
Serverless Computing for NFV: Is it Worth it?
A Performance Comparison Analysis

Marco Savi, Alessandro Banfi, Alessandro Tundo, Michele Ciavotta
Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano, Italy

{marco.savi, alessandro.tundo, michele.ciavotta}@unimib.it, a.banfi8@campus.unimib.it

Abstract—Network Function Virtualization has established
itself as one of the most important paradigms towards software-
based networking. While today Virtual Network Functions
(VNFs) are typically deployed in the form of serverful virtual-
machine or container-based applications, the emergence of
serverless computing opens the door to the possibility of im-
plementing them as serverless functions, with benefits in terms
of scalability and resource efficiency. This paper aims to assess
whether this really makes sense or not, given the system-level
overheads that a serverless computing platform naturally brings.
We propose an open source platform designed to optimize
the execution of network-intensive VNFs and we implement a
data-plane and a control-plane function (i.e., NAT and DHCP
responder, respectively) as serverless functions. We carry out
extensive benchmarking of performance with their serverful
counterparts, implemented as stand-alone containerized applica-
tions. Our experience makes it possible to conclude that serverless
computing is beneficial for the execution of short-lived and
request-based control-plane VNFs, while it should be avoided
for the execution of data-plane traffic-intensive VNFs.

Index Terms—Network Function Virtualization, Serverless
Computing, Function-as-a-Service

I. INTRODUCTION

In the recent years, Network Function Virtualization (NFV)
has emerged as one of the most disrupting paradigms for
the operation of telecommunication networks. By decoupling
software from hardware and relying on virtualization tech-
nologies, network functions (e.g., Firewalls, Network Address
Translators, etc.) can be implemented in the form of Virtual
Network Functions (VNFs) that run on commodity hardware;
this ensures that hardware and software can evolve inde-
pendently, and is a fundamental step towards a widespread
diffusion of the so-called software-based networks [1].

Serverless computing, in particular the Function-as-a-
Service (FaaS) cloud service model [2], has recently gained
momentum as it promises to reduce time-to-market, simplify
deployment, and ensure better responsiveness/scalability to
cloud-native applications. Serverless functions, which are typ-
ically stateless, are the deploy unit in this paradigm: their
fine-grained nature allows for better Service Level Agreement
(SLA) management, load balancing, and resource planning [3].
Moreover, serverless computing can help optimize operating
costs by increasing resource utilization [4].

Given its nature, serverless computing appears to be a
promising approach to streamline design, implementation, and
operation of short-lived and event-driven VNFs [5]. In partic-
ular, as far as development is concerned, the FaaS paradigm
promises the programmer to focus only on the implementation

of single functions, freely choosing libraries and languages
and without conforming to a particular framework. Moreover,
compared to virtual machine and container based VNFs, most
of the scalability, resource efficiency, server configuration, and
management are delegated to the serverless platform, with
little or no intervention by the system operator.

The benefits of this approach have been pointed out in some
NFV-related contexts, such as mobile networking [6] [7] and
edge computing [8]. However, most of the existing serverless
platforms are ill-suited for the execution of network-intensive
applications [9]. The main drawbacks are that (i) many VNFs
need to maintain per-flow state, but serverless is primarily
meant for stateless applications and (ii) function invocation
on a per-packet basis is not suitable from a performance and
cost perspective. Alternatives have thus been proposed, where
function invocation occurs instead on a per-flow [9] and per-
flowlet1 [10] basis and where state is effectively managed [11].

Although these works provide evidence that the limitations
of serverless platforms can be overcome, a question still
remains unanswered: is it really worth it? In fact, serverless
computing, although its unquestionable advantages, comes
with some inherent performance degradation due to various
system-level overheads [12]. With this work, we report our
experience and try to give an answer to this question. For the
first time, we provide a performance comparison between a
serverful (i.e., a long-living, typically server-based application)
and a serverless implementation of two well-known VNFs,
namely Network Address Translator (NAT) and Dynamic
Host Configuration Protocol (DHCP) responder. These VNFs
are deeply different in their nature: NAT is a data-plane
traffic-intensive application, while DHCP is a control-plane
request-based function. Our goal is to assess and draw some
generalized conclusions for both types of VNFs.

