
28 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Orchestration of Containerized Applications in the Cloud Continuum / Di Modica, Giuseppe; Galletta,
Antonino; Carnevale, Lorenzo; Alkhansa, Ahmad; Costantini, Alessandro; Cesini, Daniele; Bellavista, Paolo;
Villari, Massimo. - ELETTRONICO. - (2023), pp. 44-49. (Intervento presentato al convegno 21st
International Conference on Pervasive Computing and Communications (PerCom 2023) - Workshops
tenutosi a Atlanta, USA nel March 13-17, 2023) [10.1109/PerComWorkshops56833.2023.10150375].

Published Version:

Orchestration of Containerized Applications in the Cloud Continuum

Published:
DOI: http://doi.org/10.1109/PerComWorkshops56833.2023.10150375

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/953984 since: 2024-02-25

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/PerComWorkshops56833.2023.10150375
https://hdl.handle.net/11585/953984

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

G. Di Modica et al., "Orchestration of Containerized Applications in the Cloud Continuum," 2023 IEEE
International Conference on Pervasive Computing and Communications Workshops and other Affiliated
Events (PerCom Workshops), Atlanta, GA, USA, 2023, pp. 44-49..

The final published version is available online at:
https://doi.org/10.1109/PerComWorkshops56833.2023.10150375

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1109/PerComWorkshops56833.2023.10150375

Orchestration of containerized applications in the Cloud continuum

Giuseppe Di Modica †, Antonino Galletta ∗, Lorenzo Carnevale ∗, Ahmad Alkhansa ‡,
Alessandro Costantini ‡, Daniele Cesini ‡, Paolo Bellavista †, Massimo Villari ∗

† Department of Computer Science Engineering, University of Bologna, Italy
{giuseppe.dimodica, paolo.bellavista}@unibo.it

∗ MIFT Department, University of Messina, Italy
{angalletta, lcarnevale, mvillari}@unime.it

‡ Center for Research and Development on Information and Communication Technologies (CNAF)
Italian Institute for Nuclear Physics (INFN), Bologna, Italy

{alessandro.costantini, daniele.cesini, ahmad.alkhansa}@cnaf.infn.it

Abstract—Cloud Service orchestration is a hot topic addressed
by both the academia and the business world. The increasing
diversification of the Cloud offer, coupled with the strong need
of flexible and scalable applications demanded by customers, is
calling up for efficient and agile mechanisms that streamline
the devops practices. The novel opportunity of running software
applications or just application portions on resources located on
the Edge of the network poses an additional challenge to the
already tough problem of flexibly and seamlessly provisioning
services. Orchestrators must deal with a continuum of hetero-
geneous computing resources, contributed by both the Edge
and the Cloud, that promises several benefits yet at a higher
management cost. In this paper, we introduce a continuum-
enabled orchestrator and discuss an application provisioning
paradigm that helps the users to easily configure and deploy
composite applications. Finally, we showcase the potential of the
orchestrator in a simple yet practical smart-city scenario.

Index Terms—Service orchestration, Computing Continuum,
Cloud, Edge, IoT, Machine Learning, OCR

I. INTRODUCTION

Cloud computing is a computing paradigm that allows the
flexible sharing of scalable resources on an on-demand basis
model. Due to the wide spread and large acceptance of the
Cloud paradigm in almost all business sectors, we have wit-
nessed a proliferation of cloud service offers in the IT market.
From the cloud user perspective, the increased complexity in
the management of cloud resources, along with the challenges
posed by building and managing scalable applications, has
called for new methodologies, practices and software tools
that would simplify the provisioning, monitoring and mainte-
nance of applications in the Cloud. With the advent of Edge
computing, which aims at integrating the computing power
offered by the remote Cloud with private, yet less powerful
computing resources available on the customer’s premises, the
aforementioned problem has further exacerbated. In the Edge-
Cloud landscape, which many refer to as the Cloud continuum,
more agility is demanded to ensure a seamless, flexible,
robust and scalable provisioning of distributed applications
over heterogeneous computing environments.

