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Abstract—The popularity and proliferation of electric scooters (e-scooters) as a micromobility solution in our cities and urban
communities has been rapidly rising. Rent-by-the-minute pricing and a healthy competition between micromobility service providers is
also benefiting riders with low trip costs. However, an unprepared urban infrastructure, combined with uncertain operation policies and
poor regulation enforcement, has resulted in e-scooter riders encroaching public spaces meant for pedestrians, thus causing significant
safety concerns both for themselves and the pedestrians. As a consequence, it has become critical to understand the current state of
pedestrian safety in our urban communities vis-à-vis e-scooter services, identify factors that impact pedestrian safety due to such
services, and determine how to support pedestrian safety going forward. Unfortunately, to date there have been no realistic,
data-driven efforts within the research community that address these issues. In this work, we conduct a field study to empirically
investigate crowd-sensed encounter data between e-scooters and pedestrian participants on two urban university campuses over a
three-month period. We also analyze encounter statistics and mobility trends that could identify potentially unsafe spatio-temporal
zones for pedestrians. This first-of-its-kind work provides a preliminary blueprint on how crowd-sensed micromobility data can enable
safety-related studies in urban communities.
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1 INTRODUCTION

One of the biggest challenges faced by cities due to pop-
ulation growth and density is the transportation of com-
muters and intra-city travelers, especially over short non-
walkable distances [1]. A lack of adequate and/or frequent
public-transportation infrastructure has partially catalyzed
this situation in many cities [2], which has resulted in
increased use of personal automobiles, thus causing ad-
ditional congestion on the roads. In addition to a sub-
standard commute experience, this has also contributed
to quality of life challenges, including an increase in air
pollution levels with concomitant health and environmental
problems [3], collisions [4] and economic waste [5]. Due
to these escalating problems with intra-city transportation,
cities have deployed pilots and fully implemented systems
of personal and service provider-owned electric or battery-
powered micromobility vehicles.

Micromobility is an umbrella term used to describe a
novel category of transportation using non-conventional
battery-powered vehicles aimed at shrinking the physical
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and environmental footprint required for quickly moving
people over relatively short distances. Electric scooters (or
e-scooters) [6] currently constitute the most popular class
of micromobility vehicle [7], which are designed for travel
over distances that are too close to drive or utilize pub-
lic transportation yet too far to walk [8]. Moreover, due
to their small physical footprint, such vehicles provide a
convenient means to navigate around a city with congested
roads and sidewalks, thus making them a popular last-
mile transportation solution in urban areas [9]. Last-mile
transportation bridges the gap between conventional trans-
portation hubs (such as a bus stop, train station and parking
lot) and final destinations (such as a workplace, home,
school, and shopping center), which is especially appealing
in cities where conventional transportation options are not
abundantly distributed. The popularity of e-scooters has
been further accelerated by a growing number of service
providers that offer these vehicles on rent-by-the-minute
schemes, wherein the riders do not have to bear the upfront
purchase and maintenance costs of owning such vehicles.
Other aspects of e-scooter services that make them appeal-
ing to urban commuters include easy service accessibility
through a smartphone application, flexibility in trip start
and endpoints, ease of vehicle geo-location, the flexibility
of drop-off options with no parking fees, a simplified and
intuitive riding process which requires no pre-training and
license to operate, and negligible environmental impact
compared to fossil-fuel powered automobiles [10].

However, as with any disruptive new technology, un-
foreseen problems have surfaced with or due to such e-
scooter services. For instance, many city administrators and
planners have been unable to cope with the sudden influx of
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e-scooters in their jurisdictions, and as a result, many urban
jurisdictions have have had very lenient or no regulations
on how these vehicles should be operated. As a result, e-
scooter riders often end up encroaching road infrastructure
meant for pedestrians, thus causing significant safety con-
cerns both for themselves and the pedestrians [11]. Given
that pedestrians face risks such as walking alongside riders
traveling at high speeds and navigating around hazardously
parked or standing vehicles on sidewalks, it is not surpris-
ing that a considerable number of reported micromobility
vehicle incidents involve some form of collision with pedes-
trians [12]. Furthermore, a study in Brisbane (Australia)
found that nearly half of the shared e-scooter trips involved
riding illegally in some way, such as riding on roads where
it is not allowed, doubling with a passenger, or not wearing
helmets (when required) [13].

Thus, a critical issue that administrators, policymakers,
and stakeholders in our urban communities need to address
in a timely fashion is “how can pedestrians safely co-exist with
e-scooters and e-scooters riders?” As part of this overarching
question, answers to specific questions such as “what is the
current state of pedestrian safety vis-à-vis e-scooter services in
urban communities?”, “which factors impact pedestrian safety
in such services?”, and “how to support pedestrian safety going
forward?” are urgently needed. Public opinion both for and
against such services has been highly polarizing which has
resulted in abrupt responses from city administrators (e.g.,
some have welcomed e-scooters, while others have outright
banned them [13], [14], [15]) without clear justifications that
are based on empirical data and analysis. Our position is
that before making any policy decisions or implementing new
regulations on e-scooter services, their impact on pedestrian safety
needs to be thoroughly studied in an empirical and data-driven
manner.

Till date, there have been only a few research efforts that
have attempted to empirically study the safety impacts of
micromobility services in an urban environment [12], [16].
However, these efforts have primarily focused only on the
problem of rider safety, either partially or wholly, leaving
out the aspect of pedestrian safety impacted by these ser-
vices. In this work, we conduct a field study to empirically
investigate and characterize new safety issues that have
arisen due to the introduction of e-scooter services, from the
pedestrians’ perspective. The most significant impediment
in conducting such a field study is enabling pedestrians to
collect and document information related to e-scooter move-
ments and encounters, and its impact on their safety. An
approach of asking pedestrians to document each and every
encounter manually will be too cumbersome, error-prone,
and exposed to bias. To overcome this challenge, we take
advantage of the technical design of rental e-scooters, specif-
ically, the onboard hardware and communication interfaces.
Current service-provider owned e-scooters come equipped
with a constantly beaconing Bluetooth Low Energy (BLE)
radio, typically employed for near-field operations such
as vehicle unlocking and communication with customers’
mobile application. Our main idea is to passively capture
the BLE signals/beacons continuously emitted by the BLE
radios on-board these commercial e-scooters by employing
pedestrian participants who are carrying some form of a
BLE receiver (i.e., a smartphone or smartwatch). BLE and

other sensor data crowd-sensed in such a fashion can then
be used to extract fine-grained contextual (spatio-temporal)
information about the mobility state(s) of the e-scooters
and physiological states of the (participating) pedestrians.
Using this information, and the resulting analysis, we will
be able to better understand the various factors impacting
pedestrian safety in such micromobility services.

Specifically, we conduct a field study by recruiting par-
ticipants (mostly students) in the main and downtown cam-
puses of the University of Texas at San Antonio, where e-
scooter services are extremely popular. University campuses
have a high density of pedestrians (who are also often
distracted [17]), making it an ideal environment for a field
study such as this. We observed that it is not only possible
to uniquely identify BLE beacons transmitted by e-scooters
operated by popular service providers (e.g., Lime and Bird)
on the above two campuses, but it is also possible to
characterize encounters between these vehicles and pedes-
trians who are passively capturing these BLE beacons using
their smartphones or smartwatches. Our field study focuses
on crowd-sensing real-time e-scooter-pedestrian encounters
and other pedestrian physiological data (such as heart rate)
on the two campuses over three months by recruiting pedes-
trian participants and equipping them with customized BLE
receivers such as smartwatches.

