
Towards QoS Prediction Based on Composition Structure
