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Abstract—Smartphones are an integral part of our daily life,
bringing both positive and negative impacts with them. Recent
studies suggest that extensive and untimely smartphone usage
directly affects circadian rhythm, i.e. alertness-sleepiness cycle.
In this paper, we analyse sleep quality data collected through a
wearable ring together with the smartphone interaction in bed
just before falling asleep. First, we show that the sleep-tracking
devices measuring sleep quality and quantity are also feasible to
be used for researching circadian cycles. Second, we analyse the
statistical relationships between in-bed smartphone interaction
and different sleep metrics, out of which some are more prominent
for future use and some present interesting negative results. Third,
we present three baseline prediction models to predict sleep quality
and circadian cycle based on smartphone app usage, with accuracy
ranging from 31% to 67%.

Index Terms—Smartphone, Wearable, Sleep

I. INTRODUCTION AND BACKGROUND

The technology-oriented world we live in provides us with
both aims and means to track our internal processes, from
physical training activity to the quality and effectiveness of
sleep. Especially, the rise of easy-to-use and considerably cheap
wearables have made it possible to self-identify users’ biologi-
cal processes without expenses of the medical measurements
or an actual need to use medical services. People’s individual
goals for self-tracking can be but are not limited to optimising
the performance of a particular task or improving the person’s
everyday lifes [1].

In this paper, we analyse data collected through a wearable
sleep tracking ring [2] in tandem with smartphone usage in
order to detect participants’ circadian cycles and sleep quality.
The circadian, i.e. sleep-wake cycle, is a natural internal process
of a human that regulates the rhythm of sleeping and woken
periods roughly in the 24 hours periods [3]. Where some studies
suggest that the early bed-time circadian cycle drives better
sleep quality and efficiency [4], [5], some studies show that
the regularity of the sleep-wake schedule influences sleep [6].
Many individuals aim to personalise their circadian cycle and
optimise the quality of sleep, also by utilising technological
self-tracking solutions [7]. However, with the best of their
efforts, people can face different problems of falling asleep
or disturbed sleep quality [8]. Adjustments of the sleep-wake
rhythm are not only done by forcing regular bed-time earlier,
but by light therapy and melatonin intake [9]. Latest studies

also suggest optimising daily habits such as nutrition, exercise,
and intake of stimulants, e.g. caffeine, to manage irregular
circadian cycles and preserve a good night’s sleep [10].

At the same time, the ubiquitous community has paid
attention to technology use, especially of smartphones, in bed
before falling asleep [11], [12] and how it affects the sleep
quality [13], [14], [15]. Many wearable sleep trackers focus
on accelerometer data already claimed to be insufficient to
detect the sleep quality but merely time in bed [16]. Some
smartphone-based sleep tracking apps have received similar
negative results regardless of their claims [17], [18]. The Oura
ring sleep tracker, which we utilise in this study, is a wearable
wellness device designed to collect data during the sleeping
periods and report analysis based on its sensors to the user as
sleep quality parameters [2]. When compared to the standard
clinical method, polysomnography (PSF) [19], the ring gained
clinically satisfactory results if not perfect capability to detect
all of the tested sleep parameters [20]. This is, however, more
promising than other tested sleep-tracking devices evaluated in
the literature [17]. For a ubiquitous wearable device possible for
people to purchase on stock and validated against PSF, usually
criticised being missing validation with wearable trackers [21],
motivated us also utilise it in our study.

In this paper, we put an effort to explore if a smartphone can
play any role in the circadian cycles detected with wearable
devices. As a novel contribution, we present a longitudinal
analysis of smartphone interaction, circadian cycles, and sleep
quality. We use data of 61 participants wearing the smart
sleep-measurement ring for an average of 43.76 weekday
nights each during a two-month study. In addition, we analyse
their smartphone usage just before going asleep and combine
our results to a self-assessment questionnaire to determine
morningness-eveningness (MEQ) in circadian cycles [22].

II. EXPERIMENTAL SETUP

We run a 2-month long experiment, where the following
three datasets were collected: 1. Sleep quality, quantity, and
individual sleep metrics through a wearable ring. 2. Smartphone
app usage during the study period from the participants’
personal Android devices, and 3. Morningness-Eveningness
(MEQ) questionnaire [22] at the end of the study period.