This paper builds on the scientific results achieved by
IoTwins[1], a EU-funded project which aimed at delivering
an open and low-cost platform to code, deploy and maintain
distributed Digital Twins (DTs)-based applications in indus-
trial manufacturing settings. With regards to the application
deployment goal, that is the primary concern of this work, in
IoTwins a TOSCA-compliant [2] orchestration platform was
implemented that enforces the provisioning of containerized
application in the continuum computing, i.e., in a distributed
computing environment where Cloud and Edge types of re-
sources coexist. While the focus of the IoTwins project was
mainly put on industrial control applications, the IoTwins
platform was designed to also support the build, deployment
and maintenance of distributed DTs in domains other than
the industrial manufacturing one1. The platform offers users
services to configure generic Docker containers as application
building blocks, wire such blocks to form a complex service
chain and deploy the chain in an heterogeneous environment
comprising both Cloud and Edge resources. Also, the platform
is equipped with a repository of general-purpose and ready-to-
use dockerized services that users can leverage to easily build
data pipelines along the continuum.

The aim of this work is to show that the service provisioning
approach developed in the IoTwins project is also viable in a
typical smart-city scenario. In the paper, we thoroughly discuss
of the Orchestrator component of the IoTwins platform. In
particular, we present its architecture and provide some im-
plementation details of the software prototype. The rest of the
paper is organized as follows. In Section II we briefly describe
some relevant literature works that relate to ours. In Section III,
we introduce our orchestrator and discuss some architectural
and implementation details. In Section IV, we demonstrate the
use of the orchestrator to provision a composite application in
the Cloud continuum. Conclusions and future directions are
summarised in Section V.

1In the course of the project, distributed DTs were developed to support
the management of complex facilities

II. RELATED WORK

The literature is full of frameworks, software prototypes,
models and proposals that address the problem of service or-
chestration in cloud and multi-cloud environments. Hereafter,
we report a subset of the most relevant research contributions.
For a more comprehensive and systematic review of the
literature, the reader may refer to [3].

Several proposals have been developed by academic
and public-funded initiatives. MiCADO (Microservices-based
Cloud Application-level Dynamic Orchestrator) [4] is an open-
source multi-cloud orchestration and auto-scaling framework
for Docker containers, orchestrated by Kubernetes (or alter-
natively by Docker Swarm). MODAClouds (MOdel-Driven
Approach for the design and execution of applications on mul-
tiple Clouds) [5] is an open-source design-time and run-time
platform for developing and operating multi-cloud applications
with guaranteed QoS. mOSAIC [6] is an open-source API and
platform for multiple clouds designed and developed within
the homonymous EU-funded research project. Application de-
ployment and portability across multiple clouds are facilitated
by means of a common API and a high-level abstraction of
cloud resources. Cloud4SOA [7] is a multi-cloud broker-based
solution developed under the homonymous project, which
addresses semantic interoperability and portability challenges
at the PaaS layer. TORCH [8] is a TOSCA-based frame-
work for the deployment and orchestration of resources in
heterogeneous and multi-cloud environments. The framework
proposed by the authors assists the cloud customer in defining
application requirements by using standard specification mod-
els. Unlike other multi-cloud orchestrators, TORCH adopts
a strategy that separates the provisioning workflow from the
actual invocation of proprietary cloud services API. The main
benefit is the possibility to add support to any cloud platforms
at a very low implementation cost. Tolerancer [9] is a resource
orchestrator able to face failures in Edge-Cloud environments
by monitoring the status of hardware resources and deploying
docker containers among the available resources.

In the business sector, there is quite a number of products
that are worth being cited. For space reasons, we report here
the ones that most relate to the same issues we face in our
work. Cloudify [10] is an open-source orchestration framework
based on TOSCA. It provides services in order to model
applications and automate their entire life-cycle through a set
of built-in workflows. Application templates are referred to as
blueprints, which are YAML documents written in Cloudify’s
Domain Specific Language. OpenStack Heat [11] is a service
for managing the entire life-cycle of infrastructure and applica-
tions within OpenStack clouds. It implements an orchestration
engine to launch multiple composite cloud applications based
on the native OpenStack Heat Orchestration Template format
(HOT). Heat provides support for TOSCA via the independent
Heat-Translator project 2 which translates TOSCA templates to
HOT. Terraform [12] is an open-source infrastructure-as-code
tool for building, changing, and versioning infrastructures in a

2https://wiki.openstack.org/wiki/Heat-Translator

platform-agnostic way. It uses its own high-level configuration
language known as Hashicorp Configuration Language (HCL),
or optionally JSON, in order to detail the infrastructure setup.
Despite being non-compliant with any model standards, HCL
supports reusability via modules and module composition.

Finally, since in this paper we deal with a license plate
recognition use case, we discuss some relevant literature
contributions that proposed innovative approaches in the field.

