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ABSTRACT

This paper presents two models to address the problem of
multi-person activity recognition using ambient sensors in a
home. The first model, Seq2Res, uses a sequence generation
approach to separate sensor events from different residents.
The second model, BIGRU+Q2L, uses a Query2Label multi-
label classifier to predict multiple activities simultaneously.
Performances of these models are compared to a state-of-the-
art model in different experimental scenarios, using a state-of-
the-art dataset of two residents in a home instrumented with
ambient sensors. These results lead to a discussion on the ad-
vantages and drawbacks of resident separation and multi-label
classification for multi-person activity recognition.

1 Introduction

Ambient-based activity recognition has garnered growing in-
terest due to its non-intrusive, privacy-friendly, and cost-
effective properties. This technology leverages ambient sen-
sors strategically placed in the environment (such as a home)
to capture changes and interactions in their proximity. These
recorded changes are referred to as sensor events. By
analysing sequences formed by these sensor events, residents’
activities in the environment can be identified. However, in
real-home scenarios, there are often multiple residents, and
sensor events captured in these situations correspond to po-
tentially multiple and intertwined activities. Activity recogni-
tion in such situations is referred to as multi-person activity
recognition.

The primary challenge in multi-person activity recognition
is to separate activity information for each person. Existing
methods can generally be categorized into 2 classes based on
when this separation occurs: resident separation and multi-
label classification. On one hand, resident separation aims to
distinguish sensor events triggered by different residents, and
subsequently, perform individual activity recognition on each
separated sensor event sequence. On the other hand, multi-
label classification methods involve extracting global features
from sensor event sequences and then using these features to
recognize multiple activity classes associated with individuals,
thereby recognizing multi-person activities.

This paper presents several approaches: one based on resident
separation, called Seq2Res, and another based on multi-label
classification, called BIGRU+Q?2L. A third approach combines
them into a two-stage model. Unlike previous separation ap-
proaches that assign sensor events to residents one by one,
Seq2Res employs a Sequence-to-Sequence (Seq2Seq) [18] ar-
chitecture. It models the entire sensor sequence and generates
separated sequences based on the modeled context. On the
other hand, BIGRU+Q2L uses attention mechanisms to estab-
lish correlations not only among activity labels but also be-
tween labels and features. This enables a more accurate and
flexible multi-label classification. Finally, the two approaches
are combined in a model that separates resident information
while considering the correlation of residents’ activities.

This paper is organized as follows: Section 2 provides a
summary of related work on resident separation and multi-
label classification. Section 3 presents the Seq2Res and Bi-
GRU+Q2L models, as well as their combination in a two-stage
model. Section 4 describes the experimental results of these
models as well as state-of-the-art models, on a state-of-the-art
dataset. Finally, a conclusion is given in Section 5.

2 Related Work
2.1 Resident Separation

Crandall and Cook [7] use a supervised Naive Bayes model
to assign each sensor event to specific residents of a home, a
problem often called data association in the literature. This
method is highly reliant on the timing of events and resident
schedule habits for classification, without consideration for
spatiotemporal relationships between sensor events. Riboni et
al. [16] modeled these spatiotemporal relationships by con-
ducting a statistical analysis of the co-occurrence frequency
of two adjacent sensor events within a defined temporal win-
dow in single-person data. If two sensor events, with rare co-
occurrences in single-person data, happen in multi-person data
within the defined temporal window, it suggests they come
from different residents. In this approach, training requires
pre-separated single-person data. Arrotta et al. [2] presented
MICAR, a knowledge-based approach for data association,
where sensor events are assigned to corresponding residents
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using ontological reasoning on context. While less affected by
data scarcity, it relies on explicit information like the location
of each user, which may not always be available.