TABLE I
SLEEP METRICS COLLECTED THROUGH THE WEARABLE RING.

Metric Description
Total time in bed Total time (in minutes) in bed, from going to bed to

getting up
Total time of sleep Total duration (in minutes) of sleep
Sleep latency Time (in minutes) it took to fall asleep on the onset of

bedtime
Sleep efficiency Time (in percentages) spent asleep during bedtime
Sleep quality The quality (bad, medium, good) of sleep based on the

sleep score (1-100) provided by the ring’s algorithm
Restfulness A score (0-100) based on restless events and actions

during the night
Light sleep Total amount of light sleep registered during the sleep

period (in seconds)
REM sleep Total amount of REM sleep registered during sleep

period (in seconds)
Deep sleep Total amount of deep sleep registered during the sleep

period (in seconds)
Total amount of sleep Total sleep = REM + light sleep + deep sleep
rMSSD The average heart rate variability (HRV) calculated with

rMSSD method [24]
Average heart rate The average heart rate registered during the sleep period

(beats per minute)

Recruitment. Participants were attracted through mailing
lists and word of mouth. The participants received no monetary
awards or other compensations for participation. Participants
were borrowed Oura sleep tracking ring [2] to be used during
the study period and an Android smartphone if they did not
possess one or had a model which is incompatible with the
used tracking applications. All the devices were returned at
the end of the study period.

The wearable ring consists of an infrared photoplethys-
mography (PPG) sensor for heart rate, negative temperature
coefficient (NTC) sensor for body temperature, and a 3D
accelerometer, and can measure daily activity and performance,
as well as detailed sleep-related metrics, e.g., amount of deep
and REM sleep, sleep disturbances, and sleep latency and
efficiency. Table I provides a summary of the sleep-related
metrics collected through the wearable ring.

Smartphone usage was collected through the AWARE
framework [23], used extensively in similar HCI research.
AWARE enables background logging of different data from the
users’ personal smartphones, which are then stored on a remote
server anonymously. The smartphone usage, wearable data, and
MEQ questionnaire are linked together with an anonymous ID.

Ethical considerations. The study design and data collection
are subject to the IRB process of the University of Oulu,
Finland. In the initial meeting, the participants were informed
of their consent and signed a consent form authenticated by
the IRB. Participation in the study has been voluntary, and
the users have been informed about the data collection and
management procedures.

III. DATA OVERVIEW

Sleep dataset. The ring has an average battery life of 3-5
days and thus enables continuous tracking. Participants were
asked to wear the ring as it best suits their everyday life.
Some participants reported that they did not always wear the
ring during the day because of their sports activities and that
they did not always wear it during the night - mostly due

Fig. 1. User density distribution of MEQ scores.

to sometimes forgetting the ring. Typically the gaps in our
sleep dataset last for 1-2 nights. Two users had personal issues
regarding sharing their sleep data for research and did not
opt-in to share their sleep data through the wearable vendors
cloud service. 86 participants provided their sleep data on a
total of 3764 unique nights. Participant’s shared an average
of 43.76 nights with a standard deviation of 10.5. The largest
sample comes from a participant who shared 68 nights’ data.

Smartphone app usage. We collected foreground and active
apps used during the day and night. Whenever the foreground
app changes, an item was stored containing the timestamp,
app package name, and its Play Store category. We use these
categories and total interactions with them, i.e. the number of
times the app has recorded to be active in a given time. In total,
we collected 1.39M items from 89 unique users, consisting of
951 different apps belonging to 33 categories.

MEQ questionnaire outputs a score (16-86), which deter-
mines the participants on a five-point scale: definite morning,
moderate morning, intermediate, moderate evening, and definite
evening. Figure 1 shows the distribution of the MEQ categories
in our participant pool; most of the participants fall into the
intermediate category, with considerable presentation also in
the moderate evening and moderate morning categories. No
participants identified to be exclusively morning or evening
person; however, the MEQ criteria are quite strict, and the score
typically follows the normal distribution (M=50). Indeed, some
studies in psychology only use classification in its reduced
form, including morning, evening, and intermediate types [25].
In this paper, we use these three categories.