Unfortunately, we were unable to leverage existing server-
less NFV platforms to carry out the assessment. In fact,
they are either stand-alone systems [10] [11] or extensions
of existing platforms (i.e., AWS Lambda) [9] that are not
made available to the research community. Taking inspiration
from [9] [10] [11], we propose a novel per-flowlet architec-
ture, called Network Function over Serverless (NFoS), which
is implemented as a modular extension of the open-source
Apache OpenWhisk platform. NFoS is proved to be superior
to Apache OpenWhisk in the execution of network-intensive

1Flowlets are separated burst of packets belonging to the same flow.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution 
to servers or lists, or reuse of any copyrighted component of this work in other works.

The final version of this record is available at http://doi.org/10.1109/PerComWorkshops53856.2022.9767495



VNFs, and our code is publicly released2.
The remainder of this paper is organized as follows. Sec-

tion II recalls the background and related work. Section III
describes the NFoS architecture, while Section IV provides
some details on the implementation of NAT and DHCP
as serverless functions. Section V reports our performance
comparison analysis and Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

Literature contains some previous works adopting serverless
computing and FaaS for the execution of VNFs. Ref. [9]
is the first work pointing out the architectural limitations of
canonical serverless computing platforms for the execution of
network-intensive VNFs. The main limitations are the high
per-flow execution cost and the complexity of per-flow state
management. The authors propose a novel per-flow FaaS archi-
tecture, where all the packets belonging to the same network
flow are handled by the same VNF instance. The benefits
with respect to a per-packet architecture, where each packet
triggers a function invocation and is thus naturally enabled
by canonical serverless platforms, are also investigated: one
major advantage is that the user can be billed on a per-
flow basis, ensuring that she is not charged if the flow has
not been completely processed. The authors implement such
an architecture on AWS Lambda and successfully test it on
two network-intensive VNFs, i.e., a Firewall and an Intrusion
Detection System (IDS). Ref. [10] extends the work in [9]
by proposing a per-flowlet architecture that enables ephemeral
statefulness. Moreover, the architecture envisions the adoption
of an external store to simplify state management even further.
Ref. [11] proposes Serpens, a serverless platform for NFV
that has the explicit goal of reducing the performance over-
head of existing solutions. The main contribution is a novel
architectural design where the lifecycle of a VNF instance
and its state are decoupled. States are kept in executors’
memory, which is shared among instances, and they can also
be migrated to other executors. The authors extensively test
the proposed platform; significant improvements in terms of
latency and throughput are guaranteed against other serverless
platforms. None of the proposed works focus however on
a detailed performance comparison between serverless and
serverful VNF implementations. We do so to understand in
what cases the adoption of a per-flowlet serverless NFV
architecture can be beneficial.

A couple of recent works focus on implementing serverless
VNFs by exploiting existing platforms such as OpenFaaS
and AWS Lambda. Ref. [13] proposes a Caching System,
while Ref. [14] proposes the attach procedure of a Mobility
Management Entity (MME) in a 4G network. In both cases,
the serverless platform is adopted as is. Especially, in Ref. [14]
the attach procedure of MME requires nine different function
invocations, and a user would be billed for intermediate invo-
cations also if the attach procedure was not completed (e.g.,
due to some packet loss). We also implement two serverless

2https://github.com/NFoSSystem

Serverless Platform

NFGateway

TM

...

REST
API

UDP

TCP

Admin


Operators
NFoS3)

1)

1a) 1b) 2)

User


User

VNF1 VNFn

Fig. 1. NFoS System Architecture.

VNFs (i.e., NAT and DHCP responder), but they require only
one function invocation for each processed flowlet.