Bouchabou et al. [5] drew inspiration from language models
used in natural language processing. Each sensor event is con-
sidered as a token and modeled using a word embedding skip-
gram model [12]. The advantage of this approach is its abil-
ity to establish more flexible and richer event correlations and
can be directly applied in multi-person data. Similarly, SMRT
[20] and GAMUT [21] also adopted skip-gram models to map
sensors into a latent space. In addition, these methods used a
linear Gaussian dynamic model and a Gaussian Mixture Prob-
ability Hypothesis Density (GM-PHD) filter to track residents’
states in the latent space. While these probabilistic models
enable unsupervised resident separation, their use of the lin-
ear dynamic model results in uneven tracking capabilities for
residents or pets with diverse mobility profiles, rendering the
model sensitive to anomalous sensor events.

2.2 Multi-label classification

To identify the resident associated with a specific activity with-
out resident separation, multi-label classification methods typ-
ically combine each activity class with a corresponding res-
ident identifier. Alternatively, these methods may opt for
anonymous activity classification, without predicting the in-
dividual responsible for each activity.

The most straightforward multi-label classification method is
binary relevance [1, 8, 10], where each activity label is pre-
dicted by an individual binary classifier. The problem of this
approach is its inability to consider the interdependence be-
tween activity classes. For instance, in real-life scenarios, ac-
tivities like “User A using the toilet” and “User B using the
toilet” are less likely to occur simultaneously. Binary rele-
vance struggles to learn such patterns because predictions for
two labels are independent. Extending binary relevance, the
classifier chain method [9, 13] introduces dependencies be-
tween binary classifiers by using the output of one classifier as
a feature for the next classifier. However, the performances of
such methods are highly dependent on the ordering of classi-
fiers. Another extension of the binary relevance method is the
work of Liu et al., who propose Query2Label (Q2L) [11]. This
method embedded labels as vectors and used Transformer de-
coders [19] to model inter-label relationships and then queried
the label-related features from the feature space.

A number of works used a label combination method [4, 6, 14].
This method defines combinations of activities that are per-
formed simultaneously by different persons as new labels and
uses single-label classifiers to predict these combinations. As
such, dependencies between the initial activity labels are hard-
coded as the new labels, reducing the training complexity and
often resulting in higher performances. For example, Chen
et al. [6] achieve state-of-the-art performance with TransBi-
GRU, a combination of Transformer [19] and Bidirectional
Gated Recurrent Units (BiGRU) for feature extraction, with a
label combination classifier at the end. Label combination has
three main drawbacks: complexity grows exponentially with
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Figure 1: Framework of the proposed Seq2Res model for res-
ident separation.

the number of persons and activity classes; class imbalance is
exacerbated; the trained model cannot predict combinations of
classes that do not exist in the training set.

3 Proposed models
3.1 Seq2Res resident separation model

In this research, it is assumed that, as in [6, 16], there are two
residents living in a smart home equipped with ambient sen-
sors. Theoretically, this research can be extended to scenarios
involving more than two residents, but this is left as future
work. Given a sequence of sensor events {ey}, the objective
is to assign each ey, to one of two sets {e}.} and {e?} where
each set represents an event sequence of a resident. Existing
resident separation methods generally determine the belong-
ing of the next sensor event based only on the resident’s state
at the previous time step. These methods not only overlook
longer-term contextual information but also can lead to error
accumulation. To address these issues, the present proposal
attempts to relax the constraints of the previous algorithms. In
contrast with previous approaches, a generative method is used
o “translate” a sensor event sequence triggered by multiple in-
dividuals into separate event sequences for each resident. As
a result, the separated sequences {e}} and {e7} are no longer
constructed by partitioning sensor events one by one but are
generated based on the overall context of the input sequence.
This means that the two sequences no longer guarantee that
{er} U {ei} = {ex}. An attention-based Sequence to Se-
quence (Seq2Seq) architecture is used, based on the work of
Bahdanau et al. [3]. Figure 1 illustrates the proposed model,
which is called Seq2Res (Sequence to Residents).

3.1.1 Inputsequence encoding

This step is illustrated on the left side of Figure 1. As in [5],
a sensor event is represented as a numerical token. To bet-
ter capture spatiotemporal relationships between sensors, the
input token sequence is mapped into an embedding space of
dimension D. Then, a bidirectional GRU is used to encode the
bidirectional temporal characteristics of the event sequence,
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resulting in output vectors {h
with a dimension of 2D.

