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Abstract—As IoT networks become more complex and generate
massive amounts of dynamic data, it is difficult to monitor
and detect anomalies using traditional statistical methods and
machine learning methods. Deep learning algorithms can pro-
cess and learn from large amounts of data and can also be
trained using unsupervised learning techniques, meaning they
don’t require labelled data to detect anomalies. This makes
it possible to detect new and unknown anomalies that may
not have been detected before. Also, deep learning algorithms
can be automated and highly scalable; thereby, they can run
continuously in the backend and make it achievable to monitor
large IoT networks instantly. In this work, we conduct a
literature review on the most recent works using deep learning
techniques and implement a model using ensemble techniques
on the KDD Cup 99 dataset. The experimental results showcase
the impressive performance of our deep anomaly detection
model, achieving an accuracy of over 98%.

1. Introduction

Anomalies, namely novelties or outliers, are individuals
that are far from the nominal data population. In general,
an anomaly can be thought of as an observation or pattern
that does not conform to the expected behaviour or follows
the same patterns as the rest of the data. Anomaly Detection
(AD), is the process of identifying unusual patterns in data
that do not conform to a well-defined notion of normal data
[1]. The process involves learning the normal behaviour of
the data and then identifying instances that deviate sig-
nificantly from the model through statistical methods or
machine learning techniques. For example, in a time series
dataset, an anomaly might be a sudden change in the trend
or a spike in the data that is not consistent with the rest of
the series. In a classification problem, an anomaly could be
an observation that does not fit into any defined classes or
is significantly different from the other observations.

Statistically, the sparsely distributed areas indicate that
the probability of data occurring in a certain area is relatively
low, where the data falling in can be considered to be
anomalies. In Figure 1, we illustrate the anomalies in two-
dimensional data space, where the clusters in blue indicate
normal data and red points represent anomalies far from

normal. Given a dataset X = {X1, X2, ..., Xn}, the feature
dimension of each sample is D, xi ∈ RD. Deep Anomaly
Detection (DAD) aims to learn a mapping function, which
maps the original space to a new representation space ϕ(·):
X 7→ Z, where Z ∈ RK(K ≪ D). If the probability density
of a sample in the dataset is less than the threshold, a small
enough value, the sample is considered an anomaly and the
anomaly score of the sample τ(·) can be computed in the
new space. Such sparse anomalies can be applicable in many
areas by analysing activity patterns to detect anomalous be-
haviours, manage industrial resources, or ensure production
security.

Figure 1. A simple example of anomalies in 2d data space as the red cross
points while the blue solid points are the normal data.

Based on the availability of data labels, we usually
divide Anomaly Detection tasks into three types: supervised,
semi-supervised, and unsupervised. Supervised AD uses
labels of nominal and anomalous data instances to train
binary or multi-class classifiers; semi-supervised techniques
use the existing normal single label to separate outliers
without the anomalous instances involved in the training
process; in training with unsupervised deep AD techniques,
there are both normal and anomalous instances in the data,
but the normal instances are often much larger than the
anomalies. This method detects outliers based on the in-
trinsic properties of the data instances and is usually used
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for automatic labelling of unlabelled data samples. Even
though denoting a data point with a label of normal or
anomalous would be one of the ideal solutions for AD, it
requires extreme effort to obtain the labelled training data. In
addition, due to the nature of data, for example, the dynamic
behaviours in anomalous pattern recognition would lead to
further difficulties in labelling. In that case, a vital solution
to AD is to train a normality model from normal data in an
unsupervised manner to detect anomalies through deviations
from the model.

In the context of the Internet of Things (IoT), where
data is transmitted between IoT devices and systems over
a network, anomalies are a special type of outlier point
that usually carries meaningful pieces of information, such
as sensor readings, device status and configuration data,
and messages or commands sent between devices. The data
format of IoT network traffic can vary depending on the
specific devices and systems being used and the type of data
being transmitted. Due to the complexity of IoT networks,
identifying unexpected behaviours in the system is vital for
preventing anomalies from escalating into larger issues. For
example, AD can help identify potential security threats,
such as unauthorised access to the system or unusual data
usage patterns that could indicate a cyber-attack. Especially
with the continuous development of IoT, the data generated
by massive sensors and smart objects need to be processed in
near real-time, which makes it extremely urgent to classify
and detect abnormal data.