III. NFOS: SERVERLESS NFV PLATFORM ARCHITECTURE

Figure 1 provides an overview of NFoS, our proposed
per-flowlet serverless NFV platform. The main components,
numbered as in the figure, are the following.
1) NFGateway: It is the core component of NFoS and
it serves API Gateway functionalities. In particular, it is
responsible for: (i) handling incoming requests from third-
party non-HTTP clients, (ii) balancing incoming traffic among
function instances exploiting a Load Balancing Algorithm
that is function-state aware, and (iii) scaling in/out serverless
functions according to workload. Also, it can employ an
external Database for state management. In our prototype,
NFGateway, implemented in Go language, embeds two main
sub-components:

1a) Rule Engine: It is in charge of evaluating Static and
Dynamic Matching Rules upon reception of a packet. Static
Matching Rules allow NFGateway to understand by which
VNF type the incoming packet should be processed, and they
are inserted each time a new VNF type is registered. Dynamic
Matching Rules are used to route the packet to the correct VNF
instance (i.e., the one managing the flowlet to which the packet
belongs). They are reactively loaded/unloaded at runtime on a
per-flowlet basis. The per-flowlet workload allocation proved
to mitigate the platform overheads that would occur if a per-
packet allocation was adopted [9].

1b) State Management Modules: They embed all the op-
erations executed by the NFGateway for state management
of VNFs, which may use information stored in the Database.
A new module is deployed in NFGateway every time a new
VNF type has to be supported. They also include Database
initialization and periodic management routines.
2) Database: It is used to store information for VNF state
maintenance and can be accessed by both NFGateway and
VNFs (if needed). It is implemented by means of an in-
memory key-value store. In this work we employed Redis3.
3) Serverless Platform: It is responsible for executing and
managing serverless VNFs. It is accessed by other com-
ponents, in particular the NFGateway, through the exposed
REST API. In this work, we employed Apache OpenWhisk4

3https://redis.io
4https://openwhisk.apache.org/



DHCP client
UDP

UDP
Serverful DHCP

Docker Container

(a) Serverful DHCP

Serverless Platform

...


DHCP client 
 REST
API

UDP

UDP
DHCP DHCP DHCP

NFGateway

TM

(b) Serverless DHCP

Fig. 2. DHCP implementations and testing scenario. Analogous diagrams can
be drawn for NAT, but access to the database is not required in this case.

as Serverless Platform. OpenWhisk exploits containerization
(using Docker5) to manage each instance of registered VNFs.

A. Involved actors and deployment scenarios
Three main actors are expected to interact with NFoS:
1) Users: They send requests to and receive responses from
the VNFs executed by NFoS. NFoS is seen as a black box
by users, meaning that it takes as input packets/requests
towards the VNFs and transparently returns the elaborated
packet/response. A user is typically a host in the network (e.g.,
a smartphone that needs to have assigned an IP address by a
DHCP service).
2) Admin: It is responsible of (i) the configuration and de-
ployment of the NFoS platform, including the setup of network
connectivity between its components and (ii) the monitoring
of the system status after its start up. The admin is typically
a network or a cloud provider.
3) Operators: Upon authentication, they upload to NFoS the
binaries of serverless VNFs as ZIP archives, the related State
Management Module and the Static Matching Rules for any
specific VNF. An operator is typically a service provider.

NFoS can be adopted in different scenarios. Even though
nothing prevents to deploy it in centralized cloud, the most
appealing case appears to be its adoption in a federated
computing environment at the edge [8] [15], where distributed
NFoS platform instances are deployed in resource-constrained
edge nodes to serve VNF execution requests from near users.

IV. SERVERLESS VNFS: DESIGN AND IMPLEMENTATION

While serverless computing has been originally devoted to
the execution of stateless applications, many existing VNFs
are stateful and thus require state management. One of the
main challenges is to re-architect existing stateful VNFs to
make them working as serverless functions and executable by
a serverless NFV platform (NFoS in this specific case).