To summarise, our study participants (the final 61 in total
from all the datasets were successfully gathered) were: 33 of
the participants (55%) recognised as female, 28 (45%) as male,
the mean age of participants was 28.08 years (median of 25
years), with a standard deviation of 8.56 years, minimum of
19 and maximum age of 61 years.

IV. DATA PRE-PROCESSING AND ANALYSIS

The sleep data collected by the sleep tracker ring, app usage
data collected from the participants’ smartphones, and self-
reported morningness-eveningness survey are merged by partic-
ipant identifiers and date. The data is preprocessed to consist



Fig. 2. Data distribution after balancing.

of each app’s hour-wise app usage and interaction count. Hour-
wise total app usage and interaction count for each participant
is then merged with a value of sleep parameters mentioned in
Table I for respective participants. Previous research suggests
that sleep parameters tend to respond differently for weekends
and weekdays [26] and circadian cycles are heavily led by
our everyday social and temporal organisation [27]. As we are
interested in people’s daily lives, we choose only to consider
weekdays (Monday to Friday).

Data Categorisation. We categorise the numeric parameters
for categorical analysis. Sleep hour is mapped into three
categories, with the influence of the morningness-eveningness
self-assessment questionnaire (MEQ) [28], which categorises
the sleep onset time by ”morning types”, ”intermediate types”,
and ”evening types” based on hours. We use the following
categories: hours 21 to 22 as morning people (21:00-22:45 in
MEQ), hours 23 to 0 (22:45-00:45 in MEQ) as intermediate
people and hours 1 to 3 (00:45-03:00 in MEQ) as evening
people. We label this variable as the measured circadian cycle
(MCC), as it is derived from participants’ current sleep-awake
schedule. We emphasise the variable within the text to prevent
misunderstanding the variable with the term circadian cycle.

We calculate the hourly total app interaction count by adding
all the app category interactions for each hour. Average hourly
interaction count is 12.47 (min = 0, max = 40, IQR = 3.5-
17). Considering interaction count rarely increases beyond 20,
and the majority are divided equally above or below 10, we
divide our data into four categories: 0, 1-10, 11-20, 21+. Hours
from going to bed till falling asleep and wake-up hours are
classified by hours: 0-3, 4-6, 7-9, 10-12, 13-15, 16, 17-21,
22-23. These classifications are an adaption from the original
MEQ questionnaire and similar hourly classification used in
previous literature [29].

Balancing the circadian cycle distribution. To make
our further analysis non-biased towards any particular sleep
cycle, we balance the data considering the distribution of
”morning”, ”intermediate”, and ”evening” types of circadian
cycles. The number of participants with an ”intermediate type”
is significantly higher than the other two types (morning and
evening). Among the total data, 23.35% data is of ”evening
types”, 24.89% data is of ”morning types”, and 51.98% data is

Fig. 3. MEQ results associated with bed to sleep and wake-up hours.

of ”intermediate types”. We sample down the largest category
(intermediate) by variance, where we keep samples that ensure
higher variance (more variety remains in the dataset). We settle
for a threshold of 50 for variance. After preprocessing, we
have a total sample of N=597, where ”morning type” measured
circadian cycle has N=201, ”intermediate types” has N=185,
”evening types” has N=211. Figure 2 shows the data distribution
after sampling down intermediate types. The red line represents
mode, blue dotted line median, and green line mean of the
distribution. The skewness of the distribution is -0.239 (-0.25
< -0.239 < 0.25) and kurtosis of the distribution is -1.922
(-2.25 < -1.922 < -1.76), meaning the data is approximately
symmetrically distributed and right-tailed [30].

V. CIRCADIAN CYCLES IN SMARTPHONE INTERACTION

We first study if our participants behave correspondingly
to their MEQ results regarding when they go to sleep and
wake up. Figure 3 shows the percentiles of MEQ moderate
evening, moderate morning, and intermediate type based on
hours they spend from going to bed till falling asleep (3(a)
and hours when they wake up (3(b). Moderate morning-type
of people, indeed, seem to go to bed earlier (around 22-23pm)
and correspondingly, also wake up earlier in the morning (5-
7am). Moderate evening people tend to go to bed later (0-
2am) and wake up later (6-9am). Extremely late (that are
not, however, considered as outliers) moderate evening people
do not go to sleep before 3am and wake up at the latest
13pm. Corresponding values for moderate morning people
being 21pm to bed and 10am wake-up time. Intermediate
people, as expected, fall between all of these ranges without
a clear morning or evening profile in their data. From Figure
4(a) we can see the association of measured circadian cycle
and MEQ results. Highest frequency of users who assessed
themselves as a moderate morning or moderate evening
type, their measured circadian cycle is also morning and
evening type respectively. The intermediate association is
more flexible, which is also seen in comparison to bed and
wake-up hours as seen in Figure 3.

