
The Weak Supervision Landscape
Rafael Poyiadzi1, Daniel Bacaicoa-Barber2, Jesus Cid-Sueiro2,
Miquel Perello-Nieto1, Peter Flach1, Raul Santos-Rodriguez1

1Intelligent Systems Lab, University of Bristol, Bristol, UK
2Signal Theory and Communications Dept., Universidad Carlos III of Madrid, Spain

Contact Email: rp13102@bristol.ac.uk

Abstract—Many ways of annotating a dataset for machine
learning classification tasks that go beyond the usual class labels
exist in practice. These are of interest as they can simplify or
facilitate the collection of annotations, while not greatly affecting
the resulting machine learning model. Many of these fall under
the umbrella term of weak labels or annotations. However,
it is not always clear how different alternatives are related.
In this paper we propose a framework for categorising weak
supervision settings with the aim of: (1) helping the dataset
owner or annotator navigate through the available options within
weak supervision when prescribing an annotation process, and
(2) describing existing annotations for a dataset to machine
learning practitioners so that we allow them to understand the
implications for the learning process. To this end, we identify
the key elements that characterise weak supervision and devise
a series of dimensions that categorise most of the existing
approaches. We show how common settings in the literature fit
within the framework and discuss its possible uses in practice.

Index Terms—weak supervision, weak labels, annotation pro-
cess

I. INTRODUCTION

A machine learning classification task requires having a
dataset of pairs of instances and labels. Obtaining labels of
good quality can be expensive, time-consuming, or difficult
in general. These constraints have led to the development and
study of several flexible settings where annotations are as-
sumed to not be perfect, but still suitable for the learning pro-
cess. These are usually referred to as weak supervision (WS).
For example, specialised products like Amazon’s Mechanical
Turk provide access to pools of (non-expert) annotators whose
labels are sometimes ambiguous and noisy. Interestingly, weak
labels can take several forms and not only be the result of the
annotation process (e.g., the data not annotated by an expert,
or automatically extracted from the web) but they can come
from the choices made by the dataset owner when deciding on
the annotation process (e.g., allow annotators to provide more
than one candidate classes when uncertain).

In machine learning, weakly supervised classification refers
the task of obtaining a classifier from a given weak dataset,
such that it has a low generalisation error with respect to
the true data distribution. Even though weakly supervised
learning encompasses settings which are widely applicable and
studied, it is yet to become a standard machine learning setting
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such as traditional supervised classification or clustering [1].
They have been previously referred to as indirect supervision
[2], distant supervision [3], inaccurate, incomplete, or inexact
supervision [4], learning from measurements [5], learning
imprecise and fuzzy observations [6] and many more. In this
work we refer to all the approaches where the observed label
is not perfect as weak. Where applicable we will also refer
to the observed label as weak, as opposed to the unobserved
clean label. We will also be referring to the process by
which a clean label is transformed to a weak label as the
weakening process.

In this paper we introduce a framework for categorising
weak supervision settings by identifying the key set of dimen-
sions that should be used to describe the different instantiations
that exist in the literature and in practice. This framework can
then be used by both dataset owners / annotators and machine
learning practitioners / researchers. For the former, it will be
a tool to navigate the landscape of options when designing
the data collection or annotation process or to describe an
existing dataset. In both cases it will aid communication and
can help future users understand implications of the type of
annotations present in the dataset. For the later, it can be used
to find the right place for a new or existing technique to learn
from weak labels and identify (open) research problems in the
field and have a clearer understanding of the generalisation of
their contributions.

The remainder of the paper is structured as follows: in
Section II we introduce the framework and in Section III
we present several well studied WSL settings and discuss
how they fit within our framework. Lastly in Section IV we
discuss the main implications and limitations of the work and
directions for future research.

II. DIMENSIONS OF WEAK SUPERVISION

In this section we present the dimensions of weak super-
vision, which are the building blocks of our framework. We
separate the dimensions into three groups based on whether
they refer to the true label space, the weak label space or
the weakening process. Table I condenses all this information
together with questions to illustrate the meaning of each
dimension and the options that they offer. This table can
be used as a standalone tool to plan or understand weak
annotations.
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TABLE I
FRAMEWORK FOR CATEGORISING WEAK SUPERVISION SETTINGS CONSTITUTED BY CATEGORIES AND DIMENSIONS. THE THIRD COLUMN LISTS

OPTIONS FOR EACH. INDIVIDUAL SETTINGS CAN BE IDENTIFIED BY SELECTING ONE OPTION PER DIMENSION. WE NOTE THAT CERTAIN COMBINATIONS
OF OPTIONS ARE NOT COMPATIBLE. THE FINAL COLUMN SUMMARIZES THE MEANING OF EACH OF THE DIMENSIONS FOR USE IN THE PRESCRIPTION OR

DESCRIPTION OF THE CORRESPONDING DIMENSION.