An Automatic License Plate Recognition System for in-
creasing the security of parking, gas station, and highways
has been proposed in [13]. The main idea behind this work is
to install some cameras in parking, gas station, and tolls, that
upload the video to the Cloud where a software tool following
the YOLO approach[14] implement a license plate recognition
process. Despite the accuracy of the proposed system is very
high (higher than 99%), the system can not be installed on
mobile nodes. A similar work has been proposed in [15],
where authors developed a software tool on MATLAB. The
accuracy of the proposed system is lower than other tools
proposed in the literature, but is still acceptable. A solution
able to reconfigure dynamically video surveillance cameras
has been proposed in [16]. The authors considered a Smart
City where general purposes cameras can be reconfigured to
accomplish different tasks like license plate recognition and
vehicle count. In particular, the proposed system is built by
means of the Function as a Service (FaaS) paradigm that
allows to reconfigure the Edge devices and setting up new ser-
vices. A license plate recognition system based on Raspberry
Pi has been proposed in [17]. The authors leveraged Tesseract,
an open-source tool for Optical Character Recognition. The
proposed system is able to run the computation on the Edge
without sending any frame to the cloud; yet, the accuracy is
quite low if compared to Cloud-based solutions.

III. A TOSCA-COMPLIANT AND EDGE-ENABLED SERVICE
ORCHESTRATOR

In this section, we discuss architectural and implementation
details of the INDIGO PaaS orchestrator, one of the core
components of the IoTwins platform [18], [19]. Provided with
input instructions, the orchestrator carries out a set of actions
that enforce the provisioning of multi-component applications
in a distributed and crossing-domain computing environment.

Users provide instructions to INDIGO PaaS in the form of
declarative statements expressed in the TOSCA language[2].
TOSCA is a widely-accepted OASIS standard that specifies
a language to define the topology of cloud applications and
their orchestration. The orchestrator takes in input TOSCA-
compliant instructions and translates them into a workflow of
application provisioning actions (e.g., deploy, configure, run)
that are executed with the support of a workflow engine. The
capability of transparently provisioning applications in both
Edge and Cloud environments is one of the distinctive feature
of the orchestrator, which proved to fulfill the need of flexible
provisioning strategies that is typical of heterogeneous com-
puting environments. The high-level architecture of the service
orchestrator is depicted in the Figure 1. In the following, we

End user

TOSCA
parser

Cloud IaaS

Edge

Node

Provisioning

Workflow

Engine

Deployer

SW artifacts

Repository

Front end

TOSCA

Blueprint

INDIGO PaaS orchestrator

Fig. 1. Architecture of the INDIGO PaaS Orchestrator

provide a description of its components and the respective
open-source software/libraries that were used to implement
their functionalities.

The end-user on the left side of the picture defines the
provisioning instructions in the form of a TOSCA blueprint.
The Front end component provides the user with the interface
to submit the TOSCA blueprint. Three types of interfaces are
currently offered: a command-line one, implemented by the
orchent3 tool; a web-based interface, that also helps the user
in step-by-step building the TOSCA blueprint; RESTful API.
Once the blueprint has been ingested, the TOSCA parser is
called upon to interpret the instructions and transform them
into a format that is interpretable to a workflow engine.
The TOSCA parsing is carried out with the support of the
Alien4TOSCA libraries4. The Deployer is the component
responsible for executing the provisioning task. In particular, it
is in charge of i) configuring the application deployment script,
by also resolving the links to the software artifacts stated in
the application dependencies; ii) feeding the workflow engine
with the deployment script. The Software Artifacts Repository
contains all software artifacts that may be required for the
correct application deployment (e.g., app installation tarballs,
software libraries, Docker images, etc.). The open source
Harbor software5 was used to implement this component.
The Provisioning Workflow Engine executes the deployment
scripts. Scripts complies with the BPMN notation[20], a well-
known standardized language used to model business process
workflows; the BPMN-compatible Flowable engine6 was even-
tually chosen to act as provisioning engine. In Listing 1, an
excerpt of a sample service topology description written in the
TOSCA language is shown. The blueprint contains instructions

3https://github.com/indigo-dc/orchent/releases
4https://alien4cloud.github.io/
5https://goharbor.io/
6https://github.com/flowable/flowable-engine

to schedule a virtual machine from the Cloud infrastructure,
featured with given CPU/mem capacity and equipped with a
10GB block storage.

While the orchestrator supports several application pro-
visioning schemes, in this paper we put the focus on the
capability of the orchestrator to provision containerised appli-
cations, i.e., applications that rely on the runtime environment
and the services provided by a container engine. The latest
version of the orchestrator prototype fully supports the Docker
containerization technology.

