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Abstract—Nanodrone swarm is formulated by multiple light-
weight and low-cost nanodrones to perform the tasks in very
challenging environments. Therefore, it is essential to estimate
the relative position of nanodrones in the swarm for accurate and
safe platooning in inclement indoor environment. However, the
vision and infrared sensors are constrained by the line-of-sight
perception, and instrumenting extra motion sensors on drone’s
body is constrained by the nanodrone’s form factor and energy-
efficiency.

This paper presents the design, implementation and evaluation
of RFDrone, a system that can sense the relative position
of nanodrone in the swarm using wireless signals, which can
naturally identify each individual nanodrone. To do so, each light-
weight nanodrone is attached with a RF sticker (i.e., called RFID
tag), which will be localized by the external RFID reader in the
inclement indoor environment. Instead of accurately localizing
each RFID-tagged nanodrone, we propose to estimate the relative
position of all the RFID-tagged nanodrones in the swarm based
on the spatial-temporal phase profiling. We implement an end-
to-end physical prototype of RFDrone. Our experimental results
show that RFDrone can accurately estimate the relative position
of nanodrones in the swarm with average relative localization
accuracy of around 0.95 across x, y and z axis, and average
accuracy of around 0.93 for nanodrone swarm’s geometry esti-
mation.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) become popular for
performing the severe tasks (e.g., rescuing lives during the
disasters [59] and package delivery [46]), enhancing the per-
formance of cellular network [38, 13] and proliferating the
entertainment industry [21], which exhibits the exceptional
agility and flexibility of the drones [52]. For example, Intel,
SKYMAGIC [4], Verity Studios and ElevenPlay have created
dazzling drone shows, where each drone is equipped with the
LED to display the animations in the sky. However, these
UAVs need to be instrumented with different kinds of sensors
atop the UAVs to sense the environment and assist the path
planning for optimal navigation and safe platooning. The drone
is usually equipped with IMU sensors to track the drone
orientation and flying path, which is not accurate due to the
drift of these IMU sensors [23]. Recently, SafetyNet [25] uses
four GPS receivers atop the drone to track the drone orientation
in the outdoor scenario. Note, these bulky and power-hungry
sensors hinder the proliferation of drone’s deployment and
development in the cluttered environment.

Recently, the lightweight and small form-factor nanodrone
(e.g., quadrotor or quadcopter) is designed, unlike the large
industrial drones (e.g., Amazon drones and DJI drones have
orders of magnitude larger size), which can just fit in our

Fig. 1: The nanodrone with
size of 70x48x35mm, fitting
in the palm.
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Fig. 2: Example of nan-
odrone swarm with four
nanodrones flying in the 3D
space.

palm as shown in Fig. 1. The nanodrone is as small as
22x22x20 mm (e.g., Mini Drone FY804 [5]) and 70x48x35
mm (e.g., Holyton HT02 Mini Drone [6]), which can enable
it to traverse through the small, tight and narrow space such as
plant canopies and crevices to perform the tasks. So, we can
use nanodrones to perform the sensing tasks in some severe
environments (e.g., forests and disaster sites), which cannot be
easily accessible by humans. However, we cannot instrument
different sensors on the nanodrone due to its small size and
limited power, thereby the ability of nanodrone performing
the tasks is limited. Inspired by the concept of crowdsourc-
ing [12], multiple nanodrones can formulate a nanodrone
swarm for emergency response and hazard detection in urban
settings [31]. It is necessary for the nanodrone swarm to
formulate an accurate geometry of swarm pattern for safe and
accurate platooning [14], such that the sensing tasks can be
efficiently performed.

