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Abstract—In pervasive machine learning, especially in Human
Behavior Analysis (HBA), RGB has been the primary modality
due to its accessibility and richness of information. However,
linked with its benefits are challenges, including sensitivity to
lighting conditions and privacy concerns. One possibility to
overcome these vulnerabilities is to resort to different modalities.
For instance, thermal is particularly adept at accentuating human
forms, while depth adds crucial contextual layers. Despite their
known benefits, only a few HBA-specific datasets that integrate
these modalities exist.

To address this shortage, our research introduces a novel
generative technique for creating trimodal, i.e., RGB, thermal,
and depth, human-focused datasets. This technique capitalizes
on human segmentation masks derived from RGB images,
combined with thermal and depth backgrounds that are sourced
automatically. With these two ingredients, we synthesize depth
and thermal counterparts from existing RGB data utilizing
conditional image-to-image translation. By employing this ap-
proach, we generate trimodal data that can be leveraged to train
models for settings with limited data, bad lightning conditions,
or privacy-sensitive areas.

Index Terms—human behavior analysis, image-to-image trans-
lation, depth sensing, thermal imagining, action recognition

I. INTRODUCTION

Pervasive machine learning, particularly in Human Behavior
Analysis (HBA), predominantly focuses on RGB datasets. This
modality, which is favored for its accessibility, has facilitated
significant advancements in the field of HBA. However, in
some use cases, its inherent explicit visual nature is disadvan-
tageous, e.g., in settings where privacy concerns or lightning
conditions play a crucial factor.

With these limitations emerges the necessity to explore other
means of imagery. Unlike RGB imagery, thermal and depth are
less sensitive to lighting conditions and offer the advantage of
improved highlighting of human figures. Additionally, depth
provides contextual information about the environment. It is
less susceptible to noise, making these options prime choices
for sensitive HBA tasks, e.g., human action recognition within
privacy-critical settings.

Figure 1 illustrates the varying levels of privacy preservation
and lighting limitations offered by RGB, thermal, and depth
data, highlighting the reduced privacy risks and potentially
superior performance in bad lighting conditions associated
with thermal and depth data.

Integrating thermal and depth data mitigates privacy and
lighting sensitivity issues and paves the way for more efficient

(a) RGB and Depth Data in terms of privacy concerns

(b) RGB and Thermal under difficult lighting conditions

Fig. 1: Comparison of RGB, Thermal, and Depth Data

learning processes. These modalities can facilitate a more
accurate learning of human actions by clearly outlining human
forms and reducing noise [7], [21].

A notable challenge here is the relative scarcity of thermal
and depth datasets compared to the abundance of RGB.
This disparity significantly hinders the potential for advanced
research and applications in modalities beyond RGB.

Therefore, we present a novel image-to-image translation
methodology that transforms RGB into corresponding depth
and thermal data, effectively bridging the gap between these
modalities. In detail, our contributions include the following:

• Development of a Conditional Translation Pipeline: In-
stead of directly mapping from RGB to depth or thermal
images, our method conditions the translation process on
suitable depth and thermal backgrounds. This approach
enhances the accuracy and fidelity of the transformation
since the model mainly needs to synthesize the person
instead of the entire image.
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• Utilization of Accessible Resources: Our pipeline lever-
ages two upfront available resources: (1) RGB datasets
of people with corresponding action labels, captured with
a static camera, and (2) background depth and thermal
frames. The ease of acquiring these components makes
our method practical and scalable.

• Dataset Generation: By combining these resources, we
efficiently generate trimodal datasets comprising RGB,
depth, and thermal data to overcome the gap mentioned
above effectively.

• Evaluation with Action Recognition: We evaluate our
approach by training action recognition models on real
and synthetic datasets. This demonstrates its utility in
scenarios where depth and thermal data are limited.
Additionally, it shows that our approach is an effective
data augmentation strategy.

In the following, we briefly describe our proposed trans-
lation pipeline: First, we extract human segmentation masks
from the given RGB data, which act as blueprints for in-
painting humans onto depth/thermal background frames. Next,
we query a set of depth/thermal backgrounds to find the
closest matching frame to our RGB counterpart. Combining
these two ingredients with the RGB-segmented human, we
employ an image translation model to obtain the sought-after
translation. The qualitative results of this are depicted in Figure
2, showcasing our proposed methodology’s effectiveness in
synthesizing high-quality depth and thermal data from RGB
imagery.