} and a context vector he,c,

3.1.2 Output sequence generation

Designing decoders capable of generating separated sequences
presents a significant challenge, particularly in generating one
resident’s event sequence while taking into account the gener-
ation of the other resident’s sequence. A straightforward but
effective approach involves employing a single decoder for the
sequential generation of two sequences. This requires passing
the hidden state from the first sequence generation to the sub-
sequent sequence. In this work, the decoder is designed to
produce a unified sequence where e}, and ei are continuously
generated. The initial hidden state for generating {€?} is thus
the hidden state of {e} }, and the initial hidden state for gener-
ating {e}.} is henc.

As illustrated in the right part of Figure 1, taking a “Start of Se-
quence” token SOS as input and h,,,. as hidden state, a GRU-
based decoder is applied to give an output vector and a new
hidden state vector. The output is then mapped into the prob-
ability vector of events using a fully connected network and
a softmax function. The event with the highest probability
will be considered as the generated event in this step. Gen-
erated events will serve as input for the next step, prompting
the decoder to generate based on the context and the existing
sequence. After the first sequence is generated, the model is
trained to generate an “End of Sequence” token EOS, followed
by an SOS to prompt the generation of the second sequence
until a second EOS is finally generated.

Since the generation of the first sequence depends on the first
event, we set the resident who triggers the first event in the in-
put sequence as resident 1. To train the model, labels of sepa-
rated sequence are of the form {{e}.}, EOS, SOS, {¢7 }, EOS},
where {e} } is the event sequence of resident i. Cross Entropy
Loss (CE Loss) is used as the loss function.

3.1.3 Bahdanau Attention

Due to the inherent limitations of encoding the entire input
with a single context vector, an attention mechanism is added
to enhance the decoder’s aligning capability. This allows the
decoder to focus on different parts of the encoder’s output at
each step of the decoding process.

Specifically, the Bahdanau attention mechanism [3] is applied.
In each decoding step t, the decoder’s hidden state at the previ-

ous time step hfje_cl functions as the query. The encoder’s out-

puts {h% .} serve as both keys and values. Following the com-
putation of Bahdanau attention scores, a weighted average is
computed across the encoder’s output vectors {h¥ }, yielding
a context vector c;. This context vector c; is then concatenated
with the embedding vector of the decoder’s input at time ¢ and
subsequently fed into the GRU. The Bahdanau attention score

s¢ 1 between the query hge_cl and the key h% _ is computed as

st = v tanh(Wh' ! + Uh%_ +b),

dec

where v, W, U, and b are learnable parameters.
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Figure 2: Framework of the proposed BiGRU+Q2L model,
with feature extraction from sensor events depicted on the left,
and Query2Label transformer decoder for multi-label classifi-
cation on the right.

3.2 BiGRU+Query2Label multi-label classification
model

In the following, we introduce a multi-label classifier based on
an attention mechanism, while employing a BiGRU model as a
sequence feature extractor. Figure 2 illustrates the framework
of this method.

3.2.1 BiGRU-based feature extractor

The feature extractor of the proposed multi-label classification
model is presented on the left side of Figure 2. The input
event sequence, whether separated or not, is linearly mapped
to the embedding space and then processed by a BiGRU to ex-
tract bidirectional temporal information. In the TransBiGRU
model [6], 6 composite layers of Transformer encoder coupled
with BiGRU are used. Following preliminary experiments on
the same dataset as in [6], it appears that BIGRU is the impor-
tant component, and Transformer layers play a lesser role. As
such, only BiGRU layers are used for the encoder in this work.
Comparative results between the two models can be found in
Section 4.5.