Well-defined spatio-temporal metrics are then computed
from this crowd-sensed data and employed as safety bench-
marks to further understand the impact that the e-scooter
services operating on these campuses have on pedestrian
safety. Our analysis uncovers interesting encounter statis-
tics and mobility trends, which could be used to identify
potentially unsafe spatio-temporal zones. Our study makes
a preliminary effort to analyze the impact of new and up-
coming micromobility transportation services on pedestrian
safety and provides a blueprint on how relevant data crowd-
sensed by pedestrians can be employed to conduct similar
studies in other urban environments and communities.

2 BACKGROUND AND RELATED WORK

Before describing the research goals of this paper, we first
present a brief background on e-scooter vehicles and ser-
vices, followed by an outline of the related literature.

2.1 Micromobility and E-scooters
Several different types and form-factors of urban micromo-
bility vehicles are being offered, primarily on a rent-by-the-
minute rental model, by a range of service providers. Pow-
ered micromobility vehicle types include electric bicycles,
boards, skates, and both seated and standing scooters [6].
Depending on the vehicle form-factor and target market,
service providers may offer their vehicles in either a docked
or a dockless model. In the docked model, vehicles may
only be picked up and dropped off at specific locations,
commonly known as docking stations. The dockless model
offers more flexibility to riders as they can pick up and drop
off the vehicles at any location within the geo-fenced area of
operation. This model is relatively standard in small form-
factor vehicles such as battery-powered e-scooters.

There are several reasons for focusing on dockless e-
scooters in this study. First, e-scooters are currently the
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fastest growing form factor throughout the micromobility
industry [7]. E-scooters services started in the United States
in 2017, and quickly expanded to 110 cities by 2019 [18].
Second, any middle or large-sized city in the US is presently
served by a large number of local and national e-scooter
service providers, offering ubiquitously available vehicles
and a range of different service options. Lastly, e-scooters
are not only accessible for short-distance/last-mile trips
within the city, but also for commuting within larger self-
administered communities inside cities such as universities,
schools, and company campuses and shopping malls. See
Table 1 for the range of service providers and e-scooter types
(and their features) found on our university campuses.

Although e-scooters are available for a personal pur-
chase, it is the servitization of these vehicles that have
resulted in their popularity. Servitization allows riders to
use the nearest available vehicle, which should be easy to
find in an urban setting due to a large density of vehicles,
without having to securely store or carry them along when
not in use. Vehicle rental (pick-up and drop-off), vehicle
geo-location, service tracking, and payments are facilitated
through mobile apps implemented by the service provider.
In addition to the on-demand nature of these services, the
offered vehicles are environmentally friendly when micro-
mobility trips replace personal automobile use [22].

Renting and operating these vehicles is fairly straightfor-
ward. Through the service provider’s smartphone applica-
tion, riders can activate any available e-scooter belonging to
the provider that they find nearby and pay to ride it for as
long as needed, or until the battery is drained. Riders can
travel up to 28 miles per charge on certain e-scooter models,
but most e-scooter trips are typically much shorter [10].
These vehicles fit the SAE “low-speed” category, with top
speeds less than 20 mph [6]. Riders typically pay anywhere
between 15 to 50 cents per minute to use the e-scooters,
but some service providers also charge a base fee (currently
$1.00 for Bird and Lime) to activate an e-scooter. The overall
cost is significantly lower compared to minimum fares of
popular automobile ride-hailing services such as Uber and
Lyft (approximately $8.00 in the United States, with slight
variation between cities). Riders are also expected to educate
themselves and comply with the local laws and regulations,
e.g., wearing a helmet and riding only in bike lanes, while
riding these vehicles.

2.2 Pedestrian Safety in the Built Environment

Any vehicle sharing space with pedestrians poses a risk
of collision, but the threat can vary due to urban density,
pedestrian infrastructure, roadway design, traffic volume
and speed, visibility, and the type of pedestrian [23]. Philip
Stoker et al.’s systematic review of over 170 pedestrian
safety studies showed the three primary factors that may
mitigate risk are also largely controllable through planning
and design: pedestrian-traffic interaction, visibility, and traf-
fic speed [23]. A comprehensive review of street design
factors showed streets with sidewalks on both sides, slower
traffic speeds, buffers and barriers, landscaping, and trees all
supported reduced pedestrian risk, in addition to 20 other
factors [24]. However, the ways that these variables impact
safety are uneven across communities.

Low-income and minority communities experience
greater risk while walking, as compared with higher-income
and White populations. Observations of drivers at cross-
walks show that they yield to Black pedestrians at half the
rate, with wait times 32% higher than White pedestrians
[25]. Research on disparities in pedestrian risk shows ev-
idence for prioritizing safety improvements in areas with
high rates of minorities and poverty, particularly near
schools [26].

University campuses and surrounding areas pose a risk
for pedestrians, including small vehicles on pathways, and
with motor vehicles on campus fringes. Pedestrians perceive
risk from bicycling in campus settings, showing importance
in the travel experience, even when the issue is more of
comfort than safety [27]. Police statistics under-represent the
number of pedestrian and bicycle crashes, supporting a role
for crowdsourcing incident data [28]. We find no research
till date detailing differences in pedestrians’ perceptions of
e-scooters versus traditional bicycle modes.

2.3 Prior Work on Safety Issues due to Micromobility
Vehicles
Prior research efforts to identify and/or address issues
related to micromobility, especially regarding the safety of
pedestrians and riders, did not have a holistic view of the
underlying pedestrian and rider movement patterns. Anal-
ysis by micromobility service providers [29], who can easily
gather contextual data related to their vehicles (such as
riding patterns and parking habits), did not have any quan-
titative information on fellow pedestrians and their move-
ment patterns. Moreover, service providers would have a
business incentive to not highlight the negative impacts on
pedestrian safety due to their vehicles. Similarly, studies by
some city governments and community administrators [16],
[30] only employed subjective feedback and qualitative data
(often, more from pedestrians than riders).

Independent research efforts on micromobility related
issues have thus far been very limited in scope. Initial stud-
ies took a broad approach to apply planning lessons from
similar modes, and identify research needs [31], [32]. An
observational study in west Los Angeles identified safety
risks related to e-scooter driver behaviors, such as the ability
to move between sidewalks and motor vehicle lanes, which
may surprise motorists [33]. In Singapore, researchers mea-
sured improvements in rider predictability after installation
of directional arrows on paths, suggesting opportunities to
improve safety through engineering for emerging modes
[34]. An early field study in China observed e-scooter rid-
ers to more often ride against the flow of traffic and in
motorized lanes [35]. Researchers from medical institutions
have analyzed micromobility related injuries of both riders
and pedestrians [36], [37], [38], [39], and found that muscu-
loskeletal fractures and head injuries were most common.
While riders may be compelled to wear proper protective
gear based on these findings (for example, mandatory use
of helmets as suggested by Choron and Sakran [40]), the
same cannot be enforced on fellow pedestrians. Sikka et al.
highlighted the health and financial impact for pedestrians
involved in an e-scooter collision, using a case study [12].

New approaches connect safety research to mobility
needs, leveraging observational data. McKenzie analyzed
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TABLE 1: E-scooter service providers (in and around our university campus) and their vehicle features.