To sense the relative position of nanodrones in the swarm
as shown in Fig. 2, the straightforward idea is to use the
vision-based sensors ( e.g., stereo cameras) and ranging-based
LiDAR sensors [30]. However, these advanced sensors cannot
work properly in non-line-of-sight settings and are not cost-
effective [32], especially in the presence of airborne obscurants
(e.g., dust, fog and smoke). Alternatively, RF-based sensing
techniques have been widely developed in indoor localization,
which can be leveraged to sense the relative position of
nanodrones in the swarm. But, it is not possible to instrument
these bulky and power-hungry RF radios or motion sensors on
the nanodrone.
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Fig. 3: The nanodrone is
moving from left to right in
front of the reader’s antenna.
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Fig. 4: Phase readings over
time, when the RFID-tagged
nanodrone is moving from
left to right in front of the
reader’s antenna.

As the proliferation of Radio Frequency IDentification
(RFID) technology, they are widely used in different kinds
of sensing tasks such as indoor localization [33, 56, 35] and
gesture recognition [58, 50, 48, 61]. The commodity passive
RFID tags are battery-free, ubiquitous, low-cost and small
form-factor, enabling them to be the good fit to enhance the
nanodrone swarm applications. Therefore, we can just attach
the commodity passive RFID tag to each nanodrone in the
swarm, such that we can sense the RFID-tagged nanodrone’s
relative position in the swarm by analysing the backscattered
signals from each RFID tag. However, simply applying the
state-of-the-art RFID-based localization techniques [56, 33,
35] cannot accurately localize each individual RFID-tagged
nanodrone in the swarm over 3D space without any hardware
modifications.

In this paper, we propose RFDrone, a system that can
accurately sense the relative position of the nanodrones in the
swarm, using commodity passive RFID tags. Specifically, we
attach commodity passive RFID tag to each of nanodrones in
the swarm. Then, the relative position of the naodrones in the
swarm is sensed through the spatial-temporal phase profile of
the backscattered signals from the RFID-tagged nanodrone.

Our main idea is to leverage the linear relationship be-
tween phase readings and the reader-tag distance. The phase
readings will decrease/increase as the reader-tag distance
decreases/increases. So, when the RFID-tagged nanodrone
moves from left to right in front of the reader’s antenna
as shown in Fig. 3, there is a trough zone in the phase
profile as shown in Fig. 4. Thus, we can estimate the relative
position of RFID-tagged nanodrones based on the trough
zone of spatial-temporal phase profile. Specifically, in the
3D space, the relative position along x axis is estimated
based on the time ordering of trough’s lowest point, and the
relative position along y axis is estimated based on the phase
changing rate [22, 49]. However, this does not work in our
scenario, since the above approach assumes all the tags have
the same height along z axis. Moreover, we cannot predict
the relative position of nanodrones along z axis based on
the above approach. Different from the scenarios proposed in
STPP [49] and Taggo [22], the RFID-tagged nanodrone swarm
can fly around in the 3D space, which can be harnessed for

relative position estimation. Specifically, we can leverage the
time ordering of trough’s lowest point for relative position
estimation, as the nanodrone swarm flies around.
Contributions. We prototype RFDrone with commodity pas-
sive RFID tags using software defined USRP N210 as the
RFID reader, where we just extract the backscattered channel
to profile the spatial-temporal phase readings for each RFID-
tagged nanodrone in the swarm. Our experimental results
show the average relative localization accuracy of around 0.95
across x, y and z axis, and average accuracy of around 0.93
for nanodrone swarm’s geometry estimation. We discuss the
limitation and future work of RFDrone in Sec. ??. RFDrone’s
contributions are three-fold as follows:

• To the best of our knowledge, RFDrone is the first system
that can accurately sense the relative position of the
nanodrone in swarm with commodity passive RFIDs in
the inclement indoor environment.

• Second, we propose to estimate the relative positions of
the nanodrones in the swarm based on spatial-temporal
phase profiling.

• At last, we built and implemented the RFDrone with
commodity passive RFID system and demonstrated its
ability and accuracy to sense the relative position of
nanodrones in the swarm in cluttered indoor environment
and outdoor environment.

In what follows, we first introduce the related work in
Sec. II. Then, we present the overview of RFDrone’s design
in Sec. III. The details of RFDrone’s design will be shown
in Sec. IV, which will be followed by implementation and
evaluation in Sec. V and experimental results in Sec. VI.
At last, we present the limitations and future development
opportunities of RFDrone in Sec. ??, and conclude our paper
in Sec. VII.