3.2.2 Query2Label (Q2L) multi-label classifier

Given an input event sequence {ex} and L candidate activ-
ity labels, multi-label classification is to predict {y; }1<i<r.
where y; € {0,1} is a binary indicator to describe whether
the class [ is present in the sequence. A straightforward multi-
label classification method is Binary Relevance (BN): the fea-
tures extracted by the BiGRU are averaged and then fed into
L independent binary fully connected classifiers to predict
{y1}1<i<r- This model is denoted as BiIGRU+BN. To enhance
the model’s ability to extract label correlations and pay atten-
tion to important features of the sequence, we further propose
the BIGRU+Q2L model, depicted in Figure 2, which utilizes
the Query2Label (Q2L) [11] model as the multi-label classi-
fier.



Query2Label embeds candidate labels into a label embedding
vector and then feeds them into a Transformer decoder, each
layer consisting of a self-attention module, a cross-attention
module, and a position-wise feed-forward network. In the
self-attention module, query, key, and value are all the label
embedding vectors. Unlike binary relevance, the correlation
between labels can be learned in this module. In the cross-
attention module, the queries are label embeddings, whereas
keys and values are the temporal features extracted by the en-
coder. This module allows each label to be associated with its
desired features and pool them by linear combinations. The
queried feature vectors are then fed to the position-wise feed-
forward networks for further non-linear transformations.

Therefore, the output vectors at each label position in the
Transformer decoder are a fusion and transformation of the
label-related features of the input sequence. We apply a linear
transformation to each output, followed by the sigmoid func-
tion to frame it into the range [0,1]. This numerical value,
denoted as p;, represents the probability of presence of the la-
bel I. Empirically, labels with probabilities greater than 0.7 are
finally considered as output predictions. Binary Cross Entropy
Loss (BCE Loss) is used as the loss function.

3.3 Multi-label classification with resident separation

As mentioned earlier, the distinction between resident sepa-
ration and multi-label classification lies in the timing of in-
formation separation: they are not mutually exclusive. The
proposed Seq2Res and BiGRU+Q2L/BN models can be com-
bined into a two-stage model, where Seq2Res is first used to
perform resident separation on the mixed sequence, and then
the output separated sequence is treated as a whole input for
activity recognition in BIGRU+Q2L/BN. Compared to directly
conducting individual activity recognition after resident sep-
aration, this two-stage approach allows for co-consideration
of sensor events from both individuals before classification.
The input of BiIGRU+Q2L is the sequence of softmax proba-
bility vectors from the output of the fully connected network of
Seq2Res, rather than the exact most probable events, to retain
the most information.

4 Experimental Results

4.1 Dataset

The proposed approaches are evaluated on a real-world
dataset known as the Multiresident ADL Activities (ADLMR)
dataset!, which was published by the Center for Advanced
Studies in Adaptive Systems (CASAS) of the Washington
State University [17]. This dataset comprises 26 subsets, each
representing a single day, with each day containing sensor
events triggered by 2 residents (a different pair each day) per-
forming activities among a shared set of 15 classes. There is
a total of 37 different ambient sensors in the home, such as
motion and opening sensors. Each sensor event has been man-
ually labeled with the identity of the resident triggering this

"http://casas.wsu.edu/datasets/adlmr.zip (last seen on
11/2023)
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event, along with the activity they were engaged in. There-
fore, this dataset can be used for both resident separation as
in [16] and multi-subject activity recognition as in [6].

4.2 Experimental setup
4.2.1 Evaluation method

For each experiment, we used 10-fold cross-validation. Data
was partitioned using the scikit-learn library. Since each day
is performed by different pairs of residents, one day can not be
split into different folds to ensure cross-resident independence.
As such, each fold contains entire days. In order to cover the
whole 26 days, the test set in the first 6 folds contains data for 3
days, ranging from day 1 to day 18; in the subsequent 4 folds,
each test set contains data for 2 days, covering days 18 to 26.