Service Providers
Bird [19] Lime [20] Blue Duck [21]

Xiaomi M365 Segway Ninebot ES2
(w/ extended battery)

Electisan F350 Custom-made
Ninebot

Segway Ninebot ES2
(w/ extended battery)

Xiaomi M365
Fe

at
ur

es

Headlights X X X X X X

Tail/Brake Lights X X X X X X

Bell/Horn X X X X X X

Display X X X

Range (mi) 18.6 15.5 (28.0) 20-30 12-25 15.5 (28.0) 18.6
Top Speed (mph) 15.5 15.5 (18.6) 18.0 15.5 15.5 (18.6) 15.5

usage patterns of e-scooter and e-bikes in Washington, DC,
using the city’s publicly accessible API to micromobility
data portals [9]. James et al. analyzed e-scooter safety
perceptions and sidewalk blocking frequencies from sur-
vey data, and observed parking practices in different built
environments [41]. The use of virtual reality enables con-
trolled experimentation of different e-scooter safety contexts
without risk of field interventions [42]. Initial empirical
results support additional policy-focused work to integrate
micromobility as part of a sustainable transportation sys-
tem [43]. Micromobility research increasingly leverages new
data collection methods to address a wide range of needs.
Yet, none to date evaluate a system for pedestrian-focused
e-scooter interaction.

In this work, we systematically analyze e-scooter and
pedestrian encounters (a precondition to accidents involv-
ing e-scooters and pedestrians), and discern if or how pedes-
trians and such micromobility services can safely co-exist in
urban environments.

3 RESEARCH OBJECTIVES

Disruptions to pedestrian movement due to micromobility
vehicles such as e-scooters, and collisions between these
vehicles and pedestrians, occur only when they closely (in
some spatio-temporal sense) encounter each other on the
streets. A more precise and empirically derived definition
of an encounter is detailed later in Section 4.4. Given the
significant number of incidents involving pedestrians and
micromobility vehicles reported in the last two years [12],
we can postulate that every such close encounter between
micromobility vehicles (moving or stationary) and pedes-
trians has some probability of resulting in a collision or
a disruption to pedestrian movement. In other words, a
higher density/concentration or frequency (or both) of such
close vehicle-pedestrian encounters is indicative of a higher
probability or potential for vehicle-pedestrian collisions and
is generally a good metric for benchmarking the state of
pedestrians’ safety.

There are two critical factors that dictate the occurrence
of close vehicle-pedestrian encounters, and their density
and frequency. The first, also referred to as space factors, are
the spatial constraints imposed by the infrastructure (roads,
sidewalks, etc.) shared by the micromobility vehicles and
pedestrians. The second, also referred to as time factors,
are the temporal constraints that dictate the mobility (speed,
direction, etc.) of the micromobility vehicles and pedestrians
within a given shared space. A combination or co-existence of
these space and time factors also impact the occurrence of
encounters. In order to further clarify this, let us give some

(a) Improperly parked e-scooter. (b) A street light pole.

Fig. 1: Scenarios with pedestrian path roadblocks.

concrete examples of these factors as observed by us during
our study.

For instance, insufficient allocation of space for side-
walks and bike lanes can lead to unsafe encounters between
e-scooters and pedestrians. If a bike lane is not present, e-
scooter riders may feel compelled to use sidewalks meant
for pedestrians. Similarly, if an improperly parked e-scooter
is blocking a sidewalk, pedestrians may be forced to use the
main road to bypass the blockade (as shown in Figure 1a)
which places them in great danger of getting hit by cars on
the road. Other permanent obstructions, for example, trees,
poles (as shown in Figure 1b), benches and fire hydrants,
on spaces often shared between e-scooter riders and pedes-
trians can also lead to unsafe encounters. Safe utilization
of space allocated to riders and pedestrians also depends
on proper planning of transportation hubs. For instance,
if all commuters who just got off a bus head in the same
direction to their final destination, it may cause congestion
among riders and pedestrians covering their last-mile. An
optimally positioned bus stop, train station or parking lot
should observe the diffusion of commuters in all directions,
thus minimizing chances of congestion and making safer
utilization of the space allocated for riders and pedestrians.

Similarly, several time factors also play an important
role in generating potentially unsafe micromobility vehicle-
pedestrian encounters within a given space. For instance, if
there is a spike in rider and pedestrian traffic due to multiple
closely timed events (e.g., multiple classes scheduled in
the same building and starting at the same time), it may
cause congestion among riders and pedestrians en-route to
these events. Another crucial time factor is the reaction time
pedestrians get to navigate around micromobility riders
traveling at different speeds and in different directions.
Depending on whether a micromobility vehicle is moving
towards or away from a pedestrian, and whether the vehicle
is behind or in front of the pedestrian, the pedestrian may
or may not get sufficient time to react appropriately.
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Our research agenda, thus, is to first analyze by means of
empirically collected encounter data how certain space and
time factors affect the safety state of pedestrians when they
are in co-existence with e-scooters (and riders). Specifically,
we seek to conduct the following three broad research
analyses:

RA1 Correlating space factors with empirical encounter
and physiological data to identify potentially unsafe
(to pedestrians) encounters and contexts.

Specifically, in RA1, we analyze the spatial distribution
of encounters, changes in encounter properties between
high and low encounter concentration or density areas, and
the effects of pedestrians’ and riders’ spatial diffusion on
encounter rates and other encounter-related properties in
order to understand their impact on pedestrian safety. We
will also relate this analysis to infrastructure-related short-
comings, such as missing bike lanes and sidewalk obstruc-
tions, in order to determine potentially unsafe encounters, if
any.

RA2 Correlating time factors with empirical encounter
and physiological data to identify potentially unsafe
(to pedestrians) encounters and contexts.

Specifically, in RA2, we analyze the temporal distribu-
tion of encounters, changes in encounter properties between
time periods comprising of a large number of encounters
versus the smaller number of encounters, and the effects
of pedestrians’ and riders’ temporal diffusion on encounter
rates and other encounter-related properties in order to
understand their impact on pedestrian safety. As before, we
will relate this analysis to the infrastructure-related short-
comings, such as unbalanced class schedules and common
event times, in order to determine potentially unsafe en-
counters, if any. Additionally, we will also analyze different
encounter scenarios that give varying levels of reaction
time to pedestrians and quantitatively measure pedestrians’
reactions to these different encounter scenarios.

RA3 Correlating a combination of space & time factors
with empirical encounter and physiological data to
identify potentially unsafe (to pedestrians) encounters
and contexts.

In RA3, we will extend our previous analyses to study
which combinations of space factors (e.g., poor shared space
utilization) and time factors (e.g., event times), as discussed
earlier, are the most significant enablers of unsafe encoun-
ters between pedestrians and riders.

In addition to the above quantitative analyses, which are
primarily based on the crowd-sensed (BLE-based) encounter
data and data from mobile sensors (e.g., heart rate), we will
also analyze pedestrians’ attitude and perception towards
the impact that e-scooters have on pedestrian safety (Sec-
tion 6.2).

4 RESEARCH METHODOLOGY

We now describe the details of the field study that we
conducted for crowd-sensing the e-scooter–pedestrian en-
counter and other pedestrian-specific data used for the
safety analyses summarized earlier. As part of this de-
scription, we outline in detail the study environment, data
collection process, including participant recruitment and the
type and granularity of the data that is collected.