Fig. 2: Illustration of the RGB to depth and thermal data
transformation quality.

Compared to prior image inpainting techniques, this process
allows for the seamless integration of human figures into
depth and thermal backgrounds and effectively bypasses the
traditionally complex and direct conversion.

The remainder of this paper is structured as follows.
The Related Work delves into existing research on datasets
across various modalities, mainly focusing on transforming
data from RGB to depth and thermal modalities. Then, we

introduce and detail our translation pipeline. This section
outlines the technical framework and algorithms employed
in our algorithm. Section IV evaluates the effectiveness of
various conditioning variations in our model. Here, we assess
how different conditioning approaches influence the model’s
ability to translate between modalities, offering insights into
the strengths and limitations of each method. Furthermore,
we examine the potential and performance of synthetically
generated datasets. We present an analysis of synthetic data’s
quality, reliability, and applicability compared to real-world
data, highlighting the advancements and challenges in this
domain. Finally, we conclude the paper with a summary of
our findings and discuss potential avenues for future research
in this field.

II. RELATED WORK

In general, computer vision and machine learning, the
availability of high-quality datasets plays a pivotal role in
advancing these fields. For instance, datasets such as Ima-
geNet [18], PASCAL VOC [3], and COCO [14] have played
a vital role in pushing the limits in object detection, segmen-
tation, and classification. However, their focus is primarily on
visual information in the RGB spectrum, which, while rich
in detail, presents challenges concerning privacy and lighting
conditions.

In comparison, depth datasets, such as KITTI [4], NYU
Depth V2 [19], and SUN RGB-D [20], have contributed
significantly to understanding spatial relationships in scenes.
They are particularly valuable in applications like autonomous
driving, robotics, and 3D reconstruction.

Similarly, thermal datasets are crucial for applications re-
quiring temperature mapping and night vision capabilities.
Datasets such as the OSU Thermal Pedestrian Dataset [2] offer
unique insights into thermal imaging but are often limited in
scope and diversity.

However, datasets consisting of more than one modality
are scarce. One example of a multimodal dataset is the
KAIST Multispectral Pedestrian Dataset [9], which combines
RGB and thermal imagery for pedestrian detection. Another
more privacy-sensitive example where multimodal data plays
a significant role is “WC Buddy” by Lumetzberger et al. [15],
which focuses on providing sensor-based toilet instructions for
people with dementia.

This underscores a critical need in the field of computer vi-
sion: the development of comprehensive trimodal/multimodal
datasets that integrate RGB, depth, and thermal to not only
enrich the modalities available but also to address their lim-
itations, e.g., privacy concerns with RGB and the missing
environmental context in thermal and depth.

Image-to-image translation has emerged as a pivotal area
in computer vision, focusing on converting images from one
domain to another. Pix2Pix [10] introduced a framework for
paired image-to-image translation using conditional Gener-
ative Adversarial Networks (GANs). Furthermore, specific
models have been developed for translating RGB into depth
and thermal: MiDaS [16], for instance, can estimate depth
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Fig. 3: Overview of our proposed methodology, illustrating the integration of ImageBind for obtaining matching backgrounds,
YOLOv6 and Segment Anything Model for segmenting human masks from RGB, and Pix2Pix for modality translation.

from a single monocular image. ThermalGAN [12], on the
other hand, focused on translating from RGB to thermal.

While there have been notable advancements in image-to-
image translation models for depth and thermal, there remains
room for improvement. For instance, a notable limitation of
MiDaS is that it produces inverse depth values up to a certain
scale and translation. With our proposed methodology, we
argue that such unknowns can be easily inferred through
contextual information given by the additional background
frame.

III. METHODOLOGY

Our methodology transforms RGB data into depth and ther-
mal: First, we find matching backgrounds using ImageBind [5]
and segment human masks by combining YOLOv6 [13] and
SAM [11]; Second, we employ a Pix2Pix model conditioned
on the background, the binary mask, and the RBG mask to
create thermal and depth translations. Figure 3 depicts this
high-level overview of our pipeline.