Sleep quality is analysed as a three-label nominal variable
(bad, medium, good) (see Table I again). Even if the categori-
sation is somewhat coarse with only three categories, it enables
finding differences in the measured circadian cycle types and
sleep quality. Figure 5(a) shows that people having good sleep
quality tend to assess themselves as moderate morning type
whereas the majority of people having bad sleep quality
belong to moderate evening type by their self-assessment.



Fig. 4. Measured circadian cycle (MCC) associated with MEQ (a), sleep
quality (b), bed to sleep hour (c), and wake-up hour (d).

Statistically speaking, our data agree with previous studies that
MEQ results and sleep quality have significant dependency on
each other (X2 = 64.86, p-value<0.001).

Similarly, sleep quality and circadian cycle have significant
dependencies on each other (X2 = 93.32, p-value<0.001).
Figure 4(b) shows that people who have bad sleep quality
typically have the circadian cycle of evening type. The majority
of the participant proportion who have good sleep quality
belong to morning type as per their measured circadian cycle,
and moderate morning type as per their MEQ results. Sleep
quality degrades towards evening types, as well as improves
towards morning types (Figure 4(b)). To summarise, our data is
in-line with psychology research [4], [5], [31] that the morning
people typically has better overall sleep quality than others,
and the evening type has the worst.

Next, we dive deeper into the different metrics that contribute
to the sleep quality for different types of circadian cycles. We
use the Chi-square test of independence (with FDR correction)
to determine the dependencies between the parameters. The
results are listed in Table II. We can see, for example, that
the circadian cycle has a significant dependency on the bed
to sleep hour, i.e. time spent in bed awake (X2 = 734.14, p-
value<0.001). The highest proportion of people having morning
type of circadian cycle goes to bed till fall asleep between hour
22-23pm and considerably many already at 17-21pm, whereas,
evening type of people go to bed till fall asleep between
hour 0-3am (Figure 4(c)). Also, the dependency between the
circadian cycle and wake-up hour is significant (X2 = 158.0, p-
value<0.001). The majority of evening people wake up between
hours 7-9am, which is moderately early [31]. Similarly, we
can see a proportion of evening people waking up between
10-12am (Figure 4(d)).

Majority of user-proportion who assess themselves as
moderate morning people go to bed till fall asleep between
hour 22-23pm, whereas majority who consider themselves as
moderate evening people go to bed till fall asleep between
hour 0-3am (Figure 5(b)). Comparably, the Chi-square test
(see Table II) shows that there is a significant dependency
between self-reported MEQ and when people go to bed till fall
asleep (X2 = 109.24, p-value<0.001). Like the circadian cycle,

Fig. 5. MEQ associated with measured circadian cycle (MCC) (a), bed to
sleep hour (b), and wake-up hour (c).

Fig. 6. Associations among sleep quality, bed to sleep and wake-up hours.

self-reported MEQ result also has a significant dependency on
the wake-up hour (X2 = 51.16; p-value<0.001). We can see
that a good proportion of people who go to bed till fall asleep
between hour 0-3am under moderate evening type (Figure
5(b)), which is very low within the moderate morning and also
considerably lower within the intermediate type of people.

Finally, we can conclude that the sleep quality has
significant dependency with people’s bed to sleep hour
and when people wake-up (X2 (bed to sleep hour) = 112.68,
p-value<0.001; X2(wake-up hour) = 45.47, p-value<0.001).
Sleep quality of people degrades towards late time bed to sleep
hour but improves towards the early bed to sleep time (Figure
6(a)). We can see late-rising people (hour 10-12am) under
bad sleep quality, whereas good sleep quality people do not
wake up after 9m (Figure 6(b)). People’s wake-up hour is also
associated with when people go to bed till they fall asleep.
From Figure 6(c), we can see the majority of people who wake
up between 7-9am, go to bed till fall asleep between 0-3am;
who wake up between 4-6am, go to bed till fall asleep between
17-21pm. People who go to bed and fall asleep between 22-
23pm tend to wake up between 4-6am (Chi-square significance:
X2 = 191.61, p<0.001). This identified phenomenon is critical
when considering the applications of our research. Potentially,
tracking bed to sleep and wake up hours could provide enough
insights into recommendations to improve sleep quality.