We implemented two VNFs as serverless functions: a NAT
and a DHCP responder. In both cases, we first implemented

5https://www.docker.com/

their core functionalities, in Go language, as serverful pro-
cesses, which can be run as containerized stand-alone dae-
mons (Fig. 2(a)); then, we re-engineered them to be executed
as serverless functions, reusing code as much as possible
(Fig. 2(b)). NAT and DHCP are very different VNFs. Network
address translation must be executed for any packet coming
from the specific local network(s) requiring NATting, for
which some fields in the L3 header (IP address translation)
and/or L4 header (port translation) must be re-written. For this
reason, NAT is typically identified as a data-plane function.
Other examples of data-plane VNFs are Firewall and IDS.
Conversely, the assignment of an IP address to a user of a
local network as guaranteed by a DHCP responder is a request-
based control-plane operation that is rarely executed (per user).
Other VNFs belonging to this type are DNS and MME. Such
a fundamental difference between NAT and DHCP responder
(and related more general VNF types) translates to distinct
design and implementation choices, as detailed below.
1) NAT: We could not find any suitable open source serverful
implementation to start with, thus we designed and devel-
oped a simple NAT for UDP connections from scratch. We
made sure the implementation is compliant with IETF stan-
dards [16]. Every time a new NAT function is instantiated
by OpenWhisk, the NAT State Management Module assigns
to it a dedicated pool of available IP addresses and ports.
These can then be used for translation of a feed of incoming
UDP connections (i.e., flowlets). The mappings between UDP
connections and a serving NAT instance are specified by the
Dynamic Matching Rules at the NFGateway, while the asso-
ciation between IP addresses/ports is stored in an in-memory
data structure within any VNF instance. An alternative and
simpler design (in terms of state management) would be
maintaining mappings between addresses/ports in the database,
accessed by any NAT instance. However, this would imply
a per-packet query to the database, which would cause an
unacceptable high packet-processing latency.
2) DHCP: We started from an open-source serverful im-
plementation6 and we re-engineered it to be executable by
OpenWhisk. The implementation is compliant with IETF
standards [17]. Each flowlet is composed by a pair p =
(DHCP Discover, DHCP Request) as sent by any host and
its related responses (DHCP Offer, DHCP Ack), or by a
DHCP Release message to discard the IP address lease. In this
case, given the small number of per-host function execution
requests and looser latency requirements, the VNF implemen-
tation relies on the database for state management, where the
host/IP address association (i.e., the DHCP table) is stored and
can be accessed by both NFGateway and DHCP instances.
Implementing DHCP required less effort than implementing
NAT, due to the simpler procedures for state management.

V. PERFORMANCE EVALUATION

A. Testing environment, tools and configuration

1) Environment: We run our experiments on CloudLab [18],
a cloud environment for research and education that enables

6https://github.com/krolaw/dhcp4



TABLE I
VCPU AND MEMORY QUOTAS (TIERS) FOR INSTANTIATED FUNCTIONS.

Tier Name vCPUs Memory (MB)

t1 1 32
t2 2 64
t3 4 128
t4 6 256

users to define their own experimental setup in terms of
network topology, hardware and software equipment. The un-
derlying physical nodes are provisioned with multiple CPUs,
hundreds of GBs of memory, and gigabit network interfaces.
The topology adopted in the experiments is composed by
two dedicated VMs for both serverless and serverful VNF
evaluation as shown in Fig. 2
2) Tools: Starting from the source code of iPerf 7 and Netperf 8

