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Abstract—In supervised learning, low quality annotations lead
to poorly performing classification and detection models, while also
rendering evaluation unreliable. This is particularly apparent on
temporal data, where annotation quality is affected by multiple
factors. For example, in the post-hoc self-reporting of daily activities,
cognitive biases are one of the most common ingredients. In
particular, reporting the start and duration of an activity after
its finalisation may incorporate biases introduced by personal time
perceptions, as well as the imprecision and lack of granularity due
to time rounding. Here we propose a method to model human
biases on temporal annotations and argue for the use of soft labels.
Experimental results in synthetic data show that soft labels provide
a better approximation of the ground truth for several metrics. We
showcase the method on a real dataset of daily activities.

I. Introduction

The development of systems designed for detection and
monitoring of everyday human activities (e.g. movement, cooking,
hygiene, sleep) benefits from accurate labelled (annotated) data.
Diarising methods (participant self-reporting of events), often
used for self-annotation, display several limitations. Reliability is
limited, e.g. Möller et al [1] found that subjects in a 6-week study
of smartphone use reported at most only 70% of detected events,
perhaps due to forgetfulness. Intentional misreporting may also be
a factor in recording of some activities, e.g. fitness [2]. Since the
contemporaneous annotation of a task usually requires interruption
of a participant’s activity, it is also likely that participants will not
record events contemporaneously, to retain goal focus and avoid
excessive task switching [3] and for practical reasons, e.g. it is
impractical to input or write down annotations during a task such
as vacuuming or taking a shower. As a consequence, participant-
contributed annotations may be characterised as unreliable and
incomplete, in terms of event logging, event start/end time and
event duration.
Uncertainty in the estimation of time reflects participant use of

coarse temporal units to describe time and duration (e.g. an event
began around a certain time, estimated with a certain granularity
[‘around half-past’] and preference for ‘prototypical’ times [4], [5]
and is estimated with a certain duration). Self-reporting of event
duration has been studied in linguistics (often via large corpora
[6]) and in music [7]. Precision of estimation of time of day
reflects participant time awareness. Time perception is complex,
elastic [8] and varies according to demographics such as age [9]

∗These authors contributed equally to this work.

and context, e.g. time of day [10]. It is also worth noting that
disrupted time awareness is a clinical feature in various diagnoses,
such as Alzheimer’s disease [11]. At present, the characteristics
of participant temporal annotation are not widely modelled in
analysis of participant-labelled sensor data.
In summary, while a thorough discussion is beyond the scope

of this paper, unless supported by electronic time-stamping,
participants’ timings for activity start, end and duration are often
inexact; we give an example of this in Section 2. This quality issue
may be compared with Kwon et al’s ‘label jitter’ [12]. However,
jitter in post-hoc annotation (e.g. of video) is likely to be of the
order of fractions of a second. As we see in Section 2, participant
estimation of activity times is found to have large uncertainty.
Much of thework on both evaluating label quality [13] and learning
from weak labels [14] originates from post-hoc annotation, in
which multiple-annotator performance can be compared (e.g. via
statistical measures) and probability distributions built accordingly.
This paper explores a means of modeling temporal un-

certainty when making use of participant contributed labels
describing time-series annotation tasks, and provides a first
step in exploring the method’s suitability for particular applic-
ations (e.g. evaluation of predictions, training models); it is
organised as follows. Section II presents a motivating case
study. Section III describes our approach to estimating the
annotation ambiguity and computing soft labels. Section IV
demonstrates the characteristics of the soft labels with artificial
and real-world datasets. Section V presents critical discussions
of our approach. Finally, Section VI concludes with a summary
and possible future work.

II. Case study: SRM-17 recording of activities of daily
living

During the SPHERE 100-homes project, a subset of participants
were encouraged to provide daily annotations via amodified Social
Rhythm Metric (SRM-17), designed to measure daily lifestyle
regularity [15], self-administered by participants for up to seven
days, resulting in approximately 100 days of data. Analysis of
this small dataset demonstrated many features identified in the
introduction. Taking the example of shower/bath events, as can
be seen in Figure 1, participants’ contributed annotations fall on
particular times within the hour, e.g. on the hour or half past.
Data often appears to be reported to the nearest five minutes.
This does not reflect instructions given to participants, who were
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Figure 1: Histogram of granularity patterns found on SRM-
17 shower/bath annotations for dataset SPHERE 100-Homes,
coloured by annotator.