Our methodology contributes in the following ways:
1) Simplifies the prediction task using depth and thermal

backgrounds, which improves isolating the subject of
interest from the environment.

2) Employs an adjusted Pix2Pix implementation to ensure
accurate translation of subject details from RGB to the
target modality.

3) Interpolates between generated details and the prepared
backgrounds for seamless integration of the subject into
the new modality.

4) Conditioning on the cropped and masked RGB image.
The additional RGB information gives a pixel-wise
indication of object surface characteristics, such as the
presence of clothing or exposed skin, which consider-
ably narrows the distribution of plausible temperature
values.

5) Conditioning on a normalized signed distance function
(SDF) to add spatial information.

A. Locate Background

ImageBind [5] is a model designed to learn a joint embed-
ding across multiple modalities, including images, text, audio,
depth, thermal, and IMU. We use this capability to locate
background frames in the thermal and depth modalities that
closest match the given RGB data, which we describe formally
in the following:

Let fRGB(I) and fthermal(T ) be the functions that compute
the embeddings for an RGB image I and a thermal image T
respectively. For a given set of RGB images {I1, I2, . . . , In},
the individual embeddings are given by:

Ei
RGB = fRGB(I

i)

Notation for a thermal embedding Ej
thermal follows naturally.

To obtain similarity measures for an RGB image Ii to a given
set of thermal images {T 1, T 2, . . . , Tm}, we utilize the cosine
similarity SC(A,B) and calculate a score vector as follows:

Si
thermal =
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where the cosine similarity is given by:

SC(A,B) =
A ·B

∥A∥∥B∥
(1)

By aggregating scores for multiple RGB images, we obtain
an average score vector of the following form:

S̄thermal =
1

n

n∑
i=1

Si
thermal



from which we obtain the index idx∗thermal of the background
that is closest to our RGB images as follows:

idx∗thermal = argmin(S̄thermal)

Similarly, a background frame can be obtained for depth or
other domains.

B. Obtain Human Masks

To obtain human segmentation masks from RGB images, we
employ a combination of YOLOv6 [13], an object detection
model, and Segment Anything Model (SAM) [11], a versatile
segmentation tool. This combination can easily be adapted
to other use cases, e.g., animal behavior analysis, since the
underlying object detector can be swapped.

C. Pre-Process Data

Figure 4 demonstrates the extraction and cropping of the
RGB image and the normalized SDF.

SDF

Cropped RGB

Fig. 4: Visualization of extracting RGB and the normalized
Signed Distance Field.

First, an SDF is created based on the previously extracted
human mask. An SDF represents a given pixel’s distance to
the subject’s closest boundary: negative values are inside the
subject, and positive values are outside. Opposed to this, we
invert it, set negative values to zero and perform min-max
normalization. We argue that this method allows our model
to understand the spatial relationships within the image, i.e.
between the person and the background, more effectively.

Next, we extract the subject from the RGB image using a
padded bounding box which is based on the binary mask. In
the same manner, we crop background and SDF. We also mask
the person within the image, i.e. removing the background
from the RGB image. We refer to this as “Cropped RGB”
in the translation process. All these preprocessing steps are
employed to reduce the complexity of the translation task,
hence making training more stable.

Finally, we resize all inputs to a height and width of 256
pixels to maintain consistency across the dataset and to ensure
compatibility with our translation models.

D. Translate Data

Our translation network is based on the principles of the
Pix2Pix architecture [10]. However, instead of translating
within a modality, we use a five-channel input consisting of
RGB, depth/thermal background, and SDF, to translate into
depth/thermal. For our backbone, we use a standard UNet
architecture [17], with an EfficientNet-B4 [23] serving as its
encoder. Additionally, after prediction, we manually add the
background to further simplify the prediction task as the model
then only needs to learn the insertion of the human figure.