open source testing software, we developed two tools, named
nattester and dhcptester, to test NAT and DHCP, respectively.
The former includes the logic to send/receive flowlets of UDP
packets at different rates, and collect statistics concerning
sent/received packets and end-to-end latency. The latter acts as
a DHCP client sending multiple DHCP requests. It is possible
to specify the request rate, and the tool collects statistics on
end-to-end latency and DHCP association errors. We adopted
Telegraf 9 to retrieve CPU and memory utilization statistics
on the system under test. Collected data is funneled into
InfluxDB10. Nattester and dhcptester sample statistics on a per-
packet basis, Telegraf collects statistics every two seconds.
3) Configuration: We defined four different tiers (t1-t4) for
any VNF instance, each with different vCPU and memory re-
quirement. The tiers specify the amount of resources assigned
to the container running the VNF, both for serverless and
serverful implementation (Table I). OpenWhisk imposes that
functions cannot be equipped with less than 64MB of memory;
this prevents to execute functions based on tier t1. However,
we kept it in our evaluation of serverful VNFs as it is the
smaller tier able to smoothly execute them. Each experiment
lasted five minutes and statistics were collected and averaged
within such a time frame.

B. Workload allocation strategies

Fig. 3 compares per-flowlet and per-packet workload alloca-
tion for NAT VNF execution (tier: t2). The plotted values refer
to average statistics collected during one single experiment
per input traffic. Results show that a per-packet workload
allocation is clearly ineffective: the average packets’ end-to-
end latency is high (in the order of seconds) due to cold
start, and tens of VNF instances are on average active. The
platform is overloaded by requests for the activation of new
functions and packet loss (not shown in the figure) is close
to 100% even for low input rates (20 Mbps). Conversely, a
per-flowlet allocation leads to an average end-to-end latency in
the order of tens of milliseconds and the deployment of a very

7https://iperf.fr/
8https://github.com/HewlettPackard/netperf
9https://www.influxdata.com/time-series-platform/telegraf/
10https://www.influxdata.com/products/influxdb/

0 20 40 60 80 100 120
Input Traffic (Mbps)

0

2000

4000

6000

8000

10000

Av
g.

 L
at

en
cy

 (m
s)

flowlet packet

(a)

0 20 40 60 80 100 120
Input Traffic (Mbps)

0

20

40

60

80

100

Av
g.

 F
un

ct
io

ns

flowlet packet

(b)

Fig. 3. Comparison between per-packet and per-flowlet workload allocation
in terms of average (a) latency and (b) number of instantiated functions, as a
function of the input rate.

limited number of concurrent VNF instances. No packet loss
is experienced in the considered input rate range. These results
justify the design of an external component like NFGateway
to extend OpenWhisk with per-flowlet allocation capabilities.

C. Performance comparison

1) NAT: Table II reports a comparison in terms of packet
loss and average end-to-end latency between serverless and
serverful NAT for the defined tiers and for input rates of 100
and 200 Mbps. Focusing on an input rate of 100 Mbps, we
can see that negligible packet loss is experienced for both
implementations, with marginally better performance (around
0.005%) in the case of the serverless VNF. This comes at the
expense of a three-times higher latency, due to NFGateway and
OpenWhisk related operations. Performance is comparable for
all the considered tiers. Slightly different results are obtained
for an input rate of 200 Mbps. For all the tiers, both in the
case of serverless and serverful NAT, less than 1.5% packet
loss is experienced. Although still manageable, this is higher
than the loss experienced for 100 Mbps. Higher loss occurred
for serverless NAT especially, and it is mainly related to
overheads introduced by NFGateway, due to the higher number
of packets that have to be processed and balanced among VNF
instances in the time unit. This is also confirmed by the fact
that packet loss is almost invariant to the tier for serverless
NAT, while this is not true for serverful NAT, where more
memory and computational resources reflect to lower packet
loss. Moreover, as for 100 Mbps, latency is higher for the
serverless implementation.

Figure 4 reports CPU and memory usage over time for the
two implementations in the case of 100 Mbps input traffic.
In both cases, only one vCPU is used for any tier, although
more vCPUs could be potentially be assigned. For this reason,
CPU usage (in percentage) refers to the used vCPU. Instead,
memory usage is normalized to the memory assigned for
each tier. In the case of serverless NAT, the graphs represent
the average over all the containers running VNF instances,
while for serverful NAT the graphs refer to the sole deployed
container. Similar trends (not reported) are obtained in the
case of 200 Mbps traffic but with higher experienced CPU
and memory consumption. Concerning CPU consumption for
serverless NAT (Fig. 4(a)), we can see that, in percentage,
around 55% of the vCPU capacity is used for all the tiers. Pe-



TABLE II
SERVERLESS AND SERVERFUL NAT PERFORMANCE COMPARISON.