4.1 Significance of Pedestrian’s Point of View
Let us first briefly describe why pedestrians are best suited
for gathering (and crowd-sensing) detailed information on
their encounters with e-scooters. The e-scooters may or
may not have a rider at the time of an encounter (for
example, a parked vehicle), which means we will fail to
gather information on encounters between pedestrians and
rider-less vehicles if we depend only on riders for data
collection. The vehicles themselves feature several sensing
options, but, (i) none of the on-board sensors are suitable
for detecting nearby pedestrians, and (ii) service providers
are not comfortable with releasing their vehicles’ data due
to potential misuse by competitors and customer/rider pri-
vacy concerns.

Pedestrians also carry a variety of sensors with them
that are present on their mobile and/or wearable devices.
While experimenting with different sensors that could be
employed for detecting encounters, we determined that
most e-scooters transmit BLE advertising packets at reg-
ular intervals, which could be passively captured by the
BLE receivers present on most smartphones or wearables
carried by the pedestrians. These BLE packets also contain
identifiers that can be used to distinguish them from other
BLE devices. For example, they may contain the service
provider’s name (as shown in Figure 2) or other unique
naming conventions. Furthermore, due to the short range
of BLE transmissions, pedestrians may capture the BLE
packets only when they encounter a nearby e-scooter, which
can minimize unwanted noise that could occur due to e-
scooters that are not close to the pedestrian which also
reduces the task load (Section 4.2) for our participants.
Further, it also obviates participants having to carry any
specialized sensing hardware, and it is reasonable to assume
that most pedestrians are comfortable and used to carrying
a smartphone or wearable such as a smartwatch.

4.2 Data Collection
In order to accomplish the research goals outlined in Sec-
tion 3, we crowd-sensed real-life e-scooter–pedestrian en-

Fig. 2: A BLE advertising packet from a Lime e-scooter.
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counter data by capturing BLE packets emanating from e-
scooters in two separate urban communities supplemented
by physiological and contextual (location and time) infor-
mation and real-time feedback from the participating pedes-
trians.
The Field: To have a controlled understanding of encoun-
ters, we limited the field of our study to the main and
downtown campuses of the University of Texas at San
Antonio and neighboring points-of-interest including off-
campus student housing and transportation hubs. Both
campuses are within the city perimeters and cover about
725 acres in total area. As an urban university with more
than 35,000 students and more than 4,000 employees, our
campuses observe significant foot traffic when classes are
in session. Since their introduction in late 2018, e-scooters
have gained significant popularity throughout the city, in-
cluding our university campuses. Students and employees
primarily use micromobility services as a last-mile solution
on campus, e.g., to travel between parking lots, bus stops
or student housings, and university buildings where classes
are scheduled.
Participants: We recruited participants on a first-come-first-
served basis through advertisements and fliers distributed
around the university campuses, limited to our inventory
of smartwatches. Out of 105 participants who participated
for at least 15 days (on average) for the 30-day study, 77
participants completed all their assigned tasks (and thus
only their data was used in our analysis in Section 5), while
the remaining participants did not complete their tasks
due to varying reasons, such as loss of interest, damaged
sensing hardware, or other technical difficulties. Among the
participants who completed their tasks, 41 were female,
and 36 were males. Their age ranged between 18 and 54
years, and all of them were either students or employees at
the university. 61 of the 77 participants primarily attended
classes or worked on the main campus, while 16 attended
the downtown campus for one or more classes or work. We
renumerated the participants with $25 for their participation
in our data collection program. Our participant recruitment,
data collection, and result dissemination procedures were
reviewed and approved by the university’s Institutional
Review Board (IRB).
Sensing Hardware and Application: In order to capture
BLE packets broadcast by the e-scooters and at the same
time collect additional physiological and contextual infor-
mation related to each encounter, we loaned a smartwatch to
each participant for the duration of their participation. The
loaned watch came installed with a custom sensing and data
collection application written by us, and was paired with the
participant’s smartphone only for Internet connectivity (in
order to upload the sensed data to our data servers). Only
our loaned smartwatch hardware and the installed data col-
lection application was used to sense and collect data. This
was done to maintain data consistency (across participants),
ease of application development (only one mobile OS and
hardware were needed), to avoid liability due to damag-
ing participants’ device, and for improving accessibility of
carrying out some of the manual tasks (described below)
during each encounter. We chose the state-of-the-art Mobvoi
TicWatch E smartwatch as our data collection because of
its built-in GPS and heart rate sensors, modern BLE v4.1

(a) (b) (c)

Fig. 3: Encounter questions.

radio, and IP67 rated water resistance. The TicWatch E also
features a 1.4 inch round OLED display and runs Wear OS
based on Android 8.0.
Participant Tasks: Each participant was required to wear
the loaned smartwatch, especially when present on any one
of the university campuses, for a total of at least 30 days.
We initiated the data collection program in April 2019 and
terminated it by the end of June 2019 (a total of 3 months).
On the first day of participation, participants signed the
IRB-approved consent form, completed a demographic sur-
vey, checked out the smartwatch with the installed data
collection application, received assistance in pairing the
loaned smartwatch with their phones and received a brief
orientation on the operation of the installed application and
their expected tasks. Whenever our data collection appli-
cation (running in the background) determines1 that the
participant is a pedestrian and if any e-scooter is detected
in their vicinity (i.e., by sensing the BLE packets originating
from the e-scooters) at that time, it prompts the participant
to answer up to three Yes/No questions (Figure 3) related to
the encounter. The goal of these questions is to collect some
real-time ground truth related to the detected encounter. If
the participant answered NO to the first question (“Is there
a fast moving e-scooter in your vicinity?”), the remaining two
questions related to the e-scooter mobility were not asked.
If participants failed to answer the questions within a short
period (say, within a minute) after the e-scooter detection,
the interface displaying the question was no longer available
to prevent false data entry. In order to prevent annoyance
to participants, and to preserve participant engagement
throughout the data collection period, the application asked
questions only once every 15 minutes, even if the partic-
ipants encountered more than one e-scooter during that
period. Also, during the first-day orientation, participants
were instructed that they can be as engaged in providing
real-time feedback as they want, removing any pressure or
coercion for providing feedback. On their last day of partic-
ipation, participants returned the loaned smartwatch (and
any other accessory), completed a post-study pedestrian
safety survey, and got remunerated. Details of the post-
study survey instrument and its outcomes are presented
later in Section 6.2.

4.3 Data Modalities
We collected real-time quantitative data related to the en-
counters between e-scooters and our participants employing
the data collection procedure and application described

1. Accomplished using Android’s DetectedActivity API.
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above. Table 2 summarizes all the information or data
related to these encounters that were either directly sensed
or indirectly inferred. Due to moderate weather conditions
throughout the study period, with an average temperature
of 74.72◦F (σ = 4.87◦F ) and average precipitation of just
0.137 in. per month (σ = 0.03 in.) [44], we deem that our
dataset will not be very useful for understanding the impact
of weather on e-scooter and pedestrian safety.

TABLE 2: List of all information from/about the encounters.