A. Support for the Edge

As mentioned earlier in this section, the orchestrator can
handle the deployment of multi-component applications, i.e.,
applications made up of multiple components, each imple-
mented as a Docker container that can transparently be de-
ployed and run in either the Cloud or in an Edge machine.
In pursuing the application provisioning goal, the orchestrator
will have to: a) reserve a (virtual) computing resource from
the available computing infrastructure; b) on top of that, set
up and install a Docker runtime environment; c) in such envi-
ronment, deploy, configure and run the dockerized application
components.

In its original implementation, the orchestrator was capable
of executing Cloud application provisioning tasks on top of
relevant private and public IaaS Clouds, such as Openstack-
empowered private clouds [21] and the Amazon AWS. In
the course of the project, such a capability was extended to
also support the provisioning of Docker applications on top
of Edge nodes. In particular, off-the-shelf personal computers
(PCs) were selected as target nodes of this extension. PCs are
machines with a sufficient computing capacity to run general
purpose (yet small-sized) applications. For the extension pur-
pose, PCs were equipped with an Ubuntu Linux distribution
on top of which a Mesos Cluster framework [22] is laid. In
its turn, this framework is used by the orchestrator to deploy

node_templates:
simple_node:
type: tosca.nodes.indigo.Compute
capabilities:
endpoint:
properties:
network_name: PUBLIC

scalable:
properties:
count: 1

host:
properties:
num_cpus: 1
mem_size: 2 GB

os:
properties:
distribution: Ubuntu

requirements:
- local_storage:
node: block_device
capability: tosca.capabilities.Attach.
relationship:

type: tosca.relationships.AttachesTo
properties:

location: /data
device: vdb

block_device:
type: tosca.nodes.BlockStorage
properties:

size: 10 GB

Listing 1: TOSCA blueprint for the provisioning of a VM
equipped with a block storage

and execute application components in the form of Docker
containers. At design time, the choice of Mesos Cluster is
motivated by the need of leveraging a computing runtime that
allowed the implementation of a Cluster of nodes (not just a
single one) to be exploited at the Edge, and yet be part of
unique pool of resources under the control of the orchestrator.
With that extension, in fact, the orchestrator was empowered to
exploit a ”continuum” of virtual and heterogeneous computing
resources (those offered by Cloud and Edge, respectively) on
top of which to execute the provisioning of distributed, multi-
component applications.

Along with the Apache Mesos, two more frameworks were
deployed in the Edge machine: Marathon [23], a production-
grade container orchestration platform that can launch appli-
cations and provide scaling and self-healing for containerized
workloads, and Chronos [24], a fault-tolerant scheduler that
runs on top of Apache Mesos and handles short-lived jobs.

B. A simplified application provisioning paradigm

In the course of the project, an application development
paradigm was also defined that enables software developers
to easily design their distributed application by composing
small building blocks (the Docker containers, indeed), and
to deploy them along the Cloud-Edge continuum based on
specific requirements and needs. The development process
defined by the paradigm is called ”Toskerization”, as it recalls
the two steps that needs to be taken in order to shape an
application to fit the orchestrator’s provisioning process: 1)
dockerization of the application’s building components; 2)
definition of TOSCA blueprints representing the deployment
instruction for the components.

According to step 1) of the paradigm, application developers
need to shape their own application as a ”chain” of docker-
ized components and configure adequately each docker’s I/O
parameters. To ease the chain build step, a public repository
of already available and Toskerized Docker components can
also be accessed by developers for reuse in their application.
Also, developers are allowed and encouraged to share newly
developed components with the community via the same
repository. With regards to step 2) of the paradigm, for all
components developers must craft TOSCA blueprints that
specify in a standardized way the instructions to enforce the
component provisioning.

While the former version of orchestrator supports the pro-
visioning of a multi-component application over a pool of
computing resources belonging to the same domain (e.g., that
of a Cloud infrastructure), a new component was developed
to enforce the cross-domain provisioning, i.e., the provisioning
of components across different administrative domains (e.g., a
public Cloud infrastructure and an on-premise Edge machine).
The Pipeliner Docker component is charged with the execution
of cross-domain provisioning tasks. The Pipeliner is a simple
web server coded in Python that interacts with the orchestrator
via REST API for the achievement of the provisioning task.
It is Toskerized and is available in the repository of publicly
accessible components. In Listing 2 an exerpt of the Pipeliner’s
TOSCA blueprint is shown. When a cross-domain application
provisioning need to be executed, the Pipeliner will be de-
ployed by the orchestrator as the first link of the components’
chain, then it will collaborate with the orchestrator to deploy
the rest of the components in the chain.