Serverless NAT Serverful NAT

Input Tier Packet Loss Latency Packet Loss Latency
(Mbps) (%) (ms) (%) (ms)

100
t1 - - 0.006 0.036
t2 0.001 0.122 0.006 0.036
t3 0.001 0.120 0.006 0.037
t4 0.001 0.122 0.007 0.037

200
t1 - - 1.047 0.284
t2 1.316 0.571 0.037 0.212
t3 1.182 0.525 0.007 0.253
t4 1.327 0.607 0.000 0.183

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

CP
U 

Us
ag

e 
(%

)

t2 t3 t4

(a) Serverless NAT

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

CP
U 

Us
ag

e 
(%

)

t1 t2 t3 t4

(b) Serverful NAT

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

M
em

or
y 

Us
ag

e 
(%

)

t2 t3 t4

(c) Serverless NAT

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

M
em

or
y 

Us
ag

e 
(%

)

t1 t2 t3 t4

(d) Serverful NAT

Fig. 4. CPU and memory usage over time for serverless (a)(c) and serverful
(b)(d) NAT (input: 100 Mbps).

riodical tier-independent drops can also be noticed. These are
due to the automatic deployment of new function instances to
replace the expiring ones (function timeout). Temporary lower
CPU consumption occurs right before such a replacement
takes place as triggered by NFGateway. Regarding memory
(Fig. 4(c)), its absolute consumption is around 30 MB for
all the tiers. With respect to CPU consumption of serverful
NAT (Fig. 4(c)) a slightly higher (but comparable) CPU usage
is experienced (around 60%) with no drops, as no function
replacement occurs. Concerning memory (Fig. 4(d)), lower
consumption is experienced for the serverful implementation
with respect to the serverless one (around 20 MB). The higher
consumption for the latter case may result from the man-
agement overhead introduced by the OpenWhisk execution
runtime wrapping the VNF implementation. The execution
runtime serves several functionalities (i.e., init, activation
and logging) to enable smooth platform operations, but that
account for higher resource consumption.

Results allow us to conclude that implementing a NAT
as a serverless function does not bring to real benefits for
any of the considered metrics. Conversely, for high input
rates NFGateway risks to become a system bottleneck and

TABLE III
SERVERLESS AND SERVERFUL DHCP PERFORMANCE COMPARISON.

Serverless DHCP Serverful DHCP

Input Tier Errors Latency Errors Latency
(Req/s) (%) (ms) (%) (ms)

20
t1 - - 0.000 2.000
t2 0.000 0.998 0.000 2.007
t3 0.000 0.996 0.000 2.002
t4 0.000 1.001 0.000 2.020

100
t1 - - 11.60 0.365
t2 0.010 0.807 29.84 0.365
t3 0.000 0.771 10.64 0.144
t4 0.000 0.718 86.98 2.043

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

CP
U 

Us
ag

e 
(%

)

t2 t3 t4

(a) Serverless DHCP

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

CP
U 

Us
ag

e 
(%

)

t1 t2 t3 t4

(b) Serverful DHCP

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100
M

em
or

y 
Us

ag
e 

(%
)

t2 t3 t4

(c) Serverless DHCP

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

M
em

or
y 

Us
ag

e 
(%

)

t1 t2 t3 t4

(d) Serverful DHCP

Fig. 5. CPU and memory usage over time for serverless (a)(c) and serverful
(b)(d) DHCP (input: 20 Req/s).