given no specific guidance regarding precision of time reporting;
researchers expected participants to report time read from a
watch or clock. That said, in the clinical domain it is common for
instructions to mandate a relatively low precision of time reporting.
For example, the frequently-used Hauser home diary to assess
functional status in Parkinson’s disease asks participants to fill out
diaries every half hour [16]. Therefore, we may envisage several
circumstances in which data analysts working with clinical data
may find themselves in one of two conditions: annotation reporting
is constrained by diary frequency (e.g. ‘during the last half hour’);
or by participants’ chosen granularity of time approximation (e.g.
to the nearest five minutes, half hour, etc).
While we would like to evaluate how well predictions made

on the basis of sensor data correlate to the annotations provided
by participants, sensor data itself may give inaccurate timings.
Activity and event predictions rely on signals that vary due to
incidental characteristics about a home e.g. measurement of heat
from cooking varies by stove type, placement, response time
and sensor placement [17]. Hence, [17] apply a ‘thermal lag’
parameter to account for the time it takes for a temperature
increase to be detected. Similarly, humidity sensors used to predict
when shower or bath events occurred exhibit a ‘humidity lag’,
due to characteristics of the bathroom appliances (e.g. shower,
bath), configuration (e.g. closed shower stall, curtain, no enclosure
from the bathroom), and architecture (e.g. room size, window
placement and ventilation such as extractor fans).

III. Method
We propose to tackle the uncertainty in time-series annota-

tions in two stages. In the first step, we predict the time
resolution each annotator uses (ambiguity) with a Bayesian
approach. In the second stage, we produce soft labels based on
the predicted annotation’s time resolution. It is also important
to consider how to evaluate a target model with soft labels
(i.e. how to use the soft labels), but this is outside the current
paper’s scope.

A. Predicting Annotator’s Habit and Annotation’s Uncertainties
First, we introduce predefined categories (𝑐𝑛) for annotation

time resolutions. Each category has a subset of possible
annotation values (C𝑛) that indicate how the person who

Figure 2: Examples of biases added during the annotation process.
The bottom graph shows the time in which the person took a 37
minutes shower. The graph above shows a possible annotation B
estimating that it took about 30 minutes at 8am, while the graph
above that shows a different annotation A estimating a shower
of an hour at 8am. Each annotation indicates the true (and false)
positives (and negatives) that would result from comparison with
the ground truth.

belongs to the category tends to annotate. For example, if
we define the 1st category (𝑐1) as 30 minutes time resolution,
then the possible annotation times would be 0 and 30 minutes
(C1 = {0, 30}). We use the following five categories to
demonstrate our method throughout this paper.

𝑐1 : 30 mins. res. C1 = {0, 30}
𝑐2 : 15 mins. res. C2 = {0, 15, 30, 45}
𝑐3 : 10 mins. res. C3 = {0, 10, 20, 30, 40, 50}
𝑐4 : 5 mins. res. C4 = {0, 5, 10, 15, . . . , 55}
𝑐5 : 1 mins. res. C5 = {0, 1, 2, 3, 4, . . . , 59}
Then, we introduce two random variables. One indicates the

annotator’s habit (𝐻 𝑗), which indicates which time resolution
category the annotator tends to use, and the other is a category
(𝐶 𝑗 ,𝑖) that is actually used for each annotation. The index 𝑗 and 𝑖
are the annotators and the annotations index, respectively. 𝐶 𝑗 ,𝑖 is
defined for each annotation, and 𝐻 𝑗 is defined for each annotator.
Now, we introduce our method to derive the posterior probabilities
of the two random variables (𝐻 𝑗 and 𝐶 𝑗 ,𝑖). For simplicity, we
drop the annotator index 𝑗 in the rest of the paper, as the following
process can be repeated for each annotator separately. We present
the notation below.

D = {𝑑𝑖}𝑁𝑖=1 Set of annotations
𝑁 Number of annotations
𝑑∗
𝑖

True value for an annotation 𝑑𝑖
𝐻 Annotator’s habit
𝐶𝑖 i-th annotation category
𝑐𝑛 Categories for 𝐻 and 𝐶𝑖

|𝑐𝑛 | Number of annotations in category 𝑐𝑛
𝑇𝑐𝑛 Time resolution for category 𝑐𝑛
𝑁𝑐 Number of the categories
We assume that the 𝑖-th annotations (𝑑𝑖) are generated from

𝐶𝑖 and 𝑑∗
𝑖
, and 𝐶𝑖 is generated from 𝐻. Figure 3 shows the

probabilistic graphical model relating the variables. To infer the
annotator’s 𝐻 and annotations’ 𝐶𝑖, we compute their posterior
probabilities given annotations D i.e. 𝑃(𝐻 |D) and 𝑃(𝐶𝑖 |D).