During training, we optimize a joint objective: minimizing
the L1- and BCE-loss. The L1-loss is calculated based on the
ground truth thermal/depth frame whereas for the BCE-loss,
we integrate a PatchGAN discriminator, as described in [10].
This discriminator evaluates local image patches which our
translation model needs to fool qualitatively-wise, thereby fo-
cusing significantly more on enhancing the perceptual quality
of the translated images and not only on the error L1-distance.

E. Post-Process Outputs

Lastly, our pipeline involves merging the translated cropped
subject images into their corresponding backgrounds. In detail,
we merge translated images by first dilating the original mask
using an 8 × 8 kernel. Then, an SDF is computed for the
dilated mask, with SDF values within the original mask set to
zero to focus on the border area. This SDF is inverted and
then normalized by dividing by its maximum value. Next,
masks and translated images are adjusted to align with the
original image dimensions, and the translated and interpolated
masks are extracted accordingly. Finally, the translated image
is merged into the original image by directly replacing pixels
within the original mask and performing weighted blending
at the border using the normalized SDF values to ensure a
smooth transition.

In Figure 2, we depict the final results of our translation
methodology.

IV. EVALUATION & RESULTS

For evaluation, we conduct an ablation study to assess
the effectiveness of conditioning our translation model on
different combinations of background, masks, and RGB im-
ages as input. Following this, we extend our evaluation to
a comparative analysis, where we train an action recognition
model on both synthetic and real data. This comparison aims to
demonstrate the practical applicability of our pipeline in real-
world scenarios. For this, the TRISTAR dataset by Stippel et
al. [21] plays a pivotal role which is utilized for multiple key
aspects:

• Providing background thermal and depth images for
conditioning our translation models.

• Serving the data for training our translation models.
• Acting as a benchmark for our action recognition models

trained on synthetic data versus those trained on real data.



A. Translation Performance

In this section, we evaluate the impact of conditioning our
translation model on different combinations of inputs, namely
having a background frame as input, using the normalized
SDF/binary mask, using the whole/cropped RGB image, and
adding the background frame after the prediction onto the
performance of the model. Here, we point out that it is
to assume that performance gains based on certain input
combinations will also translate well to other image-to-image
translation architectures, therefore being relevant also for
future advancements in the field.

The performance of the model is quantified using three
key metrics: Frechet Inception Distance (FID) [8], Kernel
Inception Distance (KID) [1], and Mean Squared Error (MSE).

FID and KID differ significantly from traditional metrics
like MSE in several ways: They assess the quality of images
based on their semantic features using a pre-trained Incep-
tionV3 model [22]. Instead of pixel-by-pixel comparison, they
analyze the content and patterns within the images, capturing
aspects such as texture, structure, and object presence. This
makes them more aligned with human perceptual evaluation.

In our study, we input normalized depth and thermal data
to the Inception model. Given that it was trained on the RGB
modality, we adapt these non-RGB data by duplicating it
three times to create a three-channel grayscale “RGB” image.
This approach allows us to use the pre-trained model without
modifications. However, since the data does not consist of
standard RGB, we cut at an early layer of the model to extract
lower-level features, which are more relevant and informative
for our data.

In contrast to these two measures, MSE calculates the
average squared difference between pixels of two images,
hence lacking the ability to understand the content or context
within the images.

In Table I, we present the results of our ablation study for
the depth modality.

TABLE I: Results for Depth Analysis

Background SDF Crop Add FID KID MSE

✓ ✓ ✓ ✓ 16.20021 17.91997 0.55078
✓ ✓ ✓ 34.29326 33.63969 0.53175

✓ ✓ 61.38142 57.60419 1.76927
✓ ✓ ✓ 19.01336 20.07544 0.57610
✓ ✓ 22.27072 23.33244 0.57251

Combining all input conditions (adding background, SDF,
and cropped RGB, as well as adding the background after the
translation) results in the best performance, indicated by the
lowest FID and KID scores.

This suggests that the translation under these conditions is
more semantically similar to real images as lower FID and
KID values signify closer alignment with the distribution of
real image features. However, the slightly worse MSE score
of ∼ 0.55, while moderate, indicates that there might still
be discrepancies at a per-pixel-level comparison, which is not
always indicative of perceptual image quality.