In this paper, we explore the performance of the selected
Deep Learning models for DAD tasks using the KDD Cup
99 dataset. Our research questions focus on the impact
of different pre-precessing techniques, model architectures,
optimisation algorithms, hyperparameters, ensemble tech-
niques, and comparisons with other state-of-the-art methods
on the performance of these models. Additionally, we aim to
investigate the interpretability of the models and provide a
comprehensive evaluation of their strengths and limitations.

2. Literature Review

From a statistical perspective, most anomaly detection
methods are based on constructing a probability distribution
model and considering how likely the data can be fitted
into the model [14] [15]. Therefore, anomalies are the data
that have a low probability in the distribution model. To
explore the suitable approaches to ensure network security
and optimise performance, traditional and machine learning
algorithms have been both adopted and developed for real-
world applications. Moreover, Deep Learning (DL) methods
for anomaly detection have been proven to show promising
results in learning complex patterns and features from data
and can detect anomalies in a relatively more accurate
and efficient manner compared to traditional methods [16]
[17]. Traditional machine learning methods generally re-
quire more sophisticated feature engineering design, and
the cross-domain versatility is not competitive [18]. Addi-
tionally, these methods are generally aimed at time series-
based anomaly detection tasks, as the correlation between

multiple series is difficult to design and compute by model-
driven methods, while DL models are more suitable for such
scenarios [19].

The relationship between deep learning and anomaly
detection is inseparable because DL can be used for fea-
ture extraction or integrated with AD methods to learn
effective representations of normal instances and even di-
rectly learn scalar anomaly scores in an end-to-end fashion
[20]. AD algorithms based on deep learning methods can
be mainly divided into the following categories: Distance-
based, Classification, Clustering-based, Predictability-based,
and Reconstruction method.

The DAD techniques have been popular due to the
ability of deep neural networks to learn complex patterns
and representations of data. As more DL algorithms have
been proposed, a variety of choices for anomaly detection
tasks are available nowadays, including autoencoder, deep
belief networks, recurrent neural networks, convolutional
neural networks, etc.

One advantage of adopting DL algorithms for anomaly
detection is the ability to handle high-dimensional and
complex data, which is beneficial in various real-world
applications. This is because deep learning algorithms can
learn complex data representations that capture local and
global structures, and also handle both structured and un-
structured data, making them well-suited for a wide range
of scenarios [21]. Additionally, DL algorithms can handle
noisy data and identify anomalies accurately by learning
robust representations of data. A comprehensive summary
of recent research work on DAD algorithms can be found
in Table 1.

Despite the advantages we discussed, there are research
gaps in the field of DAD that need to be addressed to further
improve its effectiveness and efficiency. For example, DAD
models often require a large amount of data for training,
which can be a challenge for real-world applications with a
limited amount of data. Also, DAD models are sensitive to
outliers and typically designed to handle structured data, im-
pacting the model’s performance. Moreover, with a limited
amount of labelled data, it is difficult to train DAD models,
making adopting semi-supervised and unsupervised DAD
models even more desirable.

3. Research Approach & Methodology

This work seeks to implement and assess existing al-
gorithms from the literature within the context of deep
anomaly detection. The primary objective is to execute these
algorithms on benchmark datasets, with the ultimate goal
of identifying potential enhancements. The methodology
adopted in this research involves a meticulous and system-
atic exploration of deep anomaly detection.

The research will adopt a hypothesis-driven approach,
postulating that deep learning (DL) models can proficiently
identify anomalies within intricate datasets. The investiga-
tive process will encompass a combination of theoretical and



Paper Name and Reference Deep Algorithm Used Method Category Evaluation Metrics

Anomaly detection based on discriminative genera-
tive adversarial network [2]

GAN Reconstruction Precision: 96.1%, Recall: 97.2%,
F1: 96.9%

Deep-compact-clustering based anomaly detection
applied to electromechanical industrial systems [3]

DAECC-OC-SVM Clustering-based Accuracy: 97.6%

A deep learning approach for anomaly detection and
prediction in power consumption data [4]

LSTM Predictability-based Recall: 80%, Accuracy: 89%,
F1:71%, RMSE: 1.032

A deep learning method for the detection and com-
pensation of outlier events in stock data [5]