II. RELATED WORK

A. RFID-Based Robotic Applications

Radio Frequency IDentification (RFID) is a mature tech-
nology that has been widely used in retail, manufacturing and
warehousing [56, 55, 57, 58, 54, 27] for identification due to
its low cost, small form factor and batter-free. Recently, we
notice that the advances in RFID localization have proliferated
its applications in robotic grasping [11, 10, 42, 26, 29, 18,
16, 19, 17] and localization [57, 34, 33, 47, 49]. However,
these systems only focus on one robot’s manipulation. In
contrast, RFDrone demonstrates, for the first time, how spatial-
temporal phase profiling of backscattered signals can be
leveraged to achieve relative localization of nanodrone swarm.
More importantly, we cannot simply apply the existing RFID-
based sensing techniques to accurately localize each individual
nanodrone in the swarm over the 3D space without hardware
modifications on RFID reader or tag.

B. Drone Swarm Tracking and Localization

Nanodrone swarm can leverage multiple nanodrones’ capa-
bilities to improve the overall system’s resilience and acceler-
ate the task performing in aerial photography, topography and



RFID readerTag

Fig. 5: The commodity passive RFID system consists of reader
and RFID tags, which is compatible with EPC Gen2 standard.

delivery [9, 36, 24, 40, 36, 8, 39, 41]. To maximum embrace
the nanodrone swarm’s capability, it is important to recognize
the relative position of nanodrones in the swarm. The straight-
forward idea is to use vision or infrared sensors to sense the
relative positions of drone swarm [45, 44, 43, 37, 60, 15].
However, these vision or infrared sensors are constrained by
the line-of-sight perception. Recent studies [51, 20, 53, 25]
mount the motion sensors on the robot to sense the relative po-
sition among the drones in the swarm. However, it is impossi-
ble to instrument these bulky and power-hungry sensors on the
nanodrone with Size, Weight and Power (SWaP) constraints. In
contrast, RFDrone uses low-cost, battery-free, ubiquitous and
small form-factor RFID tags to sense the relative positions
among the nanodrones in the swarm by profiling the spatial-
temporal phase readings from backscattered signals.

III. RFDRONE’S OVERVIEW

In this section, we present the overview of our proposed
RFDrone. As shown in Fig. 6, RFDrone consists of three
main modules: data collection module, spatial-temporal phase
profiling module and relative positioning for nanodrone swarm
module.

When the nanodrone swarm flies around in the 3D space, the
reader will receive the backscattered signals from each RFID-
tagged nanodrone. The extracted phase readings from the
backscattered signals will be preprocessed with the Savitzky-
Golay filter to eliminate the noisy points. The preprocessed
phase readings over time will be used to create the spatial-
temporal phase profile. Specifically, we will create three
spatial-temporal phase profiles, when the nanodrone swarm
flies along x, y and z axis. Note that each spatial-temporal
phase profile will have a trough zone due to the relationship
between the phase and reader-tag distance, which will be
leveraged to predict the relative positions of nanodrones in
the swarm. After we obtain the spatial-temporal phase profiles
along x, y and z axis, we need to detect the trough zone in the
profile. To do so, we use the algorithm proposed in Taggo [22]
to detect the trough zone with only one run of scanning the
phase profile, which is proved to be more efficient than the
time-consuming Dynamic Time Warping (DTW) [49]. Then,
we can obtain the time ordering of the trough’s lowest point,
which can be leveraged to predict the relative position of the
nanodrones in the swarm.

Data Collection Module

Raw phase readings

Noise filtering

Spatial-Temporal Phase 
Profiling Module

Spatial-temporal 
phase profile 

Relative Positioning for 
Nanodrone Swarm Module

Relative position 
ordering

Trough zone detection

X
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Z
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Fig. 6: RFDrone’s workflow operation.