Category Dimension Options Question

Number of

classes
Binary / Multi-class How many classes does the task involve?

True Label Space

Multi-label Yes / No Can instances belong to more than one class?

Unsupervised Yes / No Are annotators allowed to not annotate certain samples?

Soft labels Yes / No Are annotators allowed to use soft or probabilistic labels?

Number of

Annotators
1 / >1 How many annotators will annotate the data?Weak Label space

Number of

candidate classes
1 / >1 Are annotators allowed to provide annotations covering more than one

class?

Aggregation Yes / No Are samples annotated individually or as a group?

Class dependent Yes / No Are classes equally prone to annotation errors?Weakening Process

Instance dependent Yes / No Are samples equally prone to annotation errors?

A. True Label Space
Here we present dimensions that derive directly form the

nature and description of the task. Classification tasks can
take different forms, from binary classification, where we
might be interested in identifying an image as a dog or a cat,
to multi-class, where we might aim to recognize images of
dogs according to their breed. This is summarized in the first
dimension – number of classes. Additionally, we accept that
it is sometimes the case that more than one categories can be
assigned to a single instance as in multi-label settings, which
forms the second dimension. The types of true/clean label that
we consider are then as follows.

Number of classes:

Yk =
{
y | y ∈ {0, 1}k, 1>y = 1

}
(1)

Multi-label:

Ym,k =
{
y | y ∈ {0, 1}k, 1 ≤ 1>y ≤ m ≤ k

}
(2)

Although this can be extended to structured data, we do
not explore it here for simplicity. We also assume that the
dataset only contains what is defined by the task, e.g., in
the case of the task being classifying dogs vs cats, there
would not be images of other animals in the dataset. Even
though we do not discuss the learning stage in this paper,
the framework is constructed keeping in mind that part of the
task would be to obtain a classifier: f : X → YClean and in
minimizing EX,Y `(Y, f(X)), where `(., .) is a loss function
and the expectation is over the clean label data distribution.

B. Weak Label Space
In this section we focus on dimensions concerned with the

weak label space, YWeak (See Eq. 5) and the possible forms
that it might take. These characterise the degrees of freedom
of the annotator.
Access to unlabelled data. In certain situations, besides the
potentially weakly labelled dataset, we also have access to

a separate unlabelled dataset. This could be either because
annotators are allowed to return an empty annotation, or
because this set of data was just not chosen for annotation.
We refer to this dimension as unsupervised.
Access to multiple annotators. We usually assume a dataset
is annotated by one annotator, but it might be the case that
a number of annotators provide annotations for the same
dataset. Annotations on the same instance will not necessarily
agree, potentially creating ambiguity.
Restriction on number of assigned candidate classes. In bi-
nary and multi-class classification, the classes are mutually
exclusive and exhaustive, which means that every instance is
associated with one true class only. In the weak label space,
we could allow an annotator to provide a set of candidate
classes, instead of just one (number of candidate classes).

An example of a weak label and how this set of dimensions
can affect what we get to observe is shown in Figure 1. It
shows how these three dimensions can increase the complexity
of a weak label, as we can have several annotators, allow them
to provide no annotation, and also allow them to assign more
than one class to each sample.
Soft labels. Also known as probabilistic labels, the soft labels
relaxation allows for more flexibility in the annotation process
by letting an annotator express a degree of belief. For example,
instead of resorting to ‘dog’ for an image, they could say ”70%
confident this image contains a dog” [7].

C. Weakening Process

The final set of dimensions captures the different aspects of
the weakening process, i.e., the (usually unknown) transfor-
mation the maps true/clean to weak labels. Interestingly, the
weakening process depends on the annotator and how they
make suboptimal annotation decisions, but it can also depend
on choices made by the dataset owner or on the task itself.
Aggregation. A key dimension is whether the labels provided
correspond to a single instance, or whether they depend on,
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4 annotators

6 base classes

Have access to more than one annotation sets per instance.