𝑃(𝐻 |D) = 𝑃 (𝐻 )
𝑃 (D)

𝑁∏
𝑖=1

∑︁
𝐶𝑖

𝑃 (𝐶𝑖 |𝐻 )𝑃 (𝑑𝑖 |𝐶𝑖) (1)



Figure 3: Probabilistic graphical model relating the variables for
annotations. We assume that the annotation 𝑑𝑖 is generated from
the ground truth 𝑑∗

𝑖
and the annotation time resolution 𝐶𝑖. The

annotation time resolution depends upon the annotator’s habit 𝐻.
The index 𝑖 is the annotation’s index.

Eq. 1 shows how we can compute 𝑃(𝐻 |D). Its detailed deriva-
tions are in Appendix A. The term 𝑃(𝑑𝑖 |𝐶𝑖) is the probability
of getting the annotation 𝑑𝑖 with the given annotation category
𝐶𝑖 . Here, we assume a uniform distribution for 𝑃(𝑑∗𝑖 ); hence
we define it as Eq. 2.

𝑃 (𝑑𝑖 |𝐶𝑖) =
{
1

|𝐶𝑖 | , if 𝑑𝑖 ∈ C𝑖
0, otherwise

(2)

where |𝐶𝑖 | is a number of annotations in the category 𝐶𝑖 . For
example, when 𝐶𝑖 = 𝑐1, |𝐶𝑖 | = 2 as 𝑐1 has two members
C1 = {0, 30}. Hence the probability of 𝑑𝑖 = 0 or 30 when
𝐶𝑖 = 𝑐1 is 0.5 in Eq. 2. The term 𝑃(𝐶𝑖 |𝐻) is the probability
of using the annotation category 𝐶𝑖 when the annotator’s habit
is 𝐻. We use the following 𝑃(𝐶𝑖 |𝐻) in this work:

𝑃(𝐶𝑖 |𝐻) =
{
1 − 𝛿, if 𝐶𝑖 = 𝐻

𝛿
𝑁𝑐−1 , otherwise

(3)

where 𝛿 ∈ [0, 1] is the probability of taking a different
annotation category to the annotator’s habit 𝐻. In this paper,
we use 𝛿 = 0.1. Further discussion regarding the choice of 𝛿
value is in Section V. We assume the prior of 𝐻 is the uniform
distribution, as we do not assume any prior knowledge about
the annotator’s habit. Now, we compute the posterior of 𝐶𝑖 ,
which can be derived as follows (again, the detailed derivations
are in Appendix B):

𝑃(𝐶𝑖 |D) =
∑︁
𝐻

𝑃(𝑑𝑖 |𝐶𝑖)𝑃(𝐶𝑖 |𝐻)
𝑃(𝑑𝑖 |𝐻) 𝑃(𝐻 |D), (4)

where we can compute 𝑃(𝑑𝑖 |𝐶𝑖) from Eq. 2, 𝑃(𝐶𝑖 |𝐻) from Eq. 3,
𝑃(𝐻 |𝐷) fromEq. 1 and 𝑃(𝑑𝑖 |𝐻) = ∑

𝐶𝑖
𝑃(𝑑𝑖 |𝐶𝑖)𝑃(𝐶𝑖 |𝐻). Once

we have computed the posteriors, we use them to produce the soft
labels. It is possible to prepare the soft labels for all categories and
combine them according to the posteriors (fullyBayesian approach).
This work takes the maximum a posteriori (MAP) estimation for
𝐶𝑖 and generates the soft label from it.

B. Generating Soft Labels
The annotations for time-series data have been produced by

recording an event’s start and end time. We introduce a probability
distribution over the timings based on the category 𝐶𝑖 detected
in the previous subsection and compute soft labels that indicate
a probability of the event happening at a given time. We adopt
a uniform distribution for the true start and end timings 𝑑∗𝑠 and
𝑑∗𝑒 because we assume the annotations are generated by rounding

the actual time. (Again, it is interesting for future work to study
different distributions.) The distributions are uniform across the
period of the inferred annotation interval and placed its centre at
the annotated timing. For example, if a start timing annotation
category 𝐶𝑠 is 𝑐3, it becomes uniform distribution bounded by
𝑑𝑠 − 5 and 𝑑𝑠 + 5 as the category 𝑐3 has annotations with 10
minutes intervals, where 𝑑𝑠 and 𝑑𝑒 are annotations for the start
and end timing.

𝑝(𝑑∗𝑠) = U(𝑑𝑠 − 𝑇𝐶𝑠
/2, 𝑑𝑠 + 𝑇𝐶𝑠

/2),
𝑝(𝑑∗𝑒) = U(𝑑𝑒 − 𝑇𝐶𝑒

/2, 𝑑𝑒 + 𝑇𝐶𝑒
/2),

(5)

where𝑇𝐶𝑠
and𝑇𝐶𝑒

are the annotation time intervals for the inferred
annotation categories𝐶𝑠 and𝐶𝑒.∗ Then, we compute probabilities
of the event that has started 𝑃(𝑑∗𝑠 ≤ 𝑡) and has not yet ended
𝑃(𝑑∗𝑒 > 𝑡) at time 𝑡 by taking the integration of Eq. 5.

