PROPOSED DESIGN

In this section, we present a design flow (as shown in Fig.
1) which can be followed to execute any commercial/standard
dataset trained or any pre-trained marketplace models on tiny
IoT devices. At first, our proposed method ports the standard
Python scikit-learn trained ML classifier models (which are
trained in a resource extensive setup) to its MCU executable
C versions. Then, it stitches the generated classifier with the
IoT use-case application, followed by efficiently deploying and
executing models on MCUs and small CPUs of IoT devices. In
the rest of this section, we explain our porting method, followed
by our IoT application stitching and execution method.

A. SRAM-optimized Porting of Trained Classifiers to C

Here we explain how our method performs SRAM-efficient
porting of trained DTs and RFs.

Porting Decision Trees. In MCUs and small CPUs based tiny
IoT devices, the program space (flash memory) is always much
greater than the available SRAM (see Table I). So, we propose
a method, that when realised, produces a C version of DTs
which does not depend on the SRAM during execution. Instead,
it exploits the larger flash memory in order to enable deploying
and executing larger classifiers. In other words, we propose
to sacrifice flash memory in favor of the limited SRAM since
it is the most scarce resource in the majority of MCUs. Our
method, hard codes the DT splits in C, without storing any
reference of the splits and other DTs related parameters/values
into variables. Since our method does not allocate any variables,
0 bytes of SRAM will be consumed to execute the C version
of the ported classifier to produce inference results.

When using our method, the flash memory consumption
will grow almost linearly with the increasing number of splits
in DTs. This limitation cannot be addressed since there is
no better alternative to store the hard-coded splits. Storing
on SRAM is not feasible since the limited available memory
restricts executing large-high-quality models, and the majority
of MCUs does not have EEPROM (see Table I) to store the
models. Although the external I2C peripheral-based EEPROM
can be interfaced with MCUs, the model’s code stored in
such external NAND type flash memory, during the MCU
power-up, gets copied to the internal SRAM from which the
MCUs execute models. Again this approach leads to an SRAM
overflow during runtime. Even in such SRAM-constrained
cases, our method is well-suited to execute larger models since
we do not store any model related variables on SRAM. Also,

Fig. 1. Design flow to deploy and execute ML models on MCUs of tiny
IoT devices: The models ported and stitched using our proposed approach
produce ultra-fast classification results while consuming 0 bytes of SRAM.

since most of the new generation MCU boards like the ESP32
and ESP01s etc., have at least 1 MB of flash, which is sufficient
for our method to store and execute large DTs containing tens
of thousands of splits.

Porting Random Forests. RFs are based on the concept of
wisdom of the crowd, where many DTs are combined via
voting. Since RFs depend on trees, our core method explained
above which efficiently ports the DTs, can in turn result in
efficiently porting many other tree-based methods like RFs and
XGBoost. Hence, our method that produces 0 bytes consuming
C classifiers applies to all algorithms that depend on trees to
produce inference results. For example, our method hard codes
all composing trees of an RF classifier. But since the class
votes have to be stored (proposing or implementing alternatives
for class votes will result in altering the standard classifier
versions), our method consumes a few bytes of memory for
this purpose, which is negligible.

Porting Comparison. The sklearn-porter [11], m2cgen [12],
and emlearn [13] are the popular optimized C code generation
libraries. Here, we initially brief their limitations based on our
experimental experience, then present our method that performs
the same tasks of porting the trained classifier models to C.

To successfully compile models generated by the state-of-



the-art libraries, we had to perform manual fine-tuning of their
ported C code, which usually spans thousands of lines in the
case of large models. Thus, demanding time and a high-level of
debugging skills from the users. As shown in Fig. 2, even after
fine-tuning, many classifiers crashed, and few faced memory
overflow issues when the Arduino IDE compiled the C code
of the classifiers ported using these libraries for the target
MCUs. Next, we also had to alter the datatypes of the input
data according to the requirement from the ported model that
performs inference, which affects the precision, thus resulting
in less accurate classifications. We found the emlearn to be the
most optimised library for MCUs, but still, to execute Tree-
based models require an eml_trees.h file that consumes
additional memory which is already at the peak utilization. We
faced more SRAM overflow issues when using sklearn-porter
since it declares all the model parameters like support vectors
as variables that consumes more memory. For example, when
using the Breast Cancer dataset, it produced a 57 x 30 matrix
of double data type, resulting in consuming 6.9kB just to store
the support vectors.

To alleviate such issues we provide the users with our
method, that when realised to port trained classifiers, the
generated C code will be stored in a .h file as shown in Fig.
1, and can readily execute on all the Arduino IDE supported
MCU boards without requiring any fine-tuning or datatype
conversions. Since our proposed method aims to simplify the
deployment and execution of models on MCUs, the C code
generated using our method contains just one function to which
the IoT application needs to send the data for which it requires
classification results. As presented in the evaluation section,
classifiers ported and executed using our method achieve higher
levels of SRAM conservation, do not compromise the model
accuracy, consume 0-bytes SRAM, and produce inference
results for 100 samples faster than the classifiers ported and
executed using state-of-the-art libraries.

B. Stitching & Executing Ported C Model

The IoT application executed by the MCUs receives the
input data that can be sensor readings, voice signals, and
image frames, etc. When users intend to improve their device’s
intelligence, we recommend them to train a high-quality ML
model that can produce inference results based on the data
seen by their edge devices, then port that model to C code
using our method from Section II-A. In this section, we first
describe the structure of thus generated C code, then explain
how to stitch it with the IoT application and perform inference
whenever required by the user or the IoT edge application.