LSTM, HONN Predictability-based MAE: 0.03%

A hybrid unsupervised clustering-based anomaly de-
tection method [6]

OCSVM Classification Detection Rate: 89% vs False
Alarm Rate: 8% :

Unsupervised representation learning with deep con-
volutional generative adversarial networks [7]

DCGAN Reconstruction Axccuracy: 82.8%

A hybrid semi-supervised anomaly detection model
for high-dimensional data [8]

DAE Reconstruction AUC: 0.52

Anomaly detection with convolutional neural net-
works for industrial surface inspection [9]

CNN Distance-based AUC: 0.83

Distance-based anomaly detection for industrial sur-
faces using triplet networks [10]

CNN Distance-based AUC: an average class mean 0.093
higher

A deep learning enabled subspace spectral ensemble
clustering approach for web anomaly detection [11]

GMM, OCSVM (DEP-
SSEC)

Clustering-based DR: 92.3%, FPR: 0.37%

Deep Anomaly detection with self-supervised learn-
ing and adversarial training [12]

DAT Classification F1: 87%, AUROC: 97.15%, AP:
75.40%, ACC: 97.72%

Network Anomaly Detection Based on Deep Support
Vector Data Description [13]

CNN, SVDD Clustering-based Accuracy: 96%, Precision: 91.6%,
FPR: 6.7%, FNR: 14%

TABLE 1. RESEARCH WORK ON DEEP ANOMALY DETECTION ALGORITHMS

empirical methods. These include an extensive literature re-
view, thorough data pre-processing, and normalization pro-
cedures, as well as a rigorous implementation and training
of models, followed by a robust evaluation and validation
phase.

To ensure the credibility of the findings, the research out-
comes will be subject to in-depth analysis using appropriate
statistical methods. This statistical scrutiny aims to establish
the statistical significance of the results. Moreover, ethical
considerations will underpin the entire research process.
This involves ensuring that data acquisition and utilization
adhere strictly to ethical and legal standards. Overall, this
work aspires to contribute valuable insights to the field of
deep anomaly detection through a methodical and ethical
research approach.

We rely on deep learning models to detect anomalies,
where the models are trained on the pre-processed dataset to
identify patterns and anomalies in the data. The performance
of the model is then evaluated using various metrics, such as
accuracy precision, recall, and F1-score. The results are then
analysed to determine the effectiveness of the DAD methods
in solving the research problem. Finally, the findings are
reported clearly and concisely, and the implications of the
results are discussed in the context of the research ques-
tion and objectives. We maintain a rigorous and systematic
approach to ensure that the results are accurate and reliable.

3.1. Popular Deep Learning Models for DAD

3.1.1. GAN. GANs are a class of deep learning algorithms
that have two neural networks to be trained: a generator
network and a discriminator network. The generator network

learns to generate synthetic data that is similar to the normal
data, while the discriminator network learns to distinguish
between the synthetic data generated by the generator and
the actual normal data. The generator and discriminator
are trained together in a two-player minimax game, where
the generator tries to fool the discriminator by generating
synthetic data that is indistinguishable from the normal data,
while the discriminator accurately identifies the synthetic
data [22].

In the training process, the generator and discriminator
networks are trained alternatively. First, the generator net-
work is updated to generate synthetic data that is more simi-
lar to the normal data, and then the discriminator network is
updated to better distinguish between the synthetic data and
the normal data. The process continues until the generator
network can generate synthetic data that is indistinguishable
from the normal data, and the discriminator network cannot
accurately distinguish between the two. After training, the
discriminator network can be used to score new data points,
with a lower score indicating a higher likelihood of being
anomalous. Mathematically, the score for a new data point
x can be defined as:

S(x) = −logD(x) (1)

Strength. GANs are unsupervised learning algorithms,
which means that they can detect anomalies without labels
when the labelled data is scarce or difficult to obtain. They
can also generate new data samples similar to the training
data, which can be used in AD tasks to identify data that
is significantly different from the normal data. Moreover,
GANs are suitable for handling high-dimensional data, mak-
ing them well-suited for complex datasets, such as KDD
Cup 99.



Weaknesses. GANs can be difficult to train, as the
training process can be unstable and prone to producing
suboptimal results. Additionally, GANs are computationally
intensive algorithms, which can be a drawback in real-world
applications where the size of the dataset is large. These
facts should be taken into account when processing our
selected dataset.