𝑃(𝑑∗𝑠 ≤ 𝑡) =
∫ 𝑡

−∞
𝑝(𝑑∗𝑠) 𝑑𝑑∗𝑠 ,

𝑃(𝑑∗𝑒 > 𝑡) =
∫ +∞

𝑡

𝑝(𝑑∗𝑒) 𝑑𝑑∗𝑒 .

(6)

Finally, we compute the soft label (𝑃(label) (𝑡)), which is the
probability of the event at time 𝑡 by multiplying 𝑃(𝑑∗𝑠 < 𝑡)
and 𝑃(𝑑∗𝑒 > 𝑡). Here, we assume the start and end timings are
statistically independent. It simplifies the following derivations
and helps convey the idea of our approach. It is a strong
assumption, and it does not hold in some cases. For example,
if the start and end timings are close relative to the annotation
time resolution, then we need to consider the dependency
between the start and end timings – the end timing must be
later than the start timing. We want to extend our model to
support such a scenario in the future.

𝑃(label) (𝑡) = 𝑃(𝑑∗𝑠 ≤ 𝑡 ∧ 𝑑∗𝑒 > 𝑡)
= 𝑃(𝑑∗𝑠 ≤ 𝑡)𝑃(𝑑∗𝑒 > 𝑡).

(7)

Figure 4 shows the above soft label computation process with
uniform distributions. It starts with the given start/end time
annotations (𝑑𝑠 and 𝑑𝑒) and the estimated time resolutions, we
assume the probability distribution of the actual start/end time
(𝑑∗𝑠 and 𝑑∗𝑒). Then, compute the probabilities that the event has
already started and ended for each time slot. Finally, we compute
the probability that the event has started but not ended for each
time slot, becoming the soft label.

IV. Experiments

In this section, we compare the hard and soft labels with
artificial examples and real-world datasets. The hard labels
have either true or false values and are set to true for the time
slots between the start and end time annotations. The artificial
examples allow us to demonstrate the characteristics of the
soft labels in a controlled environment. We show the actual
use case with real-world datasets.

∗These probabilities must be conditioned on𝐶𝑖 and 𝑑𝑖 like 𝑝 (𝑑∗
𝑠 |𝐶𝑠 , 𝑑𝑠).

We drop the conditioning for simplicity here.



Figure 4: Soft label for time series data. Given start/end time
annotations (𝑑𝑠 and 𝑑𝑒) and the estimated time resolutions,
we assume the probability distribution of the actual start/end
time (𝑑∗𝑠 and 𝑑∗𝑒) – top of the figure. Then, we compute the
probabilities that the event has already started and ended for
each time slot. Finally, we compute the probability that the
event has started but not ended for each time slot, becoming
the soft label.

A. Simple Task

First, we compare the soft and conventional hard labels in a
simple synthetic example. It consists in a series of tasks with a
start and end events (e.g. sleeping, cooking or showering). Here,
we randomly generate the true start and end times (ground truth),
then we make the annotations by rounding the times based on a
given time resolution (e.g. 5, 10, 15 and 30 minutes). We consider
the rounded start and end times as the provided hard labels, and
apply the proposed method to obtain the soft labels as described in
Sec. III. Finally, we evaluate the hard and soft labels by comparing
them to the ground truth. Figure 5 shows the mean squared error
(MSE) of the ground truth with respect to the hard and soft labels,
with the time resolution of the annotations in the X-axis. The
MSEs are measured around the ground truth start and end time
±15minutes range. The result suggests that the hard label has a
progressively larger error than the soft label when the resolution
interval of the time annotations increase. This clearly indicates
that the proposed soft labels are less penalizing than the hard
labels.
Next, we perform a similar analysis with F1 score, as in most

detection scenarios the positive class is more important than the
negative one. The left plot of Figure 6 shows the results with the
annotation time resolution on the X-axis. This suggests the hard
label is better (higher F1 score) than the soft label. This is the
opposite result to the MSE result and counter-intuitive as the soft
label accurately reflects the degree of ambiguity by having values
between zero and one, whereas the hard label has only either zero
or one. The F1 score (or any metric based on the confusion matrix)
is penalised by having a value between zero and one (like soft
labels). Also, this is the best-case scenario for the hard label,
as the annotation is produced by using rounding. Hence, the
expected ground truth is matched with the hard label. We are
interested in exploring evaluation metrics that do not penalise

0 10 20 30
time res. [min.]