IV. DEPLOYMENT USE CASE IN A SMART-CITY SCENARIO

During the IoTwins project, the orchestrator was heavily
tested in I4.0 use cases proposed by the industrial partners.
To prove that the the orchestrator can be effective in different
settings, we tested its capabilities in a smart-city use case
scenario. In particular, we considered a scenario where the
the local police needs to localize in-motion vehicles by their
license plate number. The reason to track such vehicles could
be several: identify the position of a vehicle that has just
been stolen, identify vehicles that run away after causing an
accident, verify that a specific license plate number is used by
just one vehicle, etc.

The web is full of open-source and commercial tools
that run video/images analytics and detect the license plate
numbers of vehicles. We will refer to such type of applications
as automatic license plate recognition (ALPR). ALPR tools
are emplyed, e.g., in parking assistance systems, automated
toll booths, admittance control in restricted traffic areas, etc.
Almost all ALPR systems leverage trained AI models to
accomplish license plate recognition tasks. While most of
ALPRs run in the Cloud, such models have proven capable to
execute also on low computing power hardware, thus fostering
their deployment also in small computing nodes located in the
urban infrastructure (e.g., WiFi access points, base stations, or

topology_template:
inputs:
token:
type: string
description: token for authorizing deployments
required: yes

urls:
type: string
description: tosca templates urls
required: yes

parameters:
type: string
description: input parameters for the templates
required: yes

groups:
type: string
description: user groups for each deployment
required: yes

node_templates:
pipeline:
type: tosca.nodes.indigo.Container.

Application.Docker.Marathon
properties:

environment_variables:
OIDC_TOKEN : { get_input: token }
PARAMETERS : { get_input: parameters }
TOSCA_URLS : { get_input: urls }
USER_GROUPS : { get_input: groups }

artifacts:
image:
file: iotwins-harbor.cloud.

cnaf.infn.it/infn/infn-pipeline-edge:v1.0
type: tosca.artifacts.

Deployment.Image.Container.Docker
requirements:
- host: pipelinedockerruntime

pipelinedockerruntime:
type: tosca.nodes.indigo.Container.Runtime.Docker
capabilities:

host:
properties:

num_cpus: 1.0
mem_size: 1 GB
publish_ports:

- protocol: tcp
source: 2546

Listing 2: TOSCA blueprint for the provisioning of the
Pipeliner docker container

even dashboard cameras mounted on vehicles), which we refer
to as Edge devices.

Coming back to the need of the police to identify a vehicle
that is moving in a wide area, the solution we propose aims
to exploit the capability of multiple urban Edge devices to
capture images from the road in real time and to also run light
elaboration on these images. Let us analyze some possible
options. Letting Edge devices to stream all captured data to
the Cloud where an ALPR system runs is doable but expensive
from the bandwidth occupation point of view. On the contrary,
letting the Edge devices do both image capturing and license
plate recognition might not be viable, as it fails to guarantee
service quality - some devices might not be able to bear the
computing burden - and would still require that evidences
(captured images containing license plates) be streamed to
a central storage owned by the administration. Analyzing
the image processing done by ALPR systems, a pipeline of
smaller and lighter tasks is clearly identifiable: 1) frame wise,
identification of a vehicle using an car detection model; 2) on
the frame where vehicles have been identified, identification of

the license plate using a license plate detection model; 3) on
frames containing license plates, recognition of the displayed
numbers.

Therefore, we propose that Edge devices capture and elab-
orate video streams in real-time, seeking for images that
contains license plates (step 1 and 2). Such images would
then be sent over to a remote computing infrastructure (e.g.,
the Cloud) owned by the city administration, where the final
step of numbers recognition (step 3) is run. With this approach,
data are therefore sent to the Cloud only when a license plate
is detected, limiting network congestion and the transfer of
sensitive data that are not useful for the use case.

For the test purpose, we will make use of an existing ALPR
service publicly available on the web7, which we split in two
smaller services and dockerized to fit out Edge/Cloud setting.
We remark that the objective of the test is not to analyze
the performance of the ALPR solution, but rather to prove
the capability of the orchestrator to easily provision a multi-
component application in the cloud continuum.