In the following section, we will illustrate RFDrone’s design
in more details. First, we will show the relative position
estimation across x, y and z axis (§ IV-A) for the nanodrones in
the swarm. Then, we create the spatial-temporal phase profiles
using the phase readings (§ IV-B). At last, we will present
relative positioning for nanodrone swarm based on the spatial-
temporal phase profiles (§IV-C).

IV. RFDRONE’S DESIGN

In this section, we will present RFDrone’s design in details.
We start from the relative position estimation of nanodrones
in the swarm along x, y and z axis.

A. Relative Position Estimation of Nanodrones in 3D Space

To find the relative position of nanodrones in the swarm,
we can use the linear relationship between the phase of
backscattered signals and the reader-tag distance as follows:

θ = (
2π ∗ 2d
λ

+ µ) mod 2π (1)

where θ is the phase of backscattered signals, λ is the
wavelength, d is the distance between reader and tag and µ
indicates the phase shift due to the noise. As illustrated in the
introduction section, the phase profile will exhibit a trough
zone when the RFID-tagged nanodrone moves from left to
right in front of the reader’s antenna. Therefore, the relative
position of two nanodrones along x axis can be estimated
based on the time when the lowest point of trough zone has
been achieved. To see this clearly, we do the experiments
with a nanodrone swarm consisting of two nanodrones. The
nanodrone 1 and 2 move from left to right in front of reader’s
antenna along the x axis as shown in Fig. 7, where nanodrone
1 is at right of nanodrone 2. So, nanodrone 1 is closer to
reader’s antenna in comparison to nanodron 2. If we plot the
phase profile of RFID-tagged nanodrone 1 and 2 as shown
in Fig. 8, we can see two trough zones in the phase profiles
of nanodrone 1 and 2. Moreover, the lowest point of trough
in the phase profile from nanodrone 1 will be at the left of
lowest point of trough in the phase profile from nanodrone 2.
This is because nanodrone 1 is closer to the reader’s antenna
in comparison to the nanodrone 2. Therefore, we can predict
the relative position of nandorone 1 and 2 based on the time
ordering of the lowest point of trough in their phase profiles.

After we figure out the relative position of two nanodrones
along x axis, the problem becomes how we can predict the
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Fig. 7: Two nanodrones are
moving from left to right in
front of the reader’s antenna
along x axis.
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Fig. 8: Spatial and temporal
phase profile from two nan-
odrones, indicating the rela-
tive position of them along x
axis based on the time when
the trough’s lowest point has
been achieved.
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Fig. 9: Two nanodrones are
moving from left to right in
front of the reader’s antenna
along x axis.
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Fig. 10: Spatial and temporal
phase profile from two nan-
odrones, indicating the rela-
tive position of them along
y axis based on the value of
trough’s lowest point.

relative position of nanodrones in the swarm along y axis. To
do so, we put two nanodrones in front of reader’s antenna
with same x coordinates and different y coordinates (e.g., y
coordinate of nanodrone 1 is smaller than nanodrone 2) as
shown in Fig. 9, where two nanodrones will move along x
axis. Obviously, nanodrone 1 is closer to the reader’s antenna.
Then, we plot the phase readings of two nanodrones over
time as shown in Fig. 10. Since two nanodrones have the
same x coordinates, we cannot predict their relative positions
based on time ordering of trough’s lowest point in the phase
profile. As we can see, the lowest points of trough from
the phase profiles of nanodrone 1 and 2 will be achieved
simultaneously. However, we can see that the lowest point of
trough in the phase profile from nandrone 1 is smaller than the
lowest point of trough in the phase profile from nanodrone 2.
This is because nanodrone 1 is closer to the reader’s antenna.
Mathematically, in this scenario, the phase changing rate over
time can be expressed in the following equation as illustrated
in Taggo [22]:

Rp =
dθ

dt
=

4π

λ

v2t+ vx0√
(x0 + vt)2 + y20

(2)

where v is the moving speed of the RFID-tagged object, λ is
the signal wavelength and (x0, y0) indicates the coordinates of
the object. As we can see, the smaller coordinate indicates the
larger phase changing rate, which is in accord with our above
observation in the experiment. Therefore, we can predict the
relative position of nanodrones along y axis based on the value
of trough’s lowest point (or phase changing rate) in the phase
profile.