0.0

0.1

0.2
MSE

hard label
soft label

Figure 5: MSE for the hard and soft labels against the ground
truth. The X-axis is the annotation time resolution. The MSE
measured around the ground truth start and end time ±15
minutes range. The results show the soft label is better (smaller
MSE) than the hard label.

0 10 20 30
time res. [min.]

0.6

0.7

0.8

0.9

1.0
f1 (offset 0)

hard label
soft label

0 10 20 30
time res. [min.]

f1 (offset 0.5)

Figure 6: F1 score for the hard and soft labels against the ground
truth with different annotation time resolutions. The annotations
are produced from the ground truth by applying a bias and rounding.
Here, we use zero and half of the annotation time resolution as
the bias (offset). The results suggest that the soft label performs
better than the hard label with the bias.

the prediction or ground truth ambiguity. However, this is left
for future work.
We also evaluate the annotations produced by applying a bias

(offset) and rounding to the ground truth. This is useful to simulate
a case in which the annotator does not remember accurately the
beginning and end of the event, which adds a possible bias on top
of the rounding error. With this bias, the expected ground truth
no longer matches the hard label. We set the bias to half of the
annotation resolution and measure the F1 score for the hard and
soft labels. The result (the right plot of Figure 6) suggests that
the soft label is better than the hard label in this case. We can
see that the hard label results are degraded due to the bias in the
annotation, and the soft label results stay the same as before. This
is because we shift the uniform distribution for producing the soft
label (Eq. 5) based on the estimated annotation resolution.

B. Humidity Event Detection
We test the soft and hard labels for evaluating a shower event

detection model. The model uses the humidity sensor reading



and predicts if someone is taking a shower at each time slot –
binary classification task. The model used is a hidden Markov
model. It takes the humidity level as the observations and treats
the shower status (on/off) as the hidden variable. We assume that
the predictive model is already provided, as the learning process
is not the focus of this paper; but the evaluation.

Table I: Confusion matrix for the shower event detection model
with soft and hard labels.

(a) With hard labels

Prediction
Label No Yes

No 3186 63
Yes 41 70

(b) With soft labels

Prediction
Label No Yes

No 3185.14 69.50
Yes 41.86 63.50

We use the SRM-17 dataset [15] with self-reported annotations.
We pick the dataset for ID:4 (Figure 1) as it has a coarse annotation
time resolution. First, we generate the hard and soft labels based
on self-report annotations and then compare them against the
prediction model output. Table I shows the confusion matrices
for the evaluation results with the hard and soft labels. We do
not know the ground truth; hence we cannot directly compare the
performance of these labels. We can say that the soft and hard
labels give different results. We discuss approaches to further
detailed characterisation and evaluation in the future work section
of this paper. We can also see that the results with the soft
label are slightly worse than those with the hard labels (slightly
fewer true-positives and true-negatives and more false-positives
and false-negatives). It is because these matrices penalise the
ambiguities (soft labels); as in Section 4.1, the suitability of these
metrics for comparative evaluation is left for further discussion.

V. Discussion

In this section, we first discuss the findings from synthetic
data and then present implications and limitations for real-world
examples.

Accuracy of the category estimation: Our method estimates
the posterior of the random variables 𝐻 and 𝐶𝑖. It is designed to
pick the annotation category for coarser time resolution categories
than the finer resolution ones. It is intuitively correct because
if the annotations have only 30 minutes of the resolution, it is
natural to think the annotator uses 30 minutes rather than the finer
resolution that also possible to have 0 and 30 minutes, such as
15 minutes or 10 minutes. Our method wrongly estimates the
annotation categories if all (or most) annotations landed on a
coarser resolution time. The likelihood of such an error diminishes
if it has more annotations.
Figure 7 shows the error rate of the annotation category

estimation argmax𝐶𝑖
𝑃(𝐶𝑖 |D). As the plot suggests, the error

rate decreases quickly with the more annotation it receives. Here
we assume all annotations come from a single time resolution
category. Each line indicates the annotation category for the
annotation. There is no line for resolution=30 minutes as the
error rate is always zero.

100 101 102

number of annotations (N)
10 4

10 3

10 2

10 1

100 error rate
res.=30
res.=15
res.=10
res.=5
res.=1

Figure 7: Error rate of the annotation’s category estimation. The
error rates are measured on synthetically generated annotations.
Each line is for the annotation category. The X-axis is the number
of annotations. The error rate decrease as it has more annotations.