to introduce an unacceptable performance degradation.
2) DHCP: Table III reports a performance comparison be-
tween serverless and serverful DHCP in terms of association
errors and average end-to-end latency for 20 and 100 DHCP
Req/s. Both implementations do not incur association errors
in the former case, with twice higher latency for the serverful
DHCP. This is probably because load balancing, as performed
by NFGateway, introduces a short latency in request process-
ing that, as a side effect, reduces the number of concurrent
accesses to the database. In the latter case, results are instead
much different. Serverless DHCP implementation does not
incur relevant errors, while the behavior of serverful DHCP
becomes unstable with a high number of errors for all the tiers.
This happens because NFoS is able to automatically scale up
the serverless DHCP. In contrast, the serverful DHCP starts
dropping messages when the amount of requests becomes not
manageable by the VNF for lack of resources. Even though we
are aware that forwarding 100 Req/s to a DHCP is a stress test,
this is a situation that may occur in real scenarios (e.g., flash
crowd). In this case, a serverful DHCP not well-dimensioned
to handle such a peak of requests would not properly work.
Moreover, latency is, on average, higher for serverless DHCP



than for serverless NAT, as an external database is used for
state management. It is also important to note that the lower
latency experienced by the serverful DHCP in the case of
100 Req/s with respect to 20 Req/s is due to the high error
percentages. In fact, end-to-end latency can be computed only
for successful requests, but it should be considered infinite
(and not nil) in the case of errors.

Figure 5 reports CPU and memory usage over time for
both implementations in the case of 20 Req/s as input, that
is, when no association error is experienced. Also for DHCP,
only one vCPU is used in the two cases, and memory usage is
normalized as done for NAT. As a first consideration we can
see that the average CPU usage, for both serverless (Fig. 5(a))
and serverful (Fig. 5(b)) DHCP is an order of magnitude lower
than that of serverless (Fig. 4(a)) and serverful (Fig. 4(b))
NAT. This is a clear indication that NAT is a much more
CPU-intensive function than DHCP. In absolute terms, as
also happens for NAT, a marginally higher CPU consumption
is experienced by serverful DHCP compared to serverless
DHCP (around 1% higher). Concerning memory consumption
of serverless DHCP (Fig. 5(c)), it is very similar to that
of serverless NAT (Fig. 4(c)), with an average consumption
of around 30 MB. Memory consumption of the serverful
implementation (Fig. 4(d)) is on average much lower (around
12 MB), but in both cases it is well below the maximum
allocated memory for any tier. The serverless implementation,
as with NAT, pays the OpenWhisk execution runtime overhead
in terms of memory consumption.

These results show how implementing DHCP as a serverless
function may be beneficial in the case of unexpected traffic
spikes. In fact, a serverless NFV platform as NFoS is elastic
by design, and more function instances are automatically
instantiated when needed to cope with such an increased
amount of traffic. However, this is not true for the serverful
DHCP. In this case, either adequate resource provisioning is
guaranteed, or the scaling policy of the VNF must be handled
by an additional component, such as a VNF Manager (VNFM)
if we refer to ETSI NFV Management and Orchestration.

VI. CONCLUSION

This paper proposes NFoS, an open-source serverless NFV
platform that extends OpenWhisk functionalities to make it
suitable to the execution of stateful VNFs. The platform was
designed and implemented with the specific goal of executing
two serverless VNFs, a NAT and a DHCP, and perform a
thorough comparison analysis with their serverful counter-
parts. Implementing serverless NAT required a much higher
effort than serverless DHCP for two reasons: (i) it was not
possible to find an existing suitable serverful implementation
to start with, and (ii) we had to architect the VNF (e.g.,
in terms of state management) in such a way that it can
be executed by NFoS without incurring high system-level
overheads, being a data-plane function with strict requirements
in terms of latency and packet loss. A comparison with its
serverful version shows how such an effort cannot be justified,
as no performance gain is experienced (rather, some loss

occurs). Conversely, implementing the serverless DHCP was
straightforward starting from a server-based implementation.
Keeping the VNF state in an external database, given the
looser requirements of such control-plane function in terms
of latency, simplified this task. Also, the overall performance
is promising compared to the serverful version: NFoS is able
to seamlessly scale up/down the DHCP VNFs in response to
traffic variations, guaranteeing lower association errors.