As mentioned earlier, to obtain prediction results using our
method, no dependencies or shared libraries are required to be
added in the file system along with the C code of the model.
In our proposed execution method, just the .h file needs to
be compiled along with the user’s main IoT edge application
and flashed via any MCU-supported software such as Arduino
IDE, Atmel Studio, Keil MDK, etc. The interior of the .h
model file generated using our method contains the C code of
the user trained model. Here, during the programming or edge

TABLE I
SPECIFICATION OF MCU BOARDS CHOSEN FOR EVALUATION.

Board
or

MCU

MCU &
Board Name

Specification

Bits EEP
ROM SRAM Flash Clock

(MHz) FP

#1 ATmega328P
Arduino Nano 8 1kB 8kB 32kB 16 7

#2 nRF52840
Adafruit Feather 32 - 256kB 1MB 64 X

#3 STM32f103c8
Blue Pill 32 - 20kB 128kB 72 7

#4 Generic ESP32 32 - 520kB 4MB 240 X

#5 ATSAMD21G18
Adafruit METRO 32 - 32kB 256kB 48 7

#6 ATmega2560
Arduino Mega 8 4kB 8kB 256kB 16 7

#7 ESP-01S
ESP8266 32 - 32kB 1MB 80 7

application design phase, the users have to just include the
generated .h model as a header file at the beginning of their
program. Inside any of the model files generated using our
method, we provide a function named predict, to which the
main program can pass the values for which it needs predictions.
When predict is called, the MCU starts to execute the model
using its default available C compiler (without requiring any
dependencies or external libraries) as a subroutine, without
disturbing the device’s main routine, which is handled by the
main IoT edge application.

III. EXPERIMENTAL EVALUATION

To justify our claims from Section I, here we evaluate
our proposed method using standard datasets and popular
MCUs that are the brain of billions of tiny IoT devices. The
classifiers ported and stitched using our method from Section
II, are executed on 7 popular open-source MCU boards whose
specification is given in Table I (most boards lack FPU, KPU,
and FFT support). To ensure an extensive evaluation, we
selected 7 datasets that have feature dimensions ranging from
4 to 64 features and class counts from 2 to 10 classes, for
which we train classifiers on high-resource setups using Python
scikit-learn (we perform an 80/20 training/testing split for each
dataset), then port it to C, stitch it with an IoT application,
and finally deploy and execute on all MCUs using our method.
To cover a broad range of dataset, we chose the following
eight openly available datasets for our evaluation, Iris Flowers,
Heart Disease , Breast Cancer , MNIST Handwritten Digits,
Banknote Authentication, Haberman’s Survival and Titanic
dataset.
Model Performance on MCUs. We ported, stitched, and
executed all the datasets trained DT and RF models. i.e., 14
models were ported, stitched, and executed on each selected
MCUs using our method. We then performed an onboard test
for accuracy, F1 score, and simultaneously recorded the time
taken by each MCUs to perform unit inference and inference
for 100 samples for each of the 14 models. From the obtained
experimental results, we report the following observations; (i)
All the MCUs invariable of their specifications, for all the



Fig. 2. Comparing inference time for 100 samples: Speedups achieved when
porting and executing the models on MCUs using our proposed method.

datasets, performed unit inference in less than one millisecond,
and show the same level of accuracy and F1 as its original
models (before porting) when evaluated on high-resource lab
setups. (ii) Even the slowest MCUs performed faster unit
inference than NVIDIA Jetson Nano GPU and Raspberry Pi 4
CPU. (iii) For all datasets, the SRAM consumption remains
constant, and only the flash consumption changes according
to the size of the ported C model.

Comparing our Results with Existing Libraries. We take
the same 14 trained classifiers, then using m2cgen, sklearn-
porter, and emlearn libraries, we port it to C and execute
them on MCUs 1-7 using the respective library recommended
method. As shown in Fig. 2, we compare onboard inference
time for 100 samples of these libraries ported classifiers
with our results to report the speedups achieved when using
our method. It is apparent from the comparison that the
models ported and executed using our method can infer 1-4x
times faster than existing libraries, and the highly resource-
constrained MCUs 1 and 7 gets benefited the most since they
achieved higher speedups than other boards.

IV. CONCLUSION: DISCUSSION AND FUTURE WORK

In this paper, we briefly presented our SRAM-optimized
classifier porting, stitching, and efficient deployment method
which is currently the most resource-friendly approach that
enables ML framework trained standard/stable classifier ver-
sions to comfortably execute them within the limited memory
footprint of MCU-based tiny IoT devices and perform ultra-fast

classifications (1-4x times faster than state-of-the-art libraries)
while consuming 0 bytes of SRAM.

In the future, we plan to extend our initial results to achieve
the following: (i) Perform a comparison of the time consumed
by MCUs (using our method) vs popular CPUs (using standard
methods from scikit-learn) to execute and infer using the same
classifiers; (ii) Profile the onboard memory consumption of our
method in order to present its Flash and SRAM consumption
patterns on MCUs during the execution of different classifiers;
(iii) We plan to extend our approach to a broad range of
classifiers such as SVM, SVR [14], Naive Bayes, and KNN,
etc.; (iv) In order to get benefits from the memory-friendly and
ultra-fast classifier implementations presented in this paper,
we plan to apply our method to the lightweight video object
detection models we created as a part of work at the Jupyter
[15] consumer electronics company, then deploy it on video
doorbell products; (v) Finally, we plan to run an integrity test
(to ensure model quality preservation after porting) on our
method and all its supported classifiers before packaging the
code of our method and releasing it as an open-source library.
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