Choice of 𝛿 in Eq. 3: The parameter 𝛿 indicates how likely the
annotator uses the different annotation categories from the habit
(𝐻). 𝛿 = 0.1 means that the annotator uses different annotation
categories once in ten times. It affects both of the two random
variable posteriors 𝑃(𝐻 |D) and 𝑃(𝐶𝑖 |D). If 𝛿 is small (close
to zero), then 𝐻 would be the category compatible with all
annotations. For example, if all but one annotation are 30 minutes
(e.g. 9:30), and one has 1-minute time resolution (e.g. 13:16),
then 𝐻 would be 𝑐5 (1-minute resolution) when 𝛿 is too small.
On the other hand, if 𝛿 is too large (∼ 1.0), then the posterior
of 𝐶𝑖 might ignore the 𝐻 and pick the category based only on
the annotation value 𝑑𝑖. For example, if all annotations are 5
minutes time resolution, then 𝐻 would correctly be 𝑐4 (5-minutes
resolution). However, 𝐶𝑖 would be wrongly 𝑐1 if 𝑑𝑖 ∈ C1 with too
large 𝛿. We pick 𝛿 = 0.1 as it seems a good balance for picking
the right 𝐻 and 𝐶𝑖.

Choice of 𝑝(𝑑∗
𝑖
|𝑑𝑖 , 𝐶𝑖): In this paper, we use the uniform

distribution for 𝑝(𝑑∗
𝑖
|𝑑𝑖 , 𝐶𝑖) (Eq. 2) as we assume a simple

annotator behaviour – just rounding the actual time. However,
it is more plausible to use gradually increasing and decreasing
distributions – e.g. Gaussian or trapezoidal shape distributions.
This is left for future work.

Learning from soft labels: Our proposed method can be
potentially applied during the learning process of a classifier/
regressor as well. For example, by setting the start and end of
the events with the proposed soft labels, we can interpret the
augmented regions as weak labels [14], [18], [19]. Two possible
algorithms that can be potentially used in this scenario are pseudo-
labeling [20] and Optimistic Superset Learning [21], which are
iterative learning methods that consider the model’s predictions
among the candidate labels as correct, and retrain the model with
those labels. It is also possible to add those samples for which the
model is more confident (e.g. exceeding a certain threshold).
We could also consider the proposed soft labels as probabil-

ities coming from a Bernoulli distribution, or as prior beliefs
of belonging to the positive class. Some algorithms that use
similar soft labels are label smoothing [22] and an Expectation



Maximization method proposed by Jin and Ghahramani [23].
Evaluation metrics for soft labelling: The commonly used

evaluation metrics for classification tasks (such as accuracy,
precision, recall and F1 score) are penalised by the ambiguity
in the labels or the predictions (the ambiguity reduces these
scores). In this paper, we show that MSE does not have such
an issue and correctly show the benefit of the soft labels in our
experiment. Also, the MSE is similar to the Brier score, which is
commonly used to evaluate probabilistic predictions’ accuracy.
It may suggest that the MSE is the right evaluation metric
for soft labels. However, we need further study to understand
which metric is appropriate in which scenario (objective) with
the soft labels.

Towards real-world comparison of soft and hard labels:
Real-world comparison of soft and hard labels in contemporaneous
self-annotation by participants is complicated by the lack of wholly
reliable ground truth, particularly in environments in which it
is not possible to rely on data collection suitable for post-hoc
annotation methods (e.g. video is unlikely to be appropriate in
domestic bathrooms). However, we may look toward other data
sources to resolve or reduce some of the ambiguities identified.
For example, we might look to sensor fusion, referencing other
sensors for associated information such as presence, temperature
or power use e.g. to detect operating times of the appliance, or
to get accurate bounds of a person’s entrance into and departure
from the room. This helps to resolve the confounding question of
sensor lag (e.g. time taken before sensor detects temperature or
humidity rises), giving us a greater insight into real-world timings.

Human performance in temporal estimation: Time estimation
performance and bias is a complex topic and the underlying
mechanisms and their causes are largely beyond the scope of this
paper. However, we hope that discussion of this mechanism may
spark further exploration of the characterisation and handling of
this aspect of self-reported data.

VI. Conclusion
We proposed a method to identify the annotator’s approach

to the task and the ambiguity that comes with it. Also, we
devised a way to generate soft labels based on the estimated
ambiguity. Our evaluation results suggest that the soft label is
better in mean squared error than the hard label. However, the
soft labels show worse results than the hard labels in terms
of F1 score, because metrics like F1 score inherently penalise
the ambiguities. We consider many avenues for future work,
namely, improving the model of human annotations, designing
new evaluation metrics for soft labels and using soft labels
for the learning stage. We also hope to report on variance in
granularity of participant annotation of other types of events
in a future publication.

Acknowledgment
This work was supported by the SPHERE Next Steps Project

funded by EPSRC under Grant EP/R005273/1. RSR is funded
by the UKRI Turing AI Fellowship EP/V024817/1.