Note that the above discussion assumes that the nandorones
in the swarm have the same height along z axis. To predict
the relative position of nanodrones in 3D space, we need
to consider different heights of nanodrones along z axis.
Fortunately, the time ordering for relative position estimation
along x axis will not be affected by the different heights of
the nanodrones along z axis, since the nanodrone closer to the
reader’s antenna along x axis will always achieve the lowest
point of the trough in the phase profile earlier than the other

Nanodrone 1

Y

Z

Antenna

Nanodrone 2

d2

d1 h

Fig. 11: Nanodrone 1 is closer to the reader’s antenna along
y axis in comparison to naodrone 2. Both of nanodrone 1 and
2 have the same x coordinate. However, the distance between
nanodrone 1 and reader’s antenna (i.e., d1) is larger than the
distance between nanodrone 2 and reader’s antenna (i.e., d2)
due to the larger height (i.e., h) of nanodrone 1 along z axis.

nanodrones. However, the different height of nanodrone along
z axis will affect estimation of nanodrone’s relative position
along y axis. As shown in Fig. 11, let’s assume two RFID-
tagged nanodrones have the same x coordinates. Nanodrone 1
has smaller y coordinate and larger z coordinate in comparison
to the nanodrone 2. In this case, if we plot the phase readings
of two nanodrones and use the above discussed approaches
to estimate the nanodrone’s relative positions along y axis,
we will disorder their relative position along y axis based on
the value of trough’s lowest point (or phase changing rate).
This is because the distance (i.e., d1) between nanodrone 1
and reader’s antenna is larger than distance (i.e., d2) between
nanodrone 2 and reader’s antenna due to the larger height (i.e.,
h) of nanodrone 1.

Since our goal is to estimate the relative position of nan-
odrones along x, y and z axis in 3D space, the above discussion
indicates that we cannot predict the relative position along
y axis without considering the height of nanodrones along z
axis. Moreover, we need to predict the relative position of the
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Fig. 12: Raw phase readings
over inventory rounds, which
includes a trough zone from
100 to 150 inventory rounds.
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Fig. 13: Phase readings over
inventory rounds after we ap-
ply Savitzky-Golay filter on
raw phase readings to elimi-
nate the noisy points.

nanodrones along z axis. To this end, we profile the spatial-
temporal phase along x, y and z axis separately to achieve
relative position estimation of the nanodrones in the swarm.

B. Spatial-Temporal Phase Profiling

To predict the relative positon of nanodrones in the swarm
along x, y and z axis, the nanodrone swarm will fly along x, y
and z axis to obtain the time ordering of trough’s lowest point
along x , y and z axis in the spatial-temporal phase profile.
When the nanodrone swarm is flying along a specific axis,
the time ordering of trough’s lowest point just depends on the
nanodrone’s coordinates along that axis.

However, the phase readings of backscattered signals is
noisy due to the cluttered environment and nanodrone’s body
vibration. Thus, we need to preprocess the raw phase readings
to obtain the clean spatial-temporal phase profile. To do so,
we apply the Savitzky-Golay filter on the raw phase readings
to mitigate the noisy points, which will help us to detect the
trough zone and recognize its lowest point for relative position
estimation. As shown in Fig. 12, we show the raw phase
readings over time, when RFID-tagged nanodrone is flying
along x axis in front of reader’s antenna. After we apply the
Savitzky-Golay filter on the phase readings, we can see the
smooth phase readings over time as shown in Fig. 13.

C. Relative Positioning for Nanodrone Swarm

After we obtain the spatial-temporal phase profile for each
nanodrone in the swarm, we need to detect the trough zone
for time ordering of trough’s lowest point that can help us to
relatively localize the position of nanodrones.