Annotators can provide an empty annotation set.

Annotators can provide annotation sets with more than one candidate class.

Fig. 1. An example of a non-aggregate weak label. For this case we consider
six base classes and access to four annotators. This example showcases three
dimensions: (1) having access to more than one annotators, (2) annotators
can provide an empty annotation set (see annotator 3), and (3) annotators can
provide an annotation set with more than one candidate class (see annotators
1 and 2).

Non-aggregate Aggregate

Fig. 2. Depiction of the difference between non-aggregate and aggregate set-
tings. In the case of non-aggregate settings, there is a one-to-one relationship
between instances and labels, while in the case of aggregate noise settings we
observe one label per group. We note that a label could be one class, multiple
or none, as we describe below.

and correspond to, a set of instances through an aggregation
mechanism. For the aggregate cases, the labels provided corre-
spond to a set of instances which we will refer to as a ‘bag’.
Instead of being provided with a set of instance-label pairs
{(xi, yi)}ni=1, we are provided with a set of {(xi, bi)}ni=1

where bi’s are bag indicators and {(bj , tj)}mj=1, where tj’s
are the corresponding labels. The labels in this case are of the
form:

tj = g
({
yi | i ∈ bj

})
(3)

where we use i ∈ bj to imply that the ith instance belongs to
the jth bag, and g is the label aggregation function. It should
be noted that tj is the label for all instances xi, i ∈ bj . The
distinction between the two is shown pictorially in Fig. 2.

For non-aggregate settings, we will refer to P(Ỹ | X,Y ),
where Ỹ denotes the random variable for the weak label, as the
weakening function, which upon conditioning has the form,

τ(y;x) = P
(
Ỹ | X = x, Y = y

)
(4)

with
τ(y;x) : YClean →4YWeak

(5)

where 4YWeak
is the probability simplex over YWeak. Eqs. 4

& 5 involve three objects:
• the clean label space YClean (covered in Sec. II-A),
• the weak label space YWeak (covered in Sec. II-B) and
• the weakening function τ(y;x).

The weakening function acts between discrete sets and can
therefore be described as a Categorical (Cat) distribution.
This distribution is parametrized by a column of a mixing ma-
trix or transition matrix, T , which is a non-negative column-
wise stochastic matrix. The weakening process is modelled
as,

Ỹ | Y = y, X = x ∼ Cat
(
Ty
)

(6)

With regards to dimensions arising of the weakening function
we will consider two, the dependence on the instance and on
the true class.
Dependence on instance. We consider two cases, instance
dependence or instance independence [8].

Instance-independent noise (IIN) :

P(Ỹ = ỹ | X = x, Y = y) = P(Ỹ = ỹ | Y = y),

Instance-dependent noise (IDN) :

P(Ỹ = ỹ | X = x, Y = y) 6= P(Ỹ = ỹ | Y = y).

Dependence on true class. With regards to the class depen-
dence we consider symmetric (uniform) or asymmetric (class-
conditional) with respect to the original classes [9]. In the case
of multi-class classification, symmetric noise would imply:

P(Ỹ = eu | X = x, Y = ei) = P(Ỹ = ev | X = x, Y = ei)
(7)

∀u, v, i ∈ [k], u 6= v 6= i.

We have asymmetric label noise when this does not hold.

III. THE DIMENSIONS IN PRACTICE

We now present several well-studied settings within the field
of weak supervision and discuss how they fit in the proposed
framework. We first start by exploring examples that belong
to the the non-aggregate category and then move to aggregate,
as this separation simplifies the formulation of the settings.

A. Non-aggregate WS Settings

For non-aggregate WS settings, the selected examples are
summarized in Table II to illustrate their constraints in the true
label space, weak label space and weakening process.

a) Noisy labels (Flipping noise): In this setting, instances
switch labels with a certain probability. This type of noise
could be introduced when the data is labelled by a non-
expert annotator, and nicely extends to having multiple such
annotators. In this setting the clean and noisy label spaces are
the same:

Yk → Yk
T ∈ Rk×k



TABLE II
NON-AGGREGATE WSL SETTINGS ACCORDING TO THE LABEL-SPACE OF

TRUE LABELS AND WEAK LABELS, AND THE MIXING MATRIX USED TO
MODEL THE WEAKENING PROCESS.