The license plate detection model service (LPD) is built on
top of a writer-reader concurrency problem. The writer is a
RESTful server implemented in Python 3.10 using the Flask
web framework. The server has a frame upload POST API
that stores the image in the file system for further elaboration.
The reader accesses the file system and gives the frame in
input to a YOLO model able to detect and square a license
plate. The output of the model is sent over a message broker
(i.e., RabbitMQ). The license plate number recognition service
(LPNR) subscribes to the message broker for receiving the
frame and starting a thread that performs optical character
recognition (OCR). This is implemented in Python 3.10 and
easyocr, which supports more than 80 languages.

We used our orchestrator to enforce the provisioning of the
just described ALPR application in a computing continuum
environment that includes one Edge machine and one private
Cloud Infrastructure. We assume that: i) the Cloud infras-
tructure runs the Openstack framework; ii) the orchestrator
is deployed in a VM instantiated in the Cloud; iii) an Edge
machine is available in an administrative domain different than
the Cloud and is equipped with the Mesos/Marathon runtime.
There follows a description of all steps we took for packing
up the application and provisioning it through the orchestrator.

Preliminarily to the provisioning step, we prepared the
required orchestrator input. First, we backed the two docker
images representing the LPD and the LPNR respectively.
To support the data communication between the two Docker
containers (i.e., stream of images flowing from LPD to LPNR),
we lean on a RabbitMQ message broker, whose docker
implementation is already available in the public repository
(Software Artifact Repository shown in Figure 1) that is co-
located on the orchestrator premises. Such a choice enables an
easy scale of the testbed in the case that more Edge instances
join the scenario. The reader may refer to this git repo8 to

7https://github.com/mftnakrsu/Automatic Number Plate Recognition
YOLO OCR

8https://github.com/ahmadalkhansa/license-plate-detection-microservice.git

topology_template:
inputs:

#....omitted code.....#
rabbitmq-username:

type: string
description: RabbitMQ username
required: yes

rabbitmq-password:
type: string
description: RabbitMQ password
required: yes

rabbitmq-queue:
type: string
description: RabbitMQ queue
required: yes

rabbitmq-host:
type: string
description: RabbitMQ broker
required: yes

#....omitted code.....#
node_templates:
lpd:
type: tosca.nodes.indigo.Container.

Application.Docker.Marathon
properties:
force_pull_image: no
environment_variables:
RUSER: { get_input: rabbitmq-username }
RPASSWORD: { get_input: rabbitmq-password }
RHOST: { get_input: rabbitmq-host }
RPORT: { get_input: rabbitmq-port }
RQUEUE: { get_input: rabbitmq-queue }

uris: []
artifacts:
image:
file: iotwins-harbor.cloud.cnaf.infn.it/

infn/infn-lpd-rabbitmq:1.1
type: tosca.artifacts.Deployment.

Image.Container.Docker
requirements:
- host: lpddockerruntime

lpddockerruntime:
type: tosca.nodes.indigo.Container.

Runtime.Docker

Listing 3: TOSCA blueprint for the provisioning of the LPD
docker component

check out how the LPD docker image was configured to
interface with the message broker.

Once backed up, the two images were uploaded to the public
repository. Next, we defined the TOSCA blueprints of the two
components. In Listing 3, we show an excerpt of the LPD’s
TOSCA blueprint.

We remark that the repository already contains the
Pipeliner, a Docker component that supports the deployment
and pipelining of components when there is the need of
provisioning distributed components across different domains
(which is the case we are addressing, indeed). To trigger the
application provisioning, we just needed to submit a request
to orchestrator’s Front end. We opted to submit the request
via the orchent client, and provided it with proper parameters
and the TOSCA blueprints of the application components. In
listing 4 we report the shell script to invoke the provisioning
request via the orchent tool with the mentioned input. The
script is requesting the provisioning of the LPD-RabbitMQ-
LNPR pipeline. The urls set of parameters specify the TOSCA
blueprints of components to be deployed as well as the deploy-
ment order. The groups parameters set indicate the deployment
location of components listed in the urls. According to these

orchent depcreate pipeliner-v-1-0.yaml '{
"params": "{

"rabbitmq-username":"test",
"rabbitmq-password":"test",
"rabbitmq-queue":"test"}",

"urls":"{
"rabbitmq-v-1-7.yaml",
"lpd-rabbitmq-v-1-1.yaml",
"lnpr-rabbitmq-v-1-1.yaml"}",

"groups":"{
"TB08/cloud",
"TB08/edge",
"TB08/cloud"}"