The dependencies between different sleep metrics we dis-
cussed above have very high significance (p-value<0.001).



TABLE II
CHI-SQUARE TEST OF INDEPENDENCE RESULT (FDR-CORRECTED) FOR

PAIRS OF SLEEP METRICS (P-VALUE*<0.05, P-VALUE***<0.001).

Metric pairs p-value Reference
MCC ↔ MEQ 1.01e-27*** [Figure 4(a)]
MCC ↔ Sleep quality 2.60e-19*** [Figure 4(b)]
MCC ↔ Bed to sleep hour 3.14e-15*** [Figure 4(c)]
MCC ↔ Wake-up hour 1.34e-27*** [Figure 4(d)]
MEQ ↔ Sleep quality 2.76e-13*** [Figure 5(a)]
MEQ ↔ Bed to sleep hour 2.09e-19*** [Figure 5(b)]
MEQ ↔ Wake-up hour 8.70e-20*** [Figure 5(c)]
Sleep quality ↔ Bed to sleep hour 4.18e-20*** [Figure 6(a)]
Sleep quality ↔ Wake-up hour 8.53e-06*** [Figure 6(b)]
Bed to sleep hour ↔ Wake-up hour 1.75e-34*** [Figure 6(c)]
App interaction level ↔ MEQ 0.036*
App interaction level ↔ Bed to sleep hour 0.049*
App interaction level ↔ MCC 0.048*
App interaction level ↔ Wake-up hour 0.207
App interaction level ↔ Sleep quality 0.991

TABLE III
PREDICTION ACCURACY (HIGHER IS BETTER).

Features (input) Labels (output) RF (%) KNN (%) SVM (%)
App categories Sleep quality 37% 45% 49%
App categories MEQ 67% 65% 67%
App categories MCC 32% 36% 35%

Comparatively, the dependency significance associated with
interaction levels to different sleep metrics is not highly
significant but passes the general test of significance (p<0.05)
in three cases. Dependency significance between app interaction
level and bed to sleep hour is marginally significant (X2 =
17.00, p-value<0.05), so as with measured circadian cycle
(X2 = 12.70, p-value<0.05) and MEQ results (X2 = 13.45,
p-value<0.05). However, even if not passing the p<0.05 test,
wake-up hour and sleep quality in general gain somewhat
small p-values, showing they might have, at some level, some
influence from or to overall smartphone usage.

VI. PREDICTION ANALYSIS

The goal of the prediction analysis is to understand if general
and category-wise app usage in bed can indicate changes
in sleep quality and circadian cycles. It is noteworthy to
remember that these indications do not implicate causality;
higher smartphone or app interaction can be either a reason
or result of worsened sleep or disordered circadian cycle. For
prediction features, i.e. the input of the model, we consider the
amount of interaction count in each app category during the
time in bed (before falling asleep). We use three widely used
machine learning methods as the prediction models: Random
Forest (RF), Keras Neural Network (Keras NN), and Support
Vector Machine (SVM). For categorical output metrics (sleep
quality, measured circadian cycle, and MEQ), we apply the
classifier version to the models and regression versions for the
numerical sleep metrics correspondingly.

Sleep quality can be predicted with an accuracy of 37%-
49% based on their application category usage while awake
in bed (see Table III). This slightly outperforms a random
guess, which with three output labels would be around 33%
if each label is considered equally likely and the dataset is

TABLE IV
IMPORTANT FEATURES, THREE MOST IMPORTANT ARE HIGHLIGHTED.
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MDI Sleep quality 1 2 3 4 5 6 7 8 9
(RF) MEQ 1 2 6 8 3 7 4 5

Circadian cycle 1 2 3
PFI Sleep quality 1 4 3 2
(KNN) MEQ 1 2

Circadian cycle 1 3 2
FWC Sleep quality 7 3 2 5 4 6 1
(SVM) MEQ 1 2 6 3 7 4 5

Circadian cycle 5 7 4 2 6 1 3

balanced. When sleep quality is concerned, addictive usage
of mobile phones is an indicator of degrading sleep quality
as per the study of Sahin et al. [32]. Even if our study does
not directly consider addictive behaviour but the frequency of
usage, we can confirm these previous findings that the amount
of interaction is linked to sleep quality.