Name
True

Label Space

Weak

Label Space
Mixing matrix

Noisy Labels Yk Yk T ∈ Rk×k

Partial Labels Yk Ym,k T ∈ R(2k−2)×k

Superset Learning Yk Ym,k(z) T ∈ R(2k−2)×k

Semi-supervised

Learning
Yk Yk+1 T ∈ R(k+1)×k

Positive-Unlabelled Y2 Y3 T ∈ R3×2

Multiple

Annotators
Yk Yn

k

{
T ∈ Rk×k

}n

i=1

An example of a mixing matrix for binary classification:

( + -
+ 1− γ0 γ1
- γ0 1− γ1

)
where if γ0 = γ1 it implies symmetric label noise, and
asymmetric label noise otherwise. In the case of instance-
independent noise, γ0 and γ1 are constants, i.e., all instances
have their label flipped with same probability. On the other
hand, with instance-dependent noise, γ0 and γ1 could be func-
tions of x, where we could have rates differ γ0(xi) 6= γ1(xj)
for xi 6= xj . A comprehensive review of classification in the
presence of label noise is given by [10].

b) Superset Learning: In this setting a weak label could
be any combination of class labels, subject to the constraint
that this combination contains the true label. For example, in
the case of multi-class classification with three classes, for
a true label [001] (class 3 in one-hot encoding), we could
observe [011] or [101], but not [110] (represented as the binary
OR operator on the true one-hot encoding). Superset learning
has been studied in the literature under different names such
as ‘learning with partial-labels’ (see below), ‘learning with
ambiguous labels’ and ‘learning from complementary labels’
[11]. Some of the earlier works on the topic include [12] and
[13] where the setting is referred to as ‘partial-labels’ and
‘multiple labels’ respectively. An example of a mixing matrix:



001 010 100
001 α0 0 0
010 0 β0 0
100 0 0 γ0
110 0 β1 γ1
101 α1 0 1− γ0 − γ1
011 1− α0 − α1 1− β0 − β1 0


Yk → Ym,k(z)

T ∈ R(2k−2)×k

where,

Ym,k(z) =
{
y|y ∈ {0, 1}k, 1 ≤ 1>y ≤ m ≤ k, z ∈ y

}
(8)

We abuse notation and use y both as a vector and as a set
and with z ∈ y we imply that y covers z, i.e. has a non-zero
entry wherever z has a non-zero entry.

c) Partial Labels (PLL): PLL is sometimes used to refer
to superset learning. This setting is similar to that of superset
learning but where there is no restriction that the observed
weak label includes the true label[14, 15].

Yk → Ym,k

T ∈ R(2k−2)×k

where,

Ym,k =
{
y | y ∈ {0, 1}k, 1 ≤ 1>y ≤ m ≤ k

}
(9)

In both settings, the set of potential observations extends from
k to 2k − 2. While standard presentations of the settings
consider 2k−1, we choose to exclude the all inclusive potential
observation and instead consider it as an extra dimension.

d) Semi-supervised Learning (SSL): In semi-supervised
learning [16], on top of the usual supervised dataset, we are
also provided with an unlabelled dataset.

Yk → Yk+
T ∈ R(k+1)×k

where,

Yk+ =
{
y | y ∈ {0, 1}k, 1>y ∈ {0, 1}

}
(10)

and is an extension of the multi-class label space (Eq. 1) that
allows for no classes to be provided. An example of a mixing
matrix for binary classification:


+ -

+ 1− γ0 0
- 0 1− γ1
na γ0 γ1

 (11)

e) Positive-Unlabelled (PU) Learning: Learning with
positive and unlabelled instances [17] is the setting of binary
classification where the training dataset only consists of posi-
tive and unlabelled instances. Situations where PU learning
arises include medical records where only known previous
diseases are listed and personalised advertising where visited
pages and clicks are the positive cases [18].

Y2 → Y2+
T ∈ R3×2

An example of a mixing matrix for PU learning:


+ -

+ 1− γ0 0
- 0 0
na γ0 1





PU learning can be seen as a special case of semi-supervised
learning where γ1 = 1 (Eq. 11). It has been extended to the
multi-class case, under the name Multi-Positive and Unlabeled
learning, where labeled data from multiple positive classes are
provided for training along with unlabeled data from a mixture
of the positive classes and a negative class [19].

f) Multiple annotators: Assuming we have m annotators,
we also have potentially m distinct mixing matrices [20, 21,
22]. Therefore, Ỹ n =

{
Ỹ ∼ Cat

(
T jy

)}n
j=1

, where T j

denotes the jth annotator’s mixing matrix.