}'
-g TB08/cloud

Listing 4: TOSCA blueprint for the provisioning of the LPD
docker component

provisioning configurations, RabbitMQ will be deployed in
the Cloud, afterwards LPD will be deployed in the Edge and
finally LNPR will be deployed in the Cloud. Parameters in the
params sections are used set up the RabbitMQ instance and to
configure LPD and LNPR to exchange data via the RabbitMQ.
The provisioning strategy can be easily tuned by playing with
the mentioned parameters. For instance, if the user wanted to
deploy all components in the Edge, they would just need to
change the groups parameters configuration into the following:

”groups” : {”T B08/edge”,”T B08/edge”,”T B08/edge”}
In a similar way, they could instruct the Pipeliner to deploy

all components in the Cloud. In the Figure 2, we depicted a
UML sequence diagram that captures the provisioning steps
triggered by the script shown in listing 4. Upon the reception
of the provisioning request, the orchestrator executes the
deployment of the Pipeliner service which, in its turn, issues
as many deployment requests as the number of input TOSCA
blueprints. We remark that requests issued by the Pipeliner are
submitted to the orchestrator via the REST API offered by the
Front End.

To test that that the provisioning terminates successfully,
i.e., all components were deployed and configured in a correct
way, we stimulated the ALPR application with a stream
of sample images. The LPD correctly identified the images
containing license plate objects and published them to the
RabbitMQ broker. The latter delivered the images to the LNPR
that eventually managed to read the license plate numbers
depicted within.

V. CONCLUSIONS AND FUTURE WORK

The Cloud continuum is a complex computing context
which includes computing resources from the Cloud, Edge
and IoT environments and is built on top of an aggregation
of network infrastructures and services that such environments
can offer. In spite of the many opportunities and advantages,
there are several challenges posed by the continuum paradigm,
of which the operation cost seems to be the toughest one.
In this paper we have proposed a service orchestrator that
takes advantage of the cloud continuum features and tries

INDIGO Paas

Orchestrator

Mesos-powered

Edge Node

Openstack

IaaS

User

provisioning_request (Pipeliner_blueprint, prov_params)

instantiateVM()

RabbitMQ_params.

VM_URL

Docker-enabled
VM

create

deploy(Pipeliner)

Pipeliner_URL
Pipeliner

end_process

create

success(RabbitMQ_params)

provisioning_request(RabbitMQ,Cloud,callback_URL)

deploy(RabbitMQ)

Rabbit_MQ_params

success()

provisioning_request(LPD,RabbitMQ_params, Edge,callback_URL)

deploy(LPD)

LPD_URL

success()

provisioning_request(LNPR, RabbitMP_params, Cloud,callback_URL)

deploy(LNPR)

LNPR_URL

LPD_URL

LNPR_URL

Fig. 2. UML sequence diagram of the application provisioning

to cut the costs for the provisioning of composite applica-
tions. In the future, we will provide the orchestrator with
the intelligence to sense the available computing environment
and to autonomously pick the best provisioning scheme to
enforce according to the level of service quality claimed by
the application owner.

REFERENCES

[1] The IoTwins consortium, “The IoTwins project.”
https://www.iotwins.eu/, 2019 - 2022. Last accessed in Dec 2022.

[2] OASIS, “TOSCA Simple Profile in YAML Version
1.3.” http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html, Feb. 2020.
Last accessed in Dec 2022.

[3] O. Tomarchio, D. Calcaterra, and G. D. Modica, “Cloud resource
orchestration in the multi-cloud landscape: a systematic review of
existing frameworks,” Journal of Cloud Computing, vol. 9, no. 1, 2020.

[4] T. Kiss, P. Kacsuk, J. Kovacs, B. Rakoczi, A. Hajnal, A. Farkas,
G. Gesmier, and G. Terstyanszky, “MiCADO—Microservice-based
Cloud Application-level Dynamic Orchestrator,” Future Generation
Computer Systems, vol. 94, pp. 937 – 946, 2019.

[5] E. D. Nitto, P. Matthews, D. Petcu, and A. Solberg, Model-Driven Devel-
opment and Operation of Multi-Cloud Applications: The MODAClouds
Approach. 2017.

[6] D. Petcu, B. D. Martino, S. Venticinque, M. Rak, T. Máhr, G. E.
Lopez, F. Brito, R. Cossu, M. Stopar, S. Šperka, and V. Stankovski,
“Experiences in building a mOSAIC of clouds,” Journal of Cloud
Computing: Advances, Systems and Applications, vol. 2, May 2013.