1) Trough Zone Detection.: It is important to efficiently
and accurately detect the trough zone in the spatial-temporal
phase profile for relative localization. The straightforward idea
is to use Dynamic Time Warping (DTW) to compare the
similarity of the obtained spatial-temporal phase profile with
the referenced trough zone, which is illustrated in STPP [49].
However, DTW algorithm is time consuming. The computa-
tional complexity of DTW algorithm is O(NMw2 ), where w
denotes the size of sliding window. N and M denote the
length of measured and referenced phase profile respectively.
Let’s assume we have n nanodrones in the swarm. To detect
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Fig. 14: Trough zone detec-
tion with the sliding window
on phase readings over inven-
tory rounds.
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Fig. 15: Phase readings over
inventory rounds after we
splice the adjacent parts to-
gether.

all the trough zones, the overall computational complexity
is O( 3nNMw2 ), since we need to predict the relative position
along x, y and z axis. As we can see, the high computational
complexity will introduce high processing latency. So, we use
the approach proposed in Taggo [22] to achieve fast trough
zone detection with computational complexity of O(N), where
N is the length of the phase profile. The main idea is to
use a sliding window to go over the phase profile once as
shown in Fig. 14, thereby we can leverage the structure of the
phase profile for trough zone detection. The trough zone can
be found between two consecutive jumping points. Since we
just go over the phase profile once, the overall computational
complexity is O(3(nN)).

Algorithm 1 Relative Positioning Algorithm

Require:
• Commodity RFID passive system and nanodrone

swarm;
Ensure:

• The relative position of nanodrones in the swarm;
1: for i ∈ {x, y, z} do
2: Profiling the spatial-temporal phase profiles along i

axis with Equation (1);
3: Detecting and splicing trough zones with Equation (3);
4: Predicting the relative positions of nanodrones with

Equation (4);
5: end for
6: return The relative positions of the nanodrones in the

swarm;

2) Relative Localization.: As we can see, the spatial-
temporal phase profile consists of one trough zone and mul-
tiple discontinuous parts due to the modular operation. To
achieve fast and accurate relative localization, we splice the
discontinuous parts together with the trough zone as shown in
Fig. 15 with the flowing equation [22]:

θi =


θi −

⌈
θi−θi−1

2π

⌉
2π, θi − θi−1 > π

θi +
⌈
θi−θi−1

2π

⌉
2π, θi − θi−1 < −π

θi, otherwise

(3)



RFID tag

Fig. 16: Commodity passive
RFID tagged nanodrone.

Fig. 17: Nanodrone
swarm. There are five
nanodrones in the swarm.
Three Holyton HT02 Mini
Drones [6] and two Masefu
Mini Drones [7]

where θi indicates the i-th phase value. After we obtain
the spliced phase reading over time, we can detect the time
ordering of the trough’s lowest point to predict the relative
position of nanodrones in the swarm. To detect the trough’s
lowest point, we just need to go over the spliced trough zone
once using the following equation:

dix = t, if θt < θt−1 and θt < θt+1 (4)

where dix denotes the time when the trough’s lowest point is
achieved for nanodrone i flying along x axis. Note, dix is the
global smallest point due to the trough shape of spliced phase
profile. To predict the relative position of the nanodrones along
x axis, we can compare the value of dix, i ∈ {1, 2, ..., n}. The
smaller value of dix is, the closer nanodrone is to the reader’s
antenna.

We summarize the procedure of relative positioning algo-
rithm in 1, which contains three main steps. The first step is
profiling the spatial-temporal phase profile. Then, we detect
and splice the trough zone together with the adjacent parts
in the profile. At last, we can predict the relative position of
nanodrones in the swarm.