On the other hand, not adding the background to the final
translation slightly increases numerical accuracy but substan-
tially increases both FID and KID. This implies that while
the model might be numerically more precise, the semantic
integrity and the perceptual quality of the generated images
have diminished.

Similarly, completely omitting the background while main-
taining SDF and the cropped RGB leads to the highest FID,
KID, and MSE scores. This drastic increase across all metrics
underscores the significance of the background in preserving
both the semantic and pixel-level quality of the images.

The exclusion of specific conditions like SDF or the cropped
RGB, consistently resulted in a moderate increase. This in-
dicates a balanced impact on both the numerical accuracy
and the perceptual quality of the images, emphasizing that
each condition plays a crucial role in maintaining the overall
integrity and realism of the synthesized images.

In Table II, we depict the outcomes of our ablation study
for the thermal modality.

TABLE II: Results for Thermal Analysis

Background SDF Crop Add FID KID MSE

✓ ✓ ✓ ✓ 1.27067 0.42648 0.35773
✓ ✓ ✓ 3.56303 1.78465 0.53721

✓ ✓ 15.5289 9.11526 1.56718
✓ ✓ ✓ 1.0324 0.31805 0.53392
✓ ✓ 1.12273 0.34114 0.55877

Similar to the depth modality, having a background for the
model to condition plays a crucial role in the performance and
outweighs the impact of not conditioning on the cropped RGB
and SDF. This is indicated by the relatively stable FID and
KID scores. However, the numerical performance, i.e. the MSE
when not conditioning on the cropped RGB and SDF, is worse
which suggests that, while the overall semantic integrity of the
images may be maintained, the precise pixel-level accuracy
suffers.

B. Action Recognition Performance
We first start with a performance comparison of models

trained solely on synthetic/real data. For this we employ the
3D ConvNet proposed by [21] which is tailored explicitly for
action recognition on the TRISTAR dataset. Quantitatively,
we assess their performance by evaluating accuracy, precision,
recall, and F1 score.

The results of this are summarized in Table III. Comparing
the two variants, we observe a ∼ 12% reduction in F1 score
when training solely on synthetic data. Naturally, reduced
performance is to be expected, and hence we regard its
performance as acceptable.

Next, we integrated a second model closely aligned with
the ResNext architecture [6]. We train this model with three
different data setups: purely synthetic data, a mix of 10% real
and 90% synthetic data, and exclusively real data.

We summarize these results in Table IV. Similar to the
previous experiment, training solely on synthetic data is ex-
pected to be worse. However, the model trained with a blend of



TABLE III: Action Recognition Performance (3D ConvNet)

Test Metric Synthetic Data Real Data

Accuracy 0.8669 0.907
F1 0.5799 0.707

Precision 0.6449 0.813
Recall 0.5268 0.626

synthetic and real data achieves almost identical performance
to the model trained only on real data. This result highlights
the success of our methodology as an augmentation step,
especially when real trimodal data is scarce.

TABLE IV: Action Recognition Performance (ResNext)

Test Metric Synthetic Data Synthetic Augmentation Real Data

Accuracy 0.8712 0.90462 0.90409
F1 Score 0.5898 0.69637 0.69684
Precision 0.6636 0.78246 0.77610

Recall 0.5307 0.62734 0.63227

V. CONCLUSION

In this work, we demonstrated the effectiveness of cross-
modal translation, i.e. from RGB to thermal and depth modal-
ities. Our methodology leverages a Pix2Pix model for image-
to-image translation within a novel framework that adds sev-
eral additions to its inputs. The ablation study shows that
adding the thermal/depth background, the normalized SDF,
and cropping the RGB image, enhances the performance of
the model. This is indicated by a reduced MSE and increased
semantic quality, reflected in improved FID and KID scores.
Additionally, our action recognition experiments underscored
the effectiveness of employing synthesized data within the
training process: using only 10% real data and 90% achieves
on-par performance as models trained only on real data,
illustrating that our methodology can be leveraged for settings
with limited data. Lastly, the modular nature of our framework
allows for the seamless integration of new components in the
future. For instance, more sophisticated alternatives, such as
diffusion probabilistic models or transformer-based architec-
tures can be employed in the future.
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