Quantitative External

Location Pedestrian and Rider Attractors
Time • Location
Heart Rate • Time
Bluetooth Pedestrian and Rider Generators

• Signal Strength • Location
• Service Provider • Time

On-Spot Questions
• Stationary or Moving
• In Front or Behind
• Direction w.r.t. Pedestrian

Quantitative Data: Our data collection application logged
participants’ every encounter with e-scooters in their vicin-
ity. Specifically, it recorded the signal strength information
from the BLE packets received from the e-scooter(s), time,
location (GPS coordinates), heart rate, and participants’
responses to the three questions (Figure 3) if available. By
conducting a comprehensive heuristic analysis of the BLE
advertisement packets before the start of the study, we
determined a technique for identifying the service provider
corresponding to each received BLE packet. Using this
information, our data collection application also recorded
the service provider corresponding to each encountered e-
scooter.
External Data: We also collect certain supplementary in-
formation that can help us understand and/or support
our findings from the quantitative data. Specifically, we
gathered location and time information on pedestrian and
rider attractors and generators. We refer to locations where
a significant number of pedestrians and riders are headed,
such as a class starting at a particular time, as attractors.
Similarly, generators are locations where a significant num-
ber of pedestrians and riders are generated, such as a bus
stop or parking lot. Attractors and generators often play
dual roles, for example, when a class ends and another starts
just afterward. We collectively refer to such attractors and
generators as points of interest (or POI).

4.4 Encounters and Data Sources

An encounter, as relevant to our analyses, occurs when an e-
scooter and a pedestrian meet each other at close proximity.
Detecting such encounters from our crowd-sensed data is
important, and a prerequisite, before analyzing their spatio-
temporal characteristics for safeness. Thus, we first define
the notion of an encounter based on available data (BLE
and user feedback) as follows:

• Predicted Encounters (EP ): Derived from BLE data and
tagged by the algorithm in Section 4.4.1 after the study.

Strong/Consistent BLE SignalWeak/Inconsistent BLE 
Signal

No BLE Signal

Time →

Time →

Time →Inconsistent BLE 
Packet Reception 

Intervals

Consistent BLE 
Packet Reception 

Intervals

No BLE Packet 
Reception

E-Scooter Broadcasting 
BLE Packets

Participant with BLE 
Sensing Application

Participants with BLE Sensing Application

Fig. 4: BLE signal coverage around an e-scooter and how
pedestrians at different distances from the e-scooter observe
different reception intervals between BLE advertisements.

• Observed Encounters (EO): Derived from feedback data
and tagged by the participant in real-time during the
study.

While EP is more deterministic, EO has information
about the direction and location of the e-scooter with respect
to the pedestrian and thus can provide safety insights on
moving e-scooters based on user feedback (Table 2). We
provide details of both encounters in Sections 4.4.1 and 4.4.2,
respectively.

4.4.1 EP

Data packets broadcast by BLE radios on-board e-scooters
is a reliable means to determine proximity between par-
ticipants and e-scooters, however not all close-enough en-
counters may be relevant to our analysis. For example, our
participant could have captured one or two BLE packets
from inside their home when an e-scooter rode past their
house, which should not be considered as a real encounter.
Prior to our field study, we empirically determined that as a
pedestrian moves away from an e-scooter (i.e., the distance
between them increases), reception intervals of the BLE
packets transmitted by the e-scooter becomes inconsistent at
his/her smartwatch (as shown in Figure 4). For instance, we
start observing inconsistent BLE reception intervals, starting
at a distance of 20-25 ft or more. This observation was
consistently observed across most models of the e-scooters
and providers targeted by us in this work. We use this
observation to classify a sequence of captured BLE packets
as an encounter and then outlined an efficient technique to
detect such encounters within the BLE packet stream in our
dataset.

We use a sliding window approach to identify the en-
counters in a stream of fragmented BLE packets captured
throughout the day by each participant. A window size of
1 second with an 80% overlap (i.e., each window has an

t < 300 seconds
BLE Packet 
Receptions

Encounter

1 Second Sliding Window

Not an 
Encounter

N >= 4

Encounter EncounterNot an 
Encounter

N >= 4

t > 300 seconds

N >= 4N >= 4

Fig. 5: Encounter detection algorithm on different BLE re-
ception cases.
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overlap of 80% with its previous window) is used, and the
windows that contain 4 or more BLE packets are marked
as potential encounter windows. Both the window length
and threshold of 4 were empirically determined, based on
the approximate minimum encounter duration and approx-
imate maximum BLE advertisement interval, respectively.
The potential encounter windows are then further refined as
follows: If the time interval of BLE packets between two (or
more) potential encounter windows is less than 300 seconds,
the two windows are combined to form a single encounter.
If the time interval is greater than 300 seconds, the two
windows are considered as two separate encounters. Finally,
if more than 4 encounters are detected for a specific e-scooter
in one day by a single participant, the later encounters are
discarded on the basis that the participant was spending
abnormally long durations of time in close proximity of the
same e-scooter (e.g., sitting at an outdoor restaurant where
a scooter was parked nearby). This filtering step ensures
that a single e-scooter or participant does not heavily bias
our encounter data and the related analysis. Figure 5 sum-
marizes this encounter detection technique with different
BLE packet reception examples. Using the above encounter
detection technique, we classified e-scooter–pedestrian en-
counters with 1058 of the 7919 uniquely observed e-scooters
in our dataset (determined using unique identifiers in the
captured BLE packets). Overall, we observed a total of
1800 predicted encounters, including repeat encounters with
previously encountered e-scooters.

4.4.2 EO

Observed encounters are voluntarily tagged by the partic-
ipant in real-time whenever the data collection application
detects an e-scooter in proximity. In contrast to passively
collecting the BLE data, which does not require active
involvement of the participant, reliable feedback data is
challenging to collect because it not only requires reliance on
the participants to actively provide feedback, but such data
is also subjective. This aspect was identified in our dataset,
which contains 6482 feedbacks (among 10000+ detections)
on e-scooters over the entire study period. In both encounter
types (EP and EO), Blue Duck’s e-scooters constituted only
2% of all detected e-scooters and were not observed in
the feedback data. Therefore, we will use only encounters
from Bird and Lime brand of e-scooters for our analysis.
Moreover, we will only consider encounters that occur
between 06:00-23:00 (4993 feedbacks), because the earliest
class (on either campus) started at 07:00 and the last class
finished at 21:45. Therefore, the time period between 06:00-
23:00 represents the most typical use of e-scooters as a
last-mile transportation solution. Approximately 20% of the
recorded observations in that period correspond to moving
e-scooters, with at least 100 potentially hazardous observa-
tions where the e-scooter approached the participants from
behind. A breakdown of the observed (EO) encounters to
show the different e-scooter moving direction and pedes-
trian line-of-sight combinations appears in Figure 6.