3.1.2. CNN. CNNs are commonly used for image classifi-
cation and anomaly detection in sequential data such as time
series or network traffic data. CNNs are trained on the pre-
processed and labelled data, learning to recognise patterns
that are indicative of normal or anomalous behaviour. With
the same advantage as RNNs that can identify complex
patterns, CNNs can also learn and adapt to changes in the
data over time, making them suitable for detecting anomalies
in dynamic environments.

The convolution layer in a CNN model applies a convo-
lution operation to the input data, which can be represented
as

C = X ∗ W + b (2)

where C is the output of the convolution layer, X is the input
data, W is the convolution kernel, and b is the bias. The
convolution operation slides the convolution kernel over the
input data and computes a dot product between the kernel
and the overlapping region of the input data. This operation
results in a feature map, which represents the most essential
features in the data.

After the convolution operation, an activation function is
applied to the output of the convolution layer. An activation
function is used to introduce non-linearity into the network,
allowing it to learn more complex data representations. A
common activation function used in CNN is the rectified
linear unit (ReLU) function, which is defined as:

f(x) = max(0, x) (3)

After the activation function, a pooling layer is applied to
reduce the size of the data, which helps to reduce overfitting
and make the network computationally efficient.

After multiple convolution and pooling layers, the data
is fed into a fully connected layer. A fully connected layer
is a type of layer in a neural network that connects all the
neurons in one layer to all the neurons in the next layer. The
fully connected layer can be mathematically represented as:

Y = W2P + b2 (4)

where Y is the output of the fully connected layer, W2 and
b2 are the weights and biases of the layer, and P is the
output of the pooling layer. In the last step, the data is fed
into an output layer, which can be used to predict whether
a given segment of IoT network traffic is anomalous or not
[23].

Strength. CNN models can extract features from the
data through convolutional and pooling layers, which can
learn to recognise patterns in the dataset and reduce the
dimensionality of the data. They also perform well and are
robust to noise in detecting anomalies in sequential data,

which is an efficient tool to characterise the differences
between normal and anomalies.

Weakness. The complexity of CNN models makes them
difficult to train and interpret and increases the computa-
tional requirements of the models. Another weakness of the
CNN models is their tendency to overfit the training data,
which results in poor performance on unseen data. Lastly,
the CNN models require large amounts of high-quality data
to train effectively, which can be a challenge when dealing
with small datasets or corrupted data.

3.1.3. LSTM. LSTM models are the type of recurrent
neural network that is commonly used for DAD tasks. In
an LSTM model, information is passed through a series of
memory cells, gates, and layers to learn a temporal repre-
sentation of the input data. This makes LSTM particularly
well-suited for sequential data, where the order of the data
points is important. A memory cell is the basic unit of an
LSTM model. It holds information for a certain period of
time, allowing the model to maintain its memory of past
input even as new inputs are received. The memory cell is
updated at each time step in the sequence [24].

Strengths. LSTM uses memory cells, which allow the
network to store and access information from previous time
steps. It makes LSTMs suitable for tasks that require the
network to remember information from the past and use it
to make predictions. LSTMs are also capable of handling
long-term dependencies. Traditional RNNs struggle with
this aspect because as the gap between relevant informa-
tion and the current time step grows, the backpropagation
gradient becomes weaker, and eventually vanishes. LSTMs
solve this problem by using gates that control the flow of
information into and out of the memory cells. In addition,
LSTMs also solve the problems when the gradient used for
backpropagation becomes too small to update the network
weights effectively.

Weaknesses. One of the obvious weaknesses of LSTMs
is their complexity, which requires a large number of pa-
rameters and computations, making it time-consuming and
computationally expensive to train and deploy the infrastruc-
ture. LSTS are also prone to overfilling, making the model
difficult to interpret.

3.1.4. AutoEncoder. AE is trained to reconstruct its input
data. The idea behind using AEs for anomaly detection is
to train the network on normal data, and then to identify
deviations from the normal behaviours.

The architecture of an autoencoder-based algorithm for
DAD typically consists of two parts: an encoder and a
decoder. The encoder maps the input data to a lower-
dimensional representation, while the decoder maps the
lower-dimensional representation back to the original data
space. The training process minimises the reconstruction
error between the input data and its reconstruction, which is
obtained by passing the input data through the encoder and
the decoder.