V. IMPLEMENTATION AND EVALUATION

In this section, we present the general implementation and
evaluation details of RFDrone’s prototype. The details for the
specific experiments and the corresponding results will be
illustrated in the next section.
RFID Reader. We adopt USRP N210 radio as the RFID reader
developed in the prior work [28], which is instrumented with
SBX daughter board to interrogate the tags. It is compatible
with FCC regulation using EPC Gen2 standard for UHF RFID
communication at frequency band between 902-928MHz. The
reader instrumented with the directional antennas will activate
and interrogate the tags using slotted ALOHA protocol. During
experiments, we will just extract the channel state information
(specifically, the phase readings over time) for nanodrone
relative localization in the swarm.
RFID Tag. We use the general-purpose commodity passive
RFID tags (e.g., Alien Squiggle RFID tag ALN-9640 [1],
ALN-9762 [3] and ALN-9662 [2]) to evaluate RFDrone’s
performance. Each tag is low-cost with price of around 5 cents,
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Fig. 18: When the RFID-tagged nanodrone rotates/flips, the
signal phase significantly changes. However, when the RFID-
tagged nanodrone holds its altitude, the signal phase maintains
constant.

which will enable the ubiquitous sensing.
Nanodrone Swarm. The nanodrone swarm consists of multi-
ple nanodrones. In our prototype, we use up to five nanodrones
(e.g., three Holyton HT02 Mini Drones [6] and two Masefu
Mini Drones [7]) to formulate a nanodrone swarm as shown
in Fig. 17, and each nanodrone is attached with one RFID
tag as shown in Fig. 16. Each individual nanodrone has three
speed modes: low speed mode of around 0.15m/s, medium
speed mode of around 1m/s and high speed mode of around
2m/s. During the experiments, each individual nanodrone in
the swarm is controlled by the remote controller. The adjacent
nanodrones will be separated by half wavelength away to avoid
the tag-tag coupling effect for the safe platooning.
Experimental Settings. The reader will connect with the
PC host (i.e., HP laptop running Ubuntu 16.04 operating
system) through Ethernet cables. We use USRP N210 as the
RFID reader to interrogate the tags and extract the backscat-
tered channel between each RFID-tagged nanodrone and the
reader’s antenna. The reader is responsible to collect the
backscattered signals, which will be further forwarded to the
PC host and processed with MATLAB in PC host. After we
obtain the backscattered channel, we run relative localization
algorithm in MATLAB.

We evaluate the performance of RFDrone in indoor and
outdoor environments (e.g., apartment room and office room)
with up to five nanodrones. The indoor environment is a
rich scattering environment with different furniture around
(e.g., desks, chairs and sofas). The distance between the
nanodrone swarm and the reader’s antenna is around 1.5
meters within the reader’s communication range by default.
We control them through the remote controller. In default, we
control the nanodrone swarm to fly in the low-speed mode.
In the results section, we will measure the impact of different
system settings on RFDrone’s performance such as reader-tag
distance, flying speed and different nanodrone swarm patterns.

VI. RESULTS

A. Effectiveness of Noise Filtering

Since the nanodrone is a mechanical system, its body shift,
rotation flip or vibration will change the backscattered signals
as the RFID tag is attached to nanodrone’s body. To see this
clearly, we do an experiment to show the variation of phase



readings over time from an RFID-tagged nanodrone.
Method. We fly a nanodrone attached with a commodity
passive RFID tag. Then, we control the nanodrone to rotate to
measure its impact on phase readings over time. We expect
to see the significant variation of phase readings, as the
nanodrone flips or rotates.
Result. As shown in Fig. 18, when the nanodrone holds its
altitude (i.e., hovering in the sky), the signal phase is quite
stable. When the nanodrone’s body rotates, the signal phase
changes significantly. This indicates that the nanodrone’s body
vibration will not affect the backscattered signals significantly.
So, we can ignore the nanodrone’s body vibration in our anal-
ysis. But, the nanodrone’s body shift/rotation can significantly
affect the backscattered signals, which needs to be filtered out.

VII. CONCLUSION

In this paper, we propose RFDrone, a system that can sense
the relative position of the nanodrones in the swarm, using the
commodity passive RFID tags. To do so, we attach commodity
passive RFID tag on each nanodrone, such that the relative
position of the nanodrones in the swarm can be estimated
through the time ordering of trough’s lowest point in the
spatial and temporal phase profile. We believe RFDrone can
proliferate the human-drone interaction, dazzling drone show
for entertainment industry and safe drone swarm platooning.
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