References
[1] A. Möller, M. Kranz, B. Schmid, L. Roalter, and S. Diewald, “Investigating
self-reporting behavior in long-term studies,” in Proceedings of SIGCHI, ser.
CHI ’13, 2013, p. 2931–2940.

[2] J. Lester, T. Choudhury, andG. Borriello, “A practical approach to recognizing
physical activities,” in International conference on pervasive computing.
Springer, 2006, pp. 1–16.

[3] E. L. Tonkin, A. Burrows, P. R. Woznowski, P. Laskowski, K. Y. Yordanova,
N. Twomey, and I. J. Craddock, “Talk, text, tag? understanding self-annotation
of smart home data from a user’s perspective,” Sensors, vol. 18, no. 7, p. 2365,
2018.

[4] G. Labianca, H. Moon, and I. Watt, “When is an hour not 60 minutes?
deadlines, temporal schemata, and individual and task group performance,”
Academy of Management Journal, vol. 48, no. 4, pp. 677–694, 2005. [Online].
Available: https://doi.org/10.5465/amj.2005.17843945

[5] J. E.McGrath, “The place of time in social psychology,”The social psychology
of time: New perspectives, pp. 7–17, 1988.

[6] F. Pan, R. Mulkar-Mehta, and J. R. Hobbs, “Modeling and learning vague
event durations for temporal reasoning,” in AAAI, 2007, pp. 1659–1662.

[7] Y. Ni, M. McVicar, R. Santos-Rodríguez, and T. De Bie, “Understanding
effects of subjectivity in measuring chord estimation accuracy,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 21, no. 12, pp.
2607–2615, 2013.

[8] S. Droit-Volet and W. H. Meck, “How emotions colour our perception of
time,” Trends in Cognitive Sciences, vol. 11, no. 12, pp. 504–513, 2007.

[9] M. Wittmann and S. Lehnhoff, “Age effects in perception of time,”
Psychological reports, vol. 97, no. 3, pp. 921–935, 2005.

[10] S. S.Campbell, P. J.Murphy, andC.E.Boothroyd, “Long-term time estimation
is influenced by circadian phase,” Physiology & Behavior, vol. 72, no. 4, pp.
589–593, 2001.

[11] M.-C. Requena-Komuro, C. R.Marshall, R. L. Bond, L. L. Russell, C.Greaves,
K. M. Moore, J. L. Agustus, E. Benhamou, H. Sivasathiaseelan, C. J. Hardy
et al., “Altered time awareness in dementia,” Frontiers in neurology, vol. 11,
p. 291, 2020.

[12] H. Kwon, G. D. Abowd, and T. Plötz, “Handling annotation uncertainty
in human activity recognition,” in Proceedings of the 23rd International
Symposium on Wearable Computers, ser. ISWC ’19, 2019, p. 109–117.

[13] R. Poyiadzi, W. Yang, N. Twomey, and R. Santos-Rodríguez, “Statistical
hypothesis testing for class-conditional label noise,” in European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, 2022.

[14] R. Poyiadzi, D. Bacaicoa-Barber, J. Cid-Sueiro, M. Perello-Nieto, P. Flach,
and R. Santos-Rodriguez, “The weak supervision landscape,” in 2022 IEEE
International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events, 2022, pp. 218–223.

[15] T. H. Monk, E. Frank, J. M. Potts, and D. J. Kupfer, “A simple way to
measure daily lifestyle regularity,” Journal of sleep research, vol. 11, no. 3,
pp. 183–190, 2002.

[16] R. A. Hauser, F. Deckers, and P. Lehert, “Parkinson’s disease home diary:
further validation and implications for clinical trials,”Movement Disorders,
vol. 19, no. 12, pp. 1409–1413, 2004.

[17] E. R. Coffey, E. C. Mesenbring, M. Dalaba, D. Agao, R. Alirigia, T. Begay,
A. Moro, A. Oduro, Z. Brown, K. L. Dickinson, and M. P. Hannigan, “A
glimpse into real-world kitchens: Improving our understanding of cookstove
usage through in-field photo-observations and improved cooking event
detection (cooked) analytics,” Development Engineering, vol. 6, 2021.

[18] J. Hernández-González, I. Inza, and J. A. Lozano, “Weak supervision and
other non-standard classification problems: A taxonomy,” Pattern Recognition
Letters, vol. 69, pp. 49–55, 1 2016.

[19] M. Perelló-Nieto, R. Santos-Rodríguez, and J. Cid-Sueiro, “Adapting
supervised classification algorithms to arbitrary weak label scenarios,” in
Advances in Intelligent Data Analysis XVI, 2017, pp. 247–259.

[20] D.-H. Lee, “Pseudo-label : The simple and efficient semi-supervised learning
method for deep neural networks,” ICML 2013 Workshop: Challenges in
Representation Learning (WREPL), 2013.