The model accuracy in predicting MEQ results is 65%-
67%. The prediction is good compared to sleep quality and
outperforms the random guess substantially. We have already
seen that app interaction level and MEQ results have significant
dependency on each other (Table II). The result of 65%-67%
predictive accuracy shows that app interaction as a whole
is a good indicator of how people assess their morningness-
eveningness type, whether considered as app interaction level
or individual app category usage count. However, measured
circadian cycle can be predicted only with an accuracy of 32%-
35% that is much lower compared to MEQ results and does
not outperform a random guess. This is a negative result we
see necessary to report as well as the more positive outcomes.

Important features. Table IV shows the ranks of important
features, i.e., app categories (from 1 to 9, 1 being the most
important feature) calculated by three feature importance indica-
tors: Mean Decrease Impurity (MDI) for RF model, permutation
feature importance for Keras NN, and feature weight by the
coefficient for SVM. As these indicators are not the same unit
and, as mentioned, different models require different metrics,
the comparison is made by ranks only. The most highly ranked
app categories are related to the basic functioning of the
phone, including Other and Tools. Also somewhat ”classically”
purposeful app categories Communication and Productivity
are present. In addition to these, leisure and pastime-related
categories are highlighted, including categories Entertainment,
Social, Media and Video, Sports, and Lifestyle. There are more
than 50 categories in Google Play; only these emerge as the
most important categories – an issue that can be caused by
them being both popular in terms of apps they contain and how
many basic smartphone functionalities they include. However,
such a bias is present in every smartphone study based on
crowdsourced, real-life data [33]. In contrary to the previous
literature that highlights the role of games as a bed-time activity



TABLE V
NRMSE COMPARISON (SMALLER ERROR RATE IS BETTER).

Features (input) Labels (output) RF (%) Keras NN (%) SVR (%)
App categories light 19% 21% 18%
App categories rem 20% 20% 21%
App categories deep 20% 18% 20%
App categories total 18% 19% 17%
App categories onset latency 12% 36% 10%
App categories rmssd 19% 25% 20%
App categories bed hour 45% 44% 54%
App categories sleep hour 46% 46% 50%
App categories wakeup hour 16% 20% 15%
App categories efficiency 20% 18% 20%
App categories hr average 17% 20% 22%
App categories restfulness 18% 24% 19%

[11], we cannot see game-related categories in the top results.
Whether it is, they do not affect that much on sleep anymore,
ten years later, or their popularity among our participants is
simply scarce.

TABLE VI
IMPORTANT FEATURES, THREE MOST IMPORTANT ARE HIGHLIGHTED.
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MDI light 1 4 6 5 7 3 2
(RF) rem 1 3 5 4 2

deep 2 1 5 4 6 3 7
total 1 4 3 2
onset latency 1 4 5 2 3
rmssd 2 4 3 7 6 1 5
bed hour 3 6 5 2 7 4 1
sleep hour 1 4 2 3 5
wakeup hour 1 2 3
efficiency 1 2 5 4 3
hr average 1 2 4 3 6 5

PFI light 1
(KNN) rem 1

deep 4 2 1 5 3
total 1 2
onset latency 1 2 3 4
rmssd 1 2
bed hour 2 3 1 5 4
sleep hour 1 7 2 6 3 9 4 5 8
wakeup hour 1 2 5 6 3 4 7
efficiency 4 2 7 3 5 1 6
hr average 1 3 2 4 5 6