Once the AE is trained, it can be used for DAD by
computing the reconstruction error for unseen data. If the



reconstruction error for a particular instance is significantly
larger than the reconstruction errors for the normal instances
in the training set, it is considered to be an anomaly. The
threshold for what constitutes a significant difference is
typically set based on the distribution of the reconstruction
errors for the normal instances in the training set [25].

Strengths. AEs are especially suitable for detecting
anomalies in non-linear data, as they can learn complex,
non-linear relationships between inputs and outputs. They
can also be used for unsupervised AD tasks, and be adapted
to different types of data, as they can be trained on a variety
of data distributions, including high-dimensional and sparse
data. Finally, AEs are generally robust to small amounts of
noise in the data, as they are trained to reconstruct the input,
rather than to classify it into a specific category.

Weaknesses. As with some other DL algorithms, AEs
can also be computationally expensive, as they require a
large number of training iterations and can be slow to
converge. Also, if the dataset is small or the network archi-
tecture is complex, the AEs can be prone to overfitting. This
also leads to the degradation of the model performance in the
data, which is significantly different from the normal data, as
the network may not be able to learn a good reconstruction
for the anomalies.

4. Experiments

4.1. Dataset

We use KDD Cup’ 99 as our dataset. The dataset is a
well-known benchmark dataset for intrusion detection, and
it is most adopted for evaluating the performance of deep
anomaly detection models. The dataset was created as part
of the Knowledge Discovery and Data Mining (KDD) Cup
competition held in 1999 and consists of a large set of
network traffic data collected by the U.S. Defense Advanced
Research Projects Agency (DARPA). It contains data from
a simulated military network and includes various types of
network attacks.

The dataset, consisting of over 4 million instances of
network traffic, serves as an ideal choice for evaluating deep
learning-based anomaly detection methods. Key considera-
tions include its representatives of real-world IoT networks,
ample size for training deep neural networks, pre-processing
for data simplification, public availability for widespread re-
search use, and continued relevance in addressing contempo-
rary IoT security challenges due to its historical significance
in network intrusion detection.

In a nutshell, the KDD Cup 1999 dataset is widely
evaluated in the academic community and industry and is
considered a benchmark dataset for evaluating the perfor-
mance of anomaly detection algorithms. It is also a valuable
resource for researchers studying network security and for
practitioners building intrusion detection systems. A sum-
mary of the dataset can be found in Table 2. In our work,

we will use the 10% version of the KDD Cup 99 dataset to
demonstrate experiment results.

Data Type Attack Name Train set Test set

Normal – 77,815 19,463
Attack DoS 313,163 78,295
Attack Prob 3,284 823
Attack R2L 911 215
Attack U2R 43 9

TABLE 2. KDD CUP 99 DATASET INFORMATION

4.2. Experiment Settings

4.2.1. Data Pre-processing.

Figure 2. The illustration of the experimental process in our work

The original KDD Cup 99 dataset (10%) contains 42
attributes and 494,021 entries. We first cleaned the dataset
by dropping missing values and naming the attributes ac-
cordingly. We then encoded the categorical attributes (“pro-
tocol type”, “service”, and “flag”) and labels (“label”) and
mapped the target variables into numerical values. We
adopted both one-hot encoding and label encoding methods
in our experiment, with One-hot encoding on the AE model,
as it can be trained on sparse data, and labelling encoding
is adopted for the rest models.

Normaliser and MinMaxScaler from the sklearn package
are used to transform the dataset after splitting it into
training and testing. In the experiments, 80% of the normal
samples were randomly selected for training, and a testing



dataset from the remaining samples was generated. We
evaluate the performance of the models using metrics such
as accuracy, precision, recall, and F1-score. Figure 2 gives
an illustration of all the steps in our experimental design.

4.2.2. Model Implementation. We adopted a variety of
pre-processing techniques, such as normalisation, feature
scaling, and feature selection, to prepare the dataset. In
the experiment phase, different hyperparameters have been
varied for each model, such as the number of hidden layers,
the size of the hidden layers, the learning rate, and the
batch size. Then we evaluated the performance of each
model using metrics to determine the optimal pre-processing
techniques and hyperparameters that result in the best per-
formance for each model.