[21] E. Hüllermeier and W. Cheng, “Superset learning based on generalized loss
minimization,” inMachine Learning and Knowledge Discovery in Databases,
2015, pp. 260–275.

[22] R. Müller, S. Kornblith, and G. E. Hinton, “When does label smoothing
help?” in Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, Eds.,
vol. 32. Curran Associates, Inc., 2019.

[23] R. Jin and Z. Ghahramani, “Learning with multiple labels,” in Proceedings of
the 15th International Conference on Neural Information Processing Systems,
ser. NIPS’02, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge,
MA, USA: MIT Press, 2002, p. 921–928.

https://doi.org/10.5465/amj.2005.17843945


𝑃(𝐻 |D) = 𝑃(D|𝐻)𝑃(𝐻)/𝑃(D)

=
∑︁

𝐶1 ,...,𝐶𝑁

∑︁
𝑑∗
1 ,...,𝑑

∗
𝑁

𝑃(𝑑1, · · · , 𝑑𝑁 |𝑑∗1, · · · , 𝑑
∗
𝑁 , 𝐶1, · · · , 𝐶𝑁 )𝑃(𝐶1, · · · , 𝐶𝑁 |𝐻)𝑃(𝑑∗1, · · · , 𝑑

∗
𝑁 ) 𝑃(𝐻)

𝑃(D)

=
∑︁

𝐶1 ,...,𝐶𝑁

∑︁
𝑑∗
1 ,··· ,𝑑

∗
𝑁

𝑁∏
𝑖=1

𝑃 (𝑑𝑖 |𝑑∗
𝑖 , 𝐶𝑖)𝑃 (𝑑∗

𝑖 )𝑃 (𝐶𝑖 |𝐻 )
𝑃 (𝑑∗

1 , · · · , 𝑑
∗
𝑁
)

𝑃 (𝑑∗
1) · · · 𝑃 (𝑑∗

𝑁
)
𝑃 (𝐻 )
𝑃 (D)

=
𝑃 (𝑑∗

1 , · · · , 𝑑
∗
𝑁
)

𝑃 (𝑑∗
1) · · · 𝑃 (𝑑∗

𝑁
)
𝑃 (𝐻 )
𝑃 (D)

𝑁∏
𝑖=1

∑︁
𝐶𝑖

𝑃 (𝐶𝑖 |𝐻 )
∑︁
𝑑∗
𝑖

𝑃 (𝑑𝑖 |𝑑∗
𝑖 , 𝐶𝑖)𝑃 (𝑑∗

𝑖 )

=
𝑃 (𝑑∗

1 , · · · , 𝑑
∗
𝑁
)

𝑃 (𝑑∗
1) · · · 𝑃 (𝑑∗

𝑁
)
𝑃 (𝐻 )
𝑃 (D)

𝑁∏
𝑖=1

∑︁
𝐶𝑖

𝑃 (𝐶𝑖 |𝐻 )𝑃 (𝑑𝑖 |𝐶𝑖)

(8)

Appendix A
𝐻 posterior (𝑃(𝐻 |D)) derivation

Eq. 8 shows how to derive 𝑃(𝐻 |D). We insert two sets of
latent variables (𝐶1, · · · , 𝐶𝑁 and 𝑑∗1, · · · , 𝑑

∗
𝑁
) and apply the

chain rule to get the second line. Then, factorising 𝑑𝑖 and
𝐶𝑖 by using the graphical model shown in Figure 3. Finally,
the last line is derived by pushing the

∑
operators into the

relevant terms and replacing the term
∑

𝑑∗
𝑖
𝑃(𝑑𝑖 |𝑑∗𝑖 , 𝐶𝑖)𝑑 (𝑑∗𝑖 )
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∗
𝑁
)

𝑃 (𝑑∗
1) ·· ·𝑃 (𝑑∗

𝑁
) = 1.0 (assumed

𝑑∗ are all independent each other) to get Eq. 1.

Appendix B
𝐶𝑖 posterior (𝑃(𝐶𝑖 |D)) derivation

Eq. 9 shows the derivation of 𝑃(𝐶𝑖 |D). First, we introduced
the hidden variable 𝐻, then replace D with 𝑑𝑖 as 𝐶𝑖 only

depends upon 𝑑𝑖 in D. The next, we apply Bayes rule to
𝑃(𝐶𝑖 |𝑑𝑖 , 𝐻) and drop 𝐻 from 𝑃(𝑑𝑖 |𝐶𝑖 , 𝐻), as 𝑑𝑖 does not
depend upon 𝐻 when 𝐶𝑖 is given (Figure 3). Finally, it replace
𝑃(𝑑𝑖 |𝐻) with ∑𝐶𝑖
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