An increase in heart rate can occur when a pedestrian is
startled by a fast-moving e-scooter, which in many scenarios
implies that the pedestrian was faced with inadequate re-
sponse time. We study this parameter to validate if our par-
ticipants were startled by the observed e-scooter encounter

Same Direction
Same Direction: Front of Pedestrian
Same Direction: Behind Pedestrian
Opposite Direction
Opposite Direction: Front of Pedestrian
Opposite Direction: Behind Pedestrian
Elevated Heart-Rate

Fig. 6: Summary of observed (EO) encounters for e-scooter
moving direction and pedestrian line-of-sight combinations.

or not. For the analysis, we use the heart rate data that
was collected from each participant whenever a feedback
questionnaire was triggered. The normal or resting heart
rate can vary significantly from participant to participant,
which hinders the feasibility of using a global threshold for
all participants. Thus, we determine personalized threshold
ranges for each participant based on their overall heart rate
data, and their most frequently occurring pulse rate(s). We
use this threshold to check if an encounter-related (moving)
heart rate was within the participant’s computed thresh-
old (for most daily activities) or not. In almost 60% of
the moving encounters seen in Figure 6, participants (as
pedestrians) have an elevated heart rate with e-scooters
approaching them within one foot away at some time instant
from the front and the behind. This finding aligns with our
intuition that pedestrians may have little time to respond
to rapidly moving e-scooters and can be easily startled
by them. Moreover, most e-scooters emit minimal audible
sound during their regular operation and combined with
their faster speed they could present a significant safety
risk to the pedestrians if they cannot observe them and take
appropriate reactions in a timely fashion.

5 EMPIRICAL FINDINGS

In this section, we comprehensively analyze the data col-
lected during our field study by employing the criteria
outlined in Section 3.

5.1 Outcomes of RA1

To analyze how the encounters are spatially distributed
throughout our university campuses and their surround-
ings, we first build a set of atomic segments where encounters
may occur. Each atomic segment is an edge in the graph of
roads and walkways, and one can enter or exit an atomic
segment only at its end. Atomic road segments may connect
with other atomic segments (such as at an intersection), or
end at a POI. An encounter map in Figure 7 shows the
number of predicted (EP ) and observed (EO) encounters
that occurred in each of the campus areas, during the entire
study period. The highest encounter counts in the main
campus atomic segments are EP = 611 and EO = 35,
whereas in the downtown campus are EP = 256 and
EO = 55. Out of the 21447 atomic segments (combined for
both the main and downtown campuses) from Figure 8a,
at least twenty atomic segments in both campuses have a
relatively high number of encounters:EP > 25 andEO > 5,
with more than 95% of atomic segments having five or



9

Fig. 7: Predicted (EP ) and observed (EO) encounter density in and around main campus, and downtown campus.

fewer EP and EO . These results highlight the extremely
disproportionate number of encounters on both campuses,
implying that pedestrians in certain parts of the campuses
(and their surroundings) are significantly more likely to
encounter e-scooters than the rest of the campuses.

From Figure 7, we notice a high saturation of e-scooter
encounters around student residential areas on both on-
and off-campus locations. This saturation occurs as students
disperse from the residential areas to different academic
buildings of the university where classes are being held. As
part of their commute, they may walk for a short distance
from these residential areas until they reach a shuttle stop
or a parked e-scooter or their final destination. Such daily
commutes result in heavy pedestrian traffic near the residen-
tial areas, which are often targeted by service providers for
deploying their fleet. These factors explain the presence of

high encounters (EP and EO) counts in these areas. We also
notice similar saturation at other POIs near shuttle stops and
outside staircases at the end of a long walking path. Riders,
commuting to buildings inside the university, park the e-
scooters near the stairs or outside doorways, as carrying
their e-scooters through to the staircase is inconvenient.
This scenario can explain the high number of e-scooter
encounters (EP and EO) near these places.

We next focus on the spatial closeness of the predicted
encounters because closer encounters have a higher likeli-
hood of resulting in a pedestrian-related collision or dis-
ruption. Due to its attenuation over distance, BLE signal
strength is a good indicator of the spatial closeness of
encounters that occurred between our participants and e-
scooters operating in our test deployment area. Because
of the different BLE transmission power used by different



10

0 100 200 300 400 500 600
Number of Encounters

0

3

6

9

12

15

18

>20
Nu

m
be

r o
f S

ub
ar

ea
s

Frequency Distribution of Encounters by Type
Type
Predicted
Observed

(a) Space: Atomic road segments.
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(b) Time: 15-minute periods.
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Fig. 8: Frequency distribution of predicted (EP ) and observed (EO) encounters between 06:00-23:00 among (a) 21447 atomic
segments in main and downtown campuses combined, (b) 68 15-minute periods in a day, and (c) all combinations of 21447
atomic segments and 68 15-minute periods.
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Fig. 9: Maximum BLE signal strength during each predicted
encounter EP . Comparison between atomic segments with
low encounter counts (1-84), 15-minute periods and their
spatio-temporal combinations vs. atomic segments with
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spatio-temporal combinations, respectively. Star sign de-
notes the mean BLE signal strength.

service providers, we conduct this analysis separately for
Bird and Lime. The signal strength of BLE packets captured
(on the TicWatch E smartwatch) from Bird brand e-scooters
within one feet away from their computer module (usually
mounted on the stem of the e-scooter) is approximately -
60.5 dB, whereas for packets captured from Lime brand
e-scooters in the same setting has an approximate signal
strength of -46.25 dB. Using this baseline observation, we
found that 0.43% of encounters (EP ) were less than one foot
away from the participant.

As seen in Figure 9, we discovered that predicted en-
counters in atomic segments with high encounter counts
are on average closer (as the average BLE signal strength
is relatively stronger) than predicted encounters in atomic
segments with low encounter counts (as the average BLE
signal strength is relatively weaker). This analysis tells us
that encounters in high-encounter atomic segments are at
a relatively closer range (distance between the participants
and e-scooters) than encounters in low-encounter atomic
segments, which indirectly suggests that collisions are more
likely to occur in high-encounter atomic segments than in
low-encounter atomic segments.

We also observed that the vast majority of proximate
encounters between e-scooter riders and pedestrians hap-
pened on narrow pedestrian paths such as sidewalks (Ta-
ble 3). However, there are very few bike lanes and shared-
use paths (typically at least 10 feet wide) in the study areas.
This deficit creates conflicts and safety challenges for both

TABLE 3: Space: Encounters by functional classification.

TESa MEMb PEMc

Functional Classd EP EO EP EO EP EO

Arterial Streets 998 709 146.1 60.7 6.9 2.3

Collector Streets 269 336 68.4 55.2 3.2 2.1

Local Streets 1285 2255 176.0 171.8 8.3 6.6

Shared-use Paths 102 119 306.0 432.6 14.5 16.6

Sidewalks 994 1163 617.8 470.7 29.2 18.1

Other/Unclassified 154 411 799.1 1410.0 37.8 54.2

Total 3802 4993 352.2 433.5 100.0 100.0
a Total Encounters per Segment (TES) is the sum of all detected proximal

pedestrian-scooter encounters in a network segment.
b Mean Encounters per Mile (MEM ) is the average number of encounters

per segment divided by the length of the segment in miles.
c Percent Encounters per Mile (PEM ) refers to the percentage of TES

w.r.t sum total of all encounters over all segments.
d Arterial streets include OpenStreetMap (OSM) API tags ”primary” and

”secondary”. Collector streets include OSM tags ”tertiary”. Local streets
include OSM tags ”residential” and ”service”. Shared-use paths include
OSM tags ”path” and ”cycleway”. Sidewalks include OSM tags ”foot-
way” and ”pedestrian”. Other/unclassified uses all other OSM tags.