Our experience suggests that adopting a per-flowlet server-
less NFV platform, able to perform state management of
running VNFs, can be suitable for the execution of control-
plane, short-lived, and request-based functions. In the future,
we plan to implement and test other control-plane VNFs such
as a DNS and a MME, to deeper evaluate NFoS both from a
functional and non-functional perspective and to integrate our
platform with technologies for augmented packet processing
performance such as Data Plane Development Kit (DPDK).

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho et al., “Network Function Virtu-
alization: State-of-the-art and Research Challenges,” IEEE Communica-
tions Surveys & Tutorials, vol. 18, no. 1, pp. 236–262, 2015.

[2] P. Castro, V. Ishakian, V. Muthusamy et al., “The Rise of Serverless
Computing,” Comm. of the ACM, vol. 62, no. 12, pp. 44–54, 2019.

[3] A. Tariq, A. Pahl, S. Nimmagadda et al., “Sequoia: Enabling Quality-
of-Service in Serverless Computing,” in ACM Symposium on Cloud
Computing, 2020.

[4] G. Adzic and R. Chatley, “Serverless Computing: Economic and
Architectural Impact,” in Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2017.

[5] P. Aditya, I. E. Akkus, A. Beck et al., “Will Serverless Computing
Revolutionize NFV?” Proceedings of the IEEE, vol. 107, no. 4, pp.
667–678, 2019.

[6] M. Gramaglia, P. Serrano, A. Banchs et al., “The Case for Serverless
Mobile Networking,” in IFIP Networking Conference, 2020.

[7] U. Acar, R. F. Ustok, S. Keskin et al., “Programming Tools for Rapid
NFV-Based Media Application Development in 5G Networks,” in IEEE
Conference on Network Function Virtualization and Software Defined
Networks, 2018.

[8] C. Cicconetti, M. Conti, A. Passarella et al., “Toward Distributed
Computing Environments with Serverless Solutions in Edge Systems,”
IEEE Communication Magazine, vol. 58, no. 3, pp. 40–46, 2020.

[9] A. Singhvi, S. Banerjee, Y. Harchol et al., “Granular Computing and
Network Intensive Applications: Friends or Foes?” in ACM Workshop
on Hot Topics in Networks, 2017.

[10] A. Singhvi, J. Khalid, A. Akella et al., “SNF: Serverless Network
Functions,” in ACM Symposium on Cloud Computing, 2020.

[11] J. Shen, H. Yu, Z. Zheng et al., “Serpens: A High-Performance Server-
less Platform for NFV,” in IEEE/ACM International Symposium on
Quality of Service, 2020.

[12] M. Shahrad, J. Balkind, and D. Wentzlaff, “Architectural Implications
of Function-as-a-Service Computing,” in IEEE/ACM International Sym-
posium on Microarchitecture, 2019.

[13] A. Wang, J. Zhang, X. Ma et al., “InfiniCache: Exploiting Ephemeral
Serverless Functions to Build a Cost-Effective Memory Cache,” in
USENIX Conference on File and Storage Technologies, 2020.

[14] S. Jindal and R. Ricci, “MME-FaaS Cloud-Native Control for Mobile
Networks,” in ACM Symposium on Cloud Computing, 2019.

[15] M. Ciavotta, D. Motterlini, M. Savi et al., “DFaaS: Decentralized
Function-as-a-Service for Federated Edge Computing,” in IEEE Inter-
national Conference on Cloud Networking (CloudNet), 2021.

[16] P. Srisuresh and K. Egevang, “Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP,” RFC 4787, 2007. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc4787

[17] B. Volz, “Reclassifying Dynamic Host Configuration Protocol version
4 (DHCPv4) Options,” RFC 3942, 2004. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3942

[18] D. Duplyakin, R. Ricci, A. Maricq et al., “The Design and Operation
of CloudLab,” in USENIX Annual Technical Conference, 2019.