We implemented a GAN-based algorithm that incorpo-
rates an encoder that maps input samples to latent represen-
tations, as well as a generator and a discriminator during
training. A score function is then defined to measure how
unusual an example is based on a convex reconstruction loss
and a combination of discriminator losses. The discrimi-
nator’s cross-entropy or feature matching loss is used to
evaluate whether the reconstructed data has similar features
to the real samples in the discriminator. In the generator,
we defined the latent space dimension of 114, with 6 hidden
layers, a learning rate of 1e−5, and an activation function of
“tanh”. For the discriminator, we defined a 6 hidden layer
architecture with 128 neurons per layer, a “ReLU” activation
function, a learning rate of 0.00001, and 0.2 dropout. For
the GAN network, we trained for 10 epochs with a batch
size of 512.

The other algorithm utilised the AE method as a discrim-
inative DNN, where the target output is similar to the input,
and the number of hidden layer nodes is lower than the
input. Training is done by minimizing construction error and
a regularization strategy, after which hidden layer results are
considered as compressed representations of the input data.
The method uses a deep autoencoder to encode features into
different feature groups and uses the feature vector of the
last hidden layer of the encoder as a representation of the
attack score of the input data. The AE model is defined with
one input layer, 3 hidden layers with activation functions of
“tanh” and “ReLU”, and a decoder.

In the proposed model, as illustrated in Figure 3, we
adopted the CNN+LSTM method, which contains the net-
work packet filters in three layers. The KNN is used for
general categorisation, which classifies the input of the
dataset. The second layer (CNN + LSTM) allows the model
to analyse a series of data and makes the filter check the
data against previously received packets. The outputs of the
first two filters are then compared, and the conflicting input
is sent to the third layer if a conflict is detected. The third
layer is a Random Forest (RF) classifier. The RF classifier
classifies the final result of the input. In this experiment, we
adopted the “sparse categorical crossentropy” as the loss
function and “SGD” as the optimizer. We also set the check-
point by 1 verbose and monitored by validation accuracy,
with overwriting the current file by the maximisation of the

monitored quantity. When fitting the CNN + LSTM layers,
we adopted 20 epochs and a batch size of 128. After training
the RF classifier on conflicted instances, we combined the
pre-trained models to make a final prediction on the unseen
data.

5. Results and Evaluations

In our proposed model, the KNN layer produced an
accuracy of 96.81%, while the CNN+LSTM model obtained
an accuracy of 97.83% in overall detection. We then evalu-
ated the assembled model by combining the three layers and
gave the final output for the data. An accuracy of 98.22%
was acquired using the ensemble model, which is higher
than any of the previous classifiers. We also compared the
results among all three implemented models. The results can
be found in Table 3.

Models Accuracy Precision Recall F1-score

Ensemble 98.22% 92.67% 96.68% 96.21%
AE 97.96% 90.68% 87.33% 93.45%

GAN 90.28% 91.27% 92.86% 92.62%
TABLE 3. IMPLEMENTED MODELS RESULTS

Taking all the performance metrics into account, the
ensemble method best detected both normal and anomalous
data instances. The confusion matrix advised that the num-
ber of false negatives and false positives was the lowest
among all the models, indicating the model’s ability to ac-
curately identify both normal and anomalous data instances.

6. Conclusion

In this work, we conducted a literature review of deep
anomaly detection on IoT network traffic analysis. The
review has shown a growing interest in using DL methods
for the detection of anomalies and highlighted several deep-
learning models categorised by the nature of the methods.
The result of this literature review provides a foundation for
the following research on DAD analysis and highlights the
potential of DL methods for the task. We then proposed to
use ensemble techniques in current models for deep anomaly
detection in IoT network traffic analysis. The model is
evaluated in terms of accuracy, precision, recall, F1-score,
and confusion matrix.

The result of the empirical evaluation showed that the
proposed model outperformed the existing models such as
AE and GAN models in terms of precision, recall, and F1-
score. The proposed model was able to achieve over 98%
accuracy, which is significantly higher than the other mod-
els. In light of this research’s findings, we recommend using
the ensemble model method for deep anomaly detection in
IoT network traffic analysis and encourage future research
in this area to improve further the performance of Deep
Learning models for this task.



Figure 3. The flowchart of CNN+LSTM ensemble model.
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