4.2.2 Data preparation

Due to typographical errors in the annotations of the original
dataset, we corrected some of the labels. In addition, for events
with labels of single-resident activity, we assigned the last per-
formed activity of the other resident as a second label, so that
each event is labeled with the activity of both residents. To
reduce data redundancy, we excluded events in which motion
sensors were automatically deactivated. By applying a slid-
ing window approach, we segmented data so that each data
instance contains 16 sensor events, with a step of 3 events be-
tween each instance. The activity label of an instance is the
result of majority voting between the labels of the last 3 events.

4.2.3 Parameters

All parameters were set following preliminary experiments.
For the encoder of Seq2Res, the embedding size and the hid-
den size of BiGRU are 128. The output size and the context
vector size are then 2 x 128 = 256. A dropout rate of 0.1 is
used. For the decoder, the embedding size and hidden size are
both 256. Given that the input to the GRU is a concatenation
of the embedded input vector and the attention-queried vector,
the input size for GRU is 2 x 256 = 512. A dropout rate of 0.4
is used for the decoder. The initial learning rate for training is
0.001, with a halving schedule every 80 epochs. Seq2Res was
trained for a total of 300 epochs.

For BiGRU+Q2L, the event embedding size and the hidden
size of BiGRU are both 128, resulting in an output feature
vector size of 2 x 128 = 256. The label embedding size of
Q2L is consequently set to 256. A dropout rate of 0.3 is used.
A learning rate of 1 x 10™% is used for a 100 epochs training.
The Adam optimizer is used, and a batch size of 100 is used
across all training sessions.

4.3 Metrics

4.3.1 Resident separation

Former resident separation compute typically the accuracy of
each event assignment through one-to-one comparisons be-
tween the prediction and the ground truth in terms of their
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Figure 3: Example of an input sequence of Seq2Res model
with its label and prediction. Each number represents the to-
ken of a sensor event.

Table 1: Performance of resident separation with Seq2Res.

BLEU Seq2Res (ours) | SMRT [20]
Fill medication dispenser 0.7906 0.6152
Hang up clothes 0.8397 0.7225
Move couch and table 0.4844 0.4326
Read on couch (user B) 0.4799 0.4509
Water plants 0.7174 0.7411
Sweep kitchen floor 0.6212 0.4899
Play checkers 0.6389 0.5016
Class | Set out dinner ingredients 0.7017 0.6387
Set dinner table 0.6993 0.6538
Read on couch (user A) 0.5713 0.5372
Pay electric bill 0.5619 0.5445
Prepare picnic basket 0.6086 0.6073
Retrieve dishes 0.5887 0.5513
Pack supplies in basket 0.6290 0.4708
Pack food in basket 0.6266 0.4864
Overall BLEU 0.6385 0.5608

positions. Our separation method consists of sequence gen-
eration, making it challenging to establish a direct one-to-one
alignment. Moreover, calculating accuracy on a one-to-one
alignment fails to consider the coherence of the separated se-
quence, which are crucial for extracting temporal informa-
tion from the sequence. Hence, we borrowed a metric com-
monly used in machine translation, Bilingual Evaluation Un-
derstudy (BLEU) [15], to assess our separation results. An
illustrative example is given in Figure 3, in which the BLEU
score between the prediction and the label is 0.64.

Given a generated sequence c and a reference sequence 7, the
BLEU metric considers the precision of N-grams, which is
the proportion of /N-gram phrases in the generated sequence ¢
that appear in the reference sequence r, and penalizes shorter
sequences. Like most studies, the final BLEU of this research
is the average of scores corresponding to NV from 1 to 4.

4.3.2 Activity Recognition

We use the standard metrics of accuracy, recall, precision, and
F1 score.

4.4 Results on resident separation

We conduct experiments on resident separation using the
Seq2Res model and reproduce the SMRT (Sensor-based
Multi-resident Tracking) [20] under the same protocol for
comparison. Table 1 reports, for both methods, the cross-
validation average BLEU for each activity class and the over-
all average BLEU. We see that the overall performance of
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Table 2: Performance of activity recognition models for 3 sce-
narios.