FWC light 1 3 4 8 5 7 2 6 9
(SVR) rem 1 5 3 6 9 2 8 4 7

deep 1 5 4 6 3 7 2 9 8
total 1 2 5 7 4 6 3 8
onset latency 3 2 5 4 7 1 6
rmssd 8 4 2 6 9 5 1 3 7
bed hour 9 4 8 2 3 5 7 1 6
sleep hour 7 1 5 6 3 2 4
wakeup hour 9 6 7 2 5 1 8 4 3
efficiency 8 6 3 4 9 2 1 7 5
hr average 5 8 6 3 7 1 4 2

Table V shows the comparison among normalised root-mean-
square error (NRMSE) of the models for each numerical pre-
dicting metrics, again, category-wise app usage as a predictor or
input value and sleep parameters as output values. The amount
of light sleep, deep sleep, rapid eye movement (REM), and total
sleep (REM + light sleep + deep sleep) can be predicted with
18%-20% error from app categories. In terms of ”accuracy”,

in comparison to the classifiers is wished to be made, it means
80%-82% of goodness. As per earlier studies [34], smartphone
usage in bed can lead to reduced sleep duration and sleep
quality. In our study, the error rate of predicting light sleep, rem,
and the total amount of sleep agree that the mobile interaction
is a good predictor of these metrics.

As discussed above, immediate usage of a mobile phone
prior to sleep interrupts falling asleep. Onset latency is the
time between bed-time to first five minutes of persistent sleep.
The NRMSE of predicting onset latency by our model is 10%-
12% (accuracy 88%-90%) by RF and SVR, 36% (accuracy
64%) by Keras NN considering category-wise app usage as
the predictor. The sleep efficiency and restful sleep can be
predicted with the 18%-24% level of NRMSE, which in terms
of the accuracy would be 76%-88%. The heart rate related
sleep metrics – average heart rate and rmssd (average heart rate
variability calculated by rMSSD method) – can be predicted
with NRMSE of 17%-25%. Unlike the high prediction accuracy
of other sleep parameters mentioned above, the error rate is
high (44%-54%) for predicting bed and sleep hours.

Important features. Table VI shows the most important
app categories that predict different sleep metrics discussed
above. Among the most common app categories which have
high importance as predictors, are Other, Sports, Media and
Video, Communication, Tools, and Social. These app categories
are also common to the classifiers for predicting MEQ (see
Figure IV). Among the other app categories, Lifestyle and
Entertainment are among the important features for Keras NN
and SVR models but, are not for RF. Similarly interestingly,
certain app categories, such as Media and Video, seem to
predict well some of the sleep metrics (ranks 1 to 3) but less
the others (ranks 7 to 9).

VII. DISCUSSION AND CONCLUSIONS

In this paper, we concluded by analysing the circadian cycle
of people from different sleep-related metrics collected by
a wearable ring and their smartphone usage before falling
asleep. Our results show that people’s self-assessment about
their circadian type matches with measured circadian cycles
measured with a wearable device. We have assessed statistical
relationships between in-bed smartphone interaction before
falling asleep and different sleep metrics. Our results show
that smartphone interaction plays some role in worsened sleep
quality. However, it is important to note that our results merely
indicate a relationship without any specific direction, not
causality between factors.

Intensive smartphone usage has been seen to be affecting
sleep quality [35]. Longer screen times during time spent
in bed can be associated with poorer sleep quality [36] and
high usage of any media devices, including TV, tablets, and
smartphones, can weaken the sleep quality [37]. However,
these studies mention the causation being problematic in their
findings, and results can also be reflected on other biological
and cultural factors, or the ”vice versa” effect: people who
suffer from sleep problems spend more time on screens just
to pass time [38]. It is unclear also in psychological research,



which behavioural factor is driving the trend of worsened sleep
quality or disordered circadian cycles, and which existing sleep
problems merely cause behavioural patterns. However, with
long-term studies and suitable causality analysis metrics, these
questions could be considered.

We are aware of the limitations in our work. Any crowd-
sourced study is reliant on mobile, and wearable sensing
exhibits some data loss, which is unfortunate but often
unavoidable. Even with recruiting 100 participants, only data
of 61 people could be utilised for this study after data loss and
preprocessing steps, yet larger samples sizes could produce
more verifiable results. This study did not focus on sociological
aspects widely reported in psychological research, including
daytime occupations requiring an early wake-up hour or shift
work causing irregular sleeping patterns. The regularity of the
sleep and the circadian cycle is, indeed, an interesting question
to be studied further.
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