pedestrians who prefer to walk to nearby buildings, and to
riders who may be passing along to reach adjacent parking
lots or other destinations. Providing infrastructure with
separated routes for e-scooters, such as shared-use paths
and bike lanes, may help protect pedestrians from conflicts
in constrained space on sidewalks. Alternatively, educating
all road users on usage guidelines (such as right-of-way
and safety rules) via signboards and posters, especially on
roadways with high pedestrian and e-scooter density, can
prevent future mishaps related to e-scooters. Additionally,
Figure 7 shows several high-encounter roadways in rela-
tively isolated locations. Planners and engineers can review
these spots for targeted projects to reduce conflicts.
Generalized Implications. These findings suggest opportu-
nities to improve safety both in and outside a campus set-
ting. Service provider data can easily identify e-scooter den-
sity and rider routes around a specific area at a given time.
In contrast, our data allowed identifying pedestrian-scooter
encounters and their density in specific areas, for instance,
parking lots, recreation centers, etc. With this knowledge,
planners can identify these hotspot areas and remediate
areas that lack adequate critical infrastructure through rules
of co-existence (redirecting flow, rearranging) or additional
structures (lanes, docking stations). For instance, a safe
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Fig. 11: Number of predicted (EP ) and observed (EO) encounters in each of the 102 1-hour periods (sorted chronologically),
between 06:00-23:00 for six days of a week, plotted along with the number of classes scheduled in the corresponding time
periods. No regular classes were scheduled on Sundays.

walking space could be reclaimed in high-encounter areas
by adding a bike lane alongside paths for micromobility
and bicycle riding, or along nearby parallel routes [45], [46].
Furthermore, the above results can help optimize transit in
a way that will reduce the average distance traveled by last-
mile commuters, and thus reduce the number of encounter.

5.2 Outcomes of RA2

To analyze how the encounters are temporally distributed
throughout the week, we partitioned the week into 476
15-minute periods starting at 06:00 and ending at 23:00
each day. Although there were significantly fewer classes
and events on campus during the weekends, we included
them in our analysis for completeness. Figure 10 shows the
number of encounters that occurred in each of the 476 time
periods across both the campuses, during the entire study
period. During two time periods, Wednesdays 12:45-13:00
and Thursdays 22:30-22:45, we observe the highest number
of predicted encounters (EP > 50). At the same time, for
twenty time periods on Wednesdays and Thursdays, we
also see a relatively higher number of observed encoun-
ters (EO > 35). Also, we see several spikes and surges
throughout Monday to Friday, and both EP and EO on
campus were significantly lower on Saturdays and Sun-
days. To understand the encounter frequency throughout
the length of a day, we added the encounter counts observed
during the 68 15-minute periods each day (between 06:00-
23:00). The results shown in Figure 8b demonstrates that
pedestrians are significantly more likely to encounter e-
scooters at certain times of the day, such as between 12:45-
13:00 and between 14:45-15:00. During these time slots, our
participants had a total of EP = 169 and EO = 28.

Similar to the spatial analysis, we investigate the spatial
closeness of encounters that occurred during periods with
low encounter counts, and with encounters that occurred

during periods with high encounter counts. We split the
encounters equally among two interval groups based on
the maximum encounter count for each encounter type.
As shown in Figure 9, encounters that occurred during
periods with high encounter counts are generally closer, for
both the Bird and Lime brand e-scooters, as the observed
average BLE signal strength is relatively stronger in these
encounters. This finding is in contrast to encounters that
occurred during periods with low encounter counts, as
the observed average BLE signal strength for encounters is
relatively weaker in this case. This distinction suggests that
collisions are more likely to occur during time periods with
high encounter counts than during time periods with low
encounter counts. Similar patterns were observed in both
predicted (EP ) and observed (EO) encounters.

As students and some employees plan their arrival and
departure to/from campus depending on class timings, it is
intuitive that our encounter observations have some relation
to the schedule of classes. We plot the hourly encounters
recorded from April to early-May (when the classes ended
at the end of spring semester) alongside the number of
classes scheduled per week in Figure 11. We observed that
the highest number of classes occur on Tuesdays, Thurs-
days, and Wednesdays in the week in Figure 11, and the
average encounters these days are also higher than the rest
of the week showing the occurrence of encounters follows
closely with class schedules. Also, there are more predicted
encounters (EP ) at night than during the day, more likely
due to late-night study and exam preparations by stu-
dents. While we see significant overlap in the afternoons,
there are comparatively fewer encounters (predicted and
observed) around the early morning periods. This overlap
could be due to a combination of multiple factors. First,
the personnel who recharge the e-scooters (in return for a
payment from the service provider) usually do so during
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Fig. 12: Number of predicted (EP ) and observed (EO) encounters in each 1-hour time period between 06:00-23:00, plotted
for each functional classification of road network segments. The x-axis unit represents the next 1-hour time period.

the night, as specific e-scooter models can take up to 8
hours to fully recharge. These personnel generally collect
drained e-scooters around late evening or night and are also
responsible for distributing the recharged e-scooters around
the city. We observed that the recharged e-scooters are
usually distributed around the late morning periods, which
aligns with our observation of the negligible number of
encounters around the early morning periods. Second, late
spring-early summer mornings in our target field of study
usually have a pleasant climate, which may prompt last-
mile commuters to walk to their final destination instead of
using micromobility vehicles.
Generalized Implications. Scooters can be introduced or
removed around the time periods with high encounters
to provide reliable transportation options (to reach desti-
nations in a timely fashion without hindering other road
users). Regulations can be set accordingly to improve the
road user experience and provide a safer environment (for
pedestrians) through better management of chaotic times.
For example, in a university setting, the shuttle buses can
be made more frequent during the observed high encounter
times, which could encourage students to use shuttles in-
stead of e-scooters. Similarly, in a crowded city setting, the
timing of frequent e-scooter encounters could be used in
combination with other travel modes to compliment last-
mile connections and reduce conflicts.

5.3 Outcomes of RA3

To analyze how the observed encounters (EO) are spatio-
temporally distributed, we study all combinations of the
21,447 atomic segments in both campuses and 68 15-minute
periods in one day (between 06:00-23:00), for a total of
1,458,396 spatio-temporal zones in each campus. More than
90% of the spatio-temporal zones in both the main and the
downtown campus did not have any predicted encounters
(EP ) or observed encounters (EO), as seen in Figure 8c. This
asymmetry indicates that pedestrians are significantly more
likely to encounter e-scooters in certain parts of the cam-
puses (and their surroundings) than the rest of the campus
areas, and only at specific times. For instance, there were
lesser or no predicted encounters (EP ) on the Main campus
from 06:00-11:00 on Tuesdays, compared to the latter half of
the day.

We also identified that the residential areas outside the
campuses had fewer or no encounters in the early morning,
more likely due to e-scooter recharges schedules, lack of
classes, and availability of bus shuttles. We noticed high pre-
dicted encounters (EP ) inside the campus, mostly between
12:00-14:00. High encounter counts, both predicted (EP )
and observed (EO), could be explained by the following
factors. Firstly, people usually leave university for lunch
around this time. Also, students who only have morning
classes for the day start leaving the campus, and on the
other hand, students who only have afternoon classes start
coming on to campus around this time. Since there are more
classes (150+) from mid-day to early-evening (12:00-16:00)
on most weekdays except Fridays, depicted in Figure 11, this
could also show how e-scooter usage also increases around
that time, with the highest number of encounters occurring
between 14:45-15:00.