Scenario Model Accuracy (%) | Macro-F1 (%)
BiGRU+BN 87.66 (0.31) 86.09 (0.37)
No_Sep TransBiGRU+BN [6] 86.85 (0.34) 85.13 (0.38)
BiGRU+Q2L (ours) 88.47 (0.23) 87.07 (0.25)
BiGRU+BN 79.36 (0.54) 76.74 (0.70)
S2S_Sep | TransBiGRU+BN Chen et al. [6] | 73.38 (0.56) 70.12 (0.66)
BiGRU+Q2L (ours) 83.26 (0.39) 81.08 (0.47)
BiGRU+BN 88.70 (0.40) 87.15(0.48)
GT_Sep | TransBiGRU+BN Chen et al. [6] | 87.35 (0.38) 85.68 (0.44)
BiGRU+Q2L (ours) 90.87 (0.32) 89.57 (0.38)

Seq2Res is higher than that of SMRT. This could be attributed
to the fact that Seq2Rees, compared to SMRT, is better able to
consider a longer context (by the encoder) while ensuring the
correlation between two consecutive sensor events (by the de-
coder). The overall BLEU of Seq2Res reaches 0.6385. Three
types of error are generally observed in generated sequences:
repetition, omission and disorder, as illustrated in Figure 3. A
significant variation across different classes is also observed.
For example, “Move couch and table” and “Read on couch
(user B)” have BLEU scores below 0.5. These two activities
always occur in close proximity, and the trajectories of the two
residents significantly overlap, making it more difficult to sep-
arate. Conversely, “Fill medication dispense” and “Hang up
clothes” take place at opposite sides of the house, with mini-
mal overlap in the trajectories of the residents. As a result, the
BLEU scores for these two activities reach around 0.8. In gen-
eral, the separation ability of the model is negatively correlated
with the degree of overlap in the actions of the two residents,
which conforms to intuition.

4.5 Results on activity recognition

In this section, 3 scenarios are used to compare the perfor-
mance of multi-resident activity recognition models:

* No_Sep: Inputs are event sequences without separation.

* S2S_Sep: Inputs are event sequences generated by Seq2Res
as introduced in Section 3.3.

* GT_Sep: Inputs are event sequences separated based on the
ground truth labeled in the dataset.

Under these 3 scenarios, we first evaluate the recognition ac-
curacy and macro-F1 score of 3 different models: TransBi-
GRU [6] using a binary relevance classifier, BIGRU+BN and
BiGRU+Q2L (both presented in Section 3.2.2). For TransBi-
GRU, we used the same hyperparameters as in [6].

Table 2 reports the average cross-validation performance of
these 3 models for each scenario, with standard deviations
in parentheses. BiGRU+Q2L achieves the best performance
for all 3 scenarios. Compared to the BiGRU+BN model,
BiGRU+Q2L exhibits statistically significant improvement in
performances, especially for macro-F1 compared to accuracy.
This indicates that the Query2Label classifier can help address
data imbalance between activity classes, which is a common
problem in human activity recognition. The performance of
TransBiGRU [6] is significantly lower than BiGRU+BN, a
lighter model with fewer parameters, for all scenarios. For the
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Table 3: Performance of BiIGRU+QZ2L for each activity class, for 3 scenarios.