Yk → Yn
k{

T ∈ Rk×k
}n

j=1

where,

Yn
k =

{
y | y ∈ {0, 1}k×n, y>1 = 1

}
(12)

where the equality should be understood as elementwise.

B. Aggregate WSL Settings

Aggregate settings have comparatively received much less
attention in the literature. Here, we present multiple instance
learning and learning from label proportions as the main
representatives.

a) Multiple Instance Learning: Multiple instance learn-
ing (MIL) is usually considered in the binary classification
case. The label provided for a bag of samples is an indicator
of the presence of the positive class. In other words, is there
at least one positive instance in the set? It was first introduced
in [23] with the motivation of drug activity prediction.

g(y1, . . . , yn) = max
(
y[1..n]

)
In [24] the authors extend MIL, from requiring at least one
positive instance in a bag, to requiring r.

g(y1, . . . , ym) = 1
{ m∑

i=1

yi ≥ r
}

b) Learning from Label Proportions (LLP): In LLP, the
aggregation function is the count function (or proportion) for
each of the classes present in a bag of samples. LLP was
introduced in [25] with the motivation of learning with mass
spectrometry data.

g(y1, . . . , ym) =

[
m∑
i=1

yi,0, · · · ,
m∑
i=1

yi,c

]
Interestingly, PU Learning was presented as being a non-
aggregate setting, but under certain conditions it can also
be seen as a case of learning from label proportions. In PU
Learning, we are provided with a set of positive data and a
set of unlabelled data. If we know the portion of positives and
negatives in the unlabelled set, we can view this as an instance
of LLP with two bags.

C. Towards a Unified Formulation

For non-aggregate settings, we can now see how to find a
common formulation for weakly supervised settings. Starting
with the label space corresponding to multiple annotators in
Eq. 12, we can extend it to allow annotators to provide an
empty set for a sample (e.g., when they find an instance
difficult to annotate):

Yn
k+ =

{
y | y ∈ {0, 1}k×n, y>1 ∈ {0, 1}

}
(13)

and then it could be extended to allow annotators to provide
an annotation set with more than one candidate,

Yn
m,k+ =

{
y | y ∈ {0, 1}k×n, 0 ≤ y>1 ≤m ≤ k

}
(14)

With regards to describing the annotation process for a dataset,
we could model the weakening process through its dependence
on the instance and the true class.

Aggregate settings can also be extended to the case of
having access to unsupervised data or multiple annotators.
Instance-dependence has a different meaning in this case
though. While previously it had to do with whether the
weakening function was uniform across all instances, in this
case it has to do with bag creation and intra-bag similarities
[26, 27, 28]

IV. CONCLUSION & FUTURE WORK

We have presented a framework with dimensions that can
help in navigating the weak supervision field, but that can
also help in understanding exploiting the flexibility of the
annotation process.

However, this is nothing but a first step towards categorizing
weak supervision. In future work we wish to extend this work
in three directions. First, we aim to complement our framework
with corresponding algorithms where a practitioner can turn
to after identifying the characteristics of their problem. This
would also allow for understanding the implications that
certain choices on the annotation process have on available
algorithms, their theoretical guarantees and practical consider-
ations. Second, we want to expand this work into a transparent
process for documenting the annotation of a dataset. This very
much aligns with the proposal of accompanying a dataset
with a datasheet that documents its motivation, composition,
collection process and recommended uses in Datasheets for
Datasets [29]. Third, we want to strengthen the framework
itself. Non-aggregate weak supervision settings have been
more widely studied and hence the difference in weight they
have received in this paper. As seen, they can be unified
through Eq. 6 and the mixing matrix which can be used to
reverse the noise process and make learning unbiased [30].
An important aspect in these settings is whether the mixing
matrix is known [31] or whether it has to be estimated [22].
Also, the unified formulation is not only a matter of aesthetics,
but more importantly allows for the transferability of methods
and theory. In the case of aggregate WSL settings, while we
have Eq. 3 showing how aggregation is abstracted away, it
does not improve our theoretical understanding, or allow for
algorithms to be applied across settings yet.
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