Distribution of encounters by functional classification of
their locations in Figure 12 shows observed encounters vary
more on an hourly basis than predicted encounters. Local
street encounters peak mid-day and at 17:00, suggesting an
increased interaction with pedestrians during lunch breaks
and commuting. Many local streets in the study area do
not include sidewalks, which may exacerbate these conflicts.
Afternoon and evening peaks in observed encounters using
sidewalks suggest their important role in class changes and
last-mile connections, yet with limited space to separate
pedestrians and e-scooter riders. The low overall conflicts
on shared-use paths and other/unclassified network links
are likely due to both the improved space for separating
modes, and the lower availability of these network links
serving destinations. The late evening peak in encounters,
particularly on local streets, could be related to high usage
of e-scooters for recreational and social trips.

Similar to the individual spatial and temporal analyses
outlined earlier, we discovered from Figure 9 that predicted
encounters in atomic segments with high encounter counts
are on average closer in range (as the observed average
signal strength of the BLE packets in the encounters is
relatively stronger) than predicted encounters in atomic seg-
ments with low encounter counts (as the observed average
signal strength of the BLE packets in the encounters is
relatively weaker) for Lime and Bird brand e-scooters. This
suggests that e-scooter related pedestrian collisions are more
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likely to occur in spatio-temporal zones with high encounter
counts than in the ones with low encounter counts.
Generalized Implications. The spatio-temporal analysis
provides insights on multiple location-time combinations,
and can support reduction of conflicts, in addition to multi-
modal coordination. Planners and engineers can use en-
counter data to identify locations for infrastructure improve-
ments that are sensitive to local transportation demands
throughout the day. Traffic signal timing and intersection
designs may be adjusted to reduce conflicts with pedestri-
ans, including introduction of bicycle boxes (painted spaces
in front of vehicle traffic) and bicycle signal heads, in states
where e-scooters are regulated similar to bicycles. Transit
planners can involve e-scooter providers in changes to
schedules and stop locations, to improve last-mile connec-
tivity and predictability for riders. Space-time coordination
may be more critical for special events and in separated land
uses such as university settings, as compared with mixed-
use settings with activities spread throughout the night and
day.

6 DISCUSSION

6.1 Broader Impact and Limitations
This approach analyzes both automated and manual pedes-
trian, and e-scooter interaction data shows new opportuni-
ties for supporting safety with emerging travel modes. A
review of previous studies showed a need for studies that
crowdsource safety information that is missed by police col-
lision records. Our approach may be adaptable to support
practical pedestrian safety, such as through the development
of a real-time collision warning system. However, our study
is not without limitations. One main limitation of our field
study was that its scope was restricted to the two subur-
ban and urban campuses and surrounding neighborhoods
of one university. Subsequently, some of the results and
insights gained from the study may be more directly ap-
plicable to our university’s infrastructure and regulations,
locally-available micromobility vehicles, riders, and pedes-
trians. Our data collection also did not capture encounters
with any privately owned e-scooters as most of them do
not emit periodic BLE packets. Our results may also suffer
from sampling bias due to the low number of participants
and the specific recruit channels used. That being said, our
first-of-a-kind study’s methodology and analyses (including
the employed statistics and benchmarks) can serve as a
blueprint on how crowd-sensed micromobility data can be
used to enable similar safety-related studies in other urban
communities. Due to the privacy-sensitive nature of the
location data collected in this study, our dataset will be
made available only to researchers upon their request.

An essential aspect of our study is that it only relies
on participating pedestrians to passively crowd-sense the e-
scooter encounters and other sensor data on-board their mo-
bile devices. Although such an approach has its advantages
(e.g., relatively low study deployment cost), if this data is
supplemented with sensor data collected from the e-scooters
themselves, for example, video feed from a camera mounted
on the vehicles or packets received by the vehicles’ BLE
receivers, it could result in an even better analysis. However,
employing commercially-operated e-scooters to collect data

is not easy due to restrictions put in place by the service
providers owning these vehicles. Researchers could deploy
their own micromobility vehicles testbed for this purpose,
which could enable a much easier data collection process,
but deployment and maintenance of such a testbed would
be much more expensive.

6.2 Participants’ Perception about Safety
Our study ended with participants completing a post-study
survey (outlined in Appendix A). In contrast to the quan-
titative encounter data which helped us gain useful insight
on how riders’ mobility patterns and infrastructure-related
constraints within shared spatio-temporal zones or spaces
could impact pedestrians’ safety, the post-study survey
response data from participants will shed light on their
subjective perception of this issue. This survey comprised of
two parts: a set of questions to measure how well our data
collection application (specifically, the notifications and the
manual feedback interface) performed, and another set of
questions to capture participants’ interests and preferences
vis-à-vis pedestrian safety and mobile device based safety
applications. One highlight of responses to the first set
of questions is that despite having a minimum 15-minute
interval between sending e-scooter detection notifications,
one-third of all participants found these notifications annoy-
ing. This observation is not surprising as there are many
HCI studies [47], [48] that show that notifications have
a very high chance of causing annoyance if they are not
well-designed, and could eventually disengage users. Fortu-
nately, as our application was passively collecting encounter
data irrespective of whether participants responded to or ig-
nored our notifications, it did not impact our data collection
process significantly. Another highlight is in the responses
received to our second set of questions, where 58% of the
participants expressed interest in a mobile application that
would alert them about potential encounters with electric-
or e-scooters. Although this shows that there is significant
interest among users to protect their safety from upcoming
micromobility transportation vehicles, it also shows that a
significant number of users (42%) are either not interested
in such an application or are indifferent to the problem of
pedestrian safety from such vehicles. Given the number of
participants who were annoyed at the frequency of notifi-
cations (from our application), our hypothesis is that the
42% of the participants who did not express interest in a
micromobility vehicle alerting application responded that
way because of their displeasure with the high number of
notifications in our data collection application. Although
our data collection application was not a pedestrian safety
application (because it notified users of all encounters and
not only the hazardous ones), the above results highlight
an important property that any safety application should
possess – a good balance between useful functionality and
user engagement through carefully designed notifications.

7 CONCLUSION

We conducted a field study on crowd-sensing encounter
data between e-scooters and pedestrian participants on two
distinct urban university campuses over a three-month pe-
riod. We analyzed specific spatio-temporal metrics and used
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them as benchmarks to understand the impact on pedestrian
safety from e-scooter services. Our analysis uncovered en-
counter statistics, mobility trends and hotspots which were
then used to identify potentially unsafe spatio-temporal
zones for pedestrians. We also speculate planning and in-
frastructure improvements that may help reduce the num-
ber of unsafe spatio-temporal zones. Our work provides a
preliminary blueprint on how crowd-sensed micromobility
data can enable similar safety-related studies in other urban
communities.
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APPENDIX A – POST-STUDY SURVEY

Study Application Usage
1) How often did you receive the feedback notifications

from the study application?

Rarely 1 2 3 4 5 Very often

2) Did you at any point find the feedback alert notifications
to be annoying?

Yes No

3) If yes, did you turn the notifications off?

Yes No

4) How effective was the notification mechanism?

Not effective at all 1 2 3 4 5 Very effective

General Pedestrian Safety
6) Have you ever used any wearable technology that pro-

vides pedestrian safety?

Yes No

7) If yes, please specify some.

8) Would you be interested in a smartwatch application that
alerts you about electric scooters in the vicinity?

Yes No

9) If yes, what type of alert would you suggest for this
scenario? Select all that apply.

Audio (e.g. beep)

Visual (e.g. flashing LED light)

Tactile (e.g. vibration)

A combination of the above
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