Metric Precision (%) Recall (%) F1-score (%) Count
Scenario No_Sep | S2S_Sep | GT_Sep | No_Sep | S2S_Sep | GT_Sep | No_Sep | S2S_Sep | GT_Sep
Fill medication dispenser | 89.54 85.79 93.94 92.71 87.55 96.12 91.10 86.66 95.02 4770
Hang up clothes 89.97 85.19 88.44 92.13 87.65 90.51 91.04 86.40 89.46 2890
Move couch and table 86.00 75.92 87.80 84.01 79.79 86.63 84.99 77.81 87.21 2450
Read on couch (user B) 84.15 77.43 90.58 84.22 80.92 90.92 84.18 79.13 90.75 2410
Water plants 82.25 76.10 86.10 85.06 78.62 88.72 83.63 77.33 87.39 2000
Sweep kitchen floor 92.58 87.81 93.90 89.26 85.61 93.04 90.89 86.70 93.47 4840
Play checkers 93.64 90.64 95.53 90.94 87.79 93.15 92.27 89.19 94.33 5910
Class | Set out dinner ingredients | 80.05 73.96 83.30 80.95 77.29 89.92 80.50 75.59 86.48 1970
Set dinner table 83.71 79.77 86.41 83.56 80.51 86.33 83.63 80.14 86.37 3480
Read on couch (user A) 81.08 73.77 83.70 79.34 75.16 81.86 80.20 74.46 82.77 2970
Pay electric bill 84.72 79.06 86.22 82.39 77.99 83.06 83.54 78.52 84.61 3070
Prepare picnic basket 91.05 91.12 94.83 91.42 85.96 93.62 91.23 88.46 94.22 5710
Retrieve dishes 90.02 90.97 93.08 92.35 86.59 93.05 91.17 88.73 93.06 5750
Pack supplies in basket 83.44 70.13 85.10 85.18 74.48 87.13 84.30 72.24 86.19 3080
Pack food in basket 84.38 69.84 84.25 84.88 73.88 85.13 84.63 71.81 84.69 3220
Average 86.44 80.50 88.88 86.56 81.32 89.28 86.49 80.88 89.06 3635

S2S_Sep scenario, where the difference is significantly large,
the excessively deep network of TransBiGRU is overfitting on
the noise in the generated separated sequences, resulting in
significant drops in performance.

Comparing the results across the three scenarios, we observe
that GT_Sep (using ground truth resident labels) has an accu-
racy and macro-F1 score that are 2.4% and 2.5% higher, re-
spectively, than No_Sep in the BiIGRU+Q2L model (and sim-
ilar gaps for the other 2 models). This indicates that resident
separation does help multi-resident activity recognition when
this separation is perfectly accurate. Performances for the
S2S_Sep scenario reach the same orders of magnitude, with
accuracies as high as 83.26% with BIGRU+Q2L. However,
they are significantly lower than for both GT_Sep and No_Sep
scenarios, for all models. This suggests that, although the sep-
arated sequences generated by the Seq2Res model are over-
all representative of the true separation, the errors introduced
during the generation process have a significant impact on the
final activity classification. In general, these results show that
resident separation can improve activity recognition, but only
if the separated sequences are very accurate, which remains a
scientific challenge.

To further investigate the behavior of models for each sce-
nario, we report in Table 3 the cross-validation average pre-
cision, recall, and F1 scores of the BIGRU+Q2L model, per
activity class. We observe that models for the S2S_Sep sce-
nario achieve better results for classes with larger numbers of
instances (e.g. “Play checkers”, “Prepare picnic basket”, “Re-
trieve dishes”), but underperform for classes with a smaller
number of instances (e.g. “Water plants”, “Set out dinner in-
gredients”). This could be because the noise introduced by
generative resident separation increases the variation of the
classifier input, which requires more instances to learn. On
the other hand, comparing GT_Sep and No_Sep highlights that
accurate resident separation helps to recognize classes with a
small number of instances (e.g. “Set out dinner ingredients”,

“Read on couch (user B)”) because the temporal features of
the accurately separated sequences may be easier to learn.

5 Conclusion

In this paper, two models are presented: Seq2Res for res-
ident separation, and BiGRU+Q2L for multi-resident ac-
tivity recognition. On the CASAS ADLMR dataset, Bi-
GRU+Q2L achieves better performance than another state-of-
the-art model TransBiGRU, with a simpler architecture. While
the Seq2Res model shows potential for the resident separation
task, the quality of the generated sequences is still limited. As
such, the combination of Seq2Res and BiGRU+Q2L does not
yet reach the same performance as using only BIGRU+Q2L.

Experiments with ground truth separation have highlighted
that using perfect resident separation before multi-resident
activity recognition can significantly improve performance.
Therefore, future work on improving resident separation must
be conducted, such as post-processing methods to improve the
sequences generated by Seq2Res.
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