[7] E. Kamateri, N. Loutas, D. Zeginis, J. Ahtes, F. D’Andria, S. Bocconi,
P. Gouvas, G. Ledakis, F. Ravagli, O. Lobunets, and K. A. Tarabanis,
“Cloud4SOA: A Semantic-Interoperability PaaS Solution for Multi-
cloud Platform Management and Portability,” in Service-Oriented and
Cloud Computing, ESOCC 2013 (K.-K. Lau, W. Lamersdorf, and
E. Pimentel, eds.), pp. 64–78, 2013.

[8] O. Tomarchio, D. Calcaterra, G. Di Modica, and P. Mazzaglia, “Torch:
a tosca-based orchestrator of multi-cloud containerised applications,”
Journal of Grid Computing, vol. 19, no. 1, 2021.

[9] A. Al-Dulaimy, C. Sicari, A. V. Papadopoulos, A. Galletta, M. Villari,
and M. Ashjaei, “Tolerancer: A fault tolerance approach for cloud man-
ufacturing environments,” in 2022 IEEE 27th International Conference
on Emerging Technologies and Factory Automation (ETFA), pp. 1–8,
2022.

[10] Cloudify, “Cloudify.” http://cloudify.co/, 2019. Last accessed on Dec
2022.

[11] OpenStack, “OpenStack Heat.” https://wiki.openstack.org/wiki/Heat,
2016. Last accessed on Dec 2022.

[12] HashiCorp, “HashiCorp Terraform.” https://www.terraform.io/, 2019.
Last accessed on Dec 2022.

[13] N. Saif, N. Ahmmed, S. Pasha, M. S. K. Shahrin, M. M. Hasan, S. Islam,
and A. S. M. M. Jameel, “Automatic license plate recognition system for
bangla license plates using convolutional neural network,” in TENCON
2019 - 2019 IEEE Region 10 Conference (TENCON), pp. 925–930,
2019.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition, vol. 2016-December, pp. 779–788, 2016.

[15] R. Chowdhury, F. Rabby, M. S. Rahman, and M. A. Razzak, “Iden-
tification of unauthorized vehicles by license plate recognition through
image processing,” in 2021 5th International Conference on Electronics,
Materials Engineering & Nano-Technology (IEMENTech), pp. 1–4,
2021.

[16] A. Galletta, A. Ruggeri, M. Fazio, G. Dini, and M. Villari, “Mesmart-
pro: Advanced processing at the edge for smart urban monitoring and
reconfigurable services,” Journal of Sensor and Actuator Networks,
vol. 9, no. 4, 2020.

[17] A. Firasanti, T. E. Ramadhani, M. A. Bakri, and E. A. Zaki Hamidi,
“License plate detection using ocr method with raspberry pi,” in 2021
15th International Conference on Telecommunication Systems, Services,
and Applications (TSSA), pp. 1–5, 2021.

[18] A. Costantini, G. Di Modica, J. C. Ahouangonou, D. C. Duma,
B. Martelli, M. Galletti, M. Antonacci, D. Nehls, P. Bellavista, C. De-
lamarre, and D. Cesini, “Iotwins: Toward implementation of distributed
digital twins in industry 4.0 settings,” Computers, vol. 11, no. 5, 2022.

[19] A. Borghesi, G. Di Modica, P. Bellavista, V. Gowtham, A. Willner,
D. Nehls, F. Kintzler, S. Cejka, S. R. Tisbeni, A. Costantini, M. Galletti,
M. Antonacci, and J. C. Ahouangonou, “Iotwins: Design and implemen-
tation of a platform for the management of digital twins in industrial
scenarios,” in Proceedings - 21st IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing, CCGrid 2021, pp. 625–633,
2021.

[20] OMG, “Business Process Model and Notation (BPMN 2.0).”
http://www.omg.org/spec/BPMN/2.0/, Jan. 2011. Last accessed on Dec
2022.

[21] The OpenInfra Foundation, “Openstack.” https://www.openstack.org/,
2010. Last accessed in Dec 2022.

[22] The Apache Software Foundation, “Apache Mesos.”
https://mesos.apache.org/, 2009. Last accessed in Dec 2022.

[23] The Apache Software Foundation, “Apache Marathon.”
https://mesosphere.github.io/marathon/, 2009. Last accessed in
Dec 2022.

[24] The Apache Software Foundation, “Apache Chronos.”
https://mesos.github.io/chronos/, 2009. Last accessed in Dec 2022.

	Copertina_postprint_IRIS_UNIBO
	m74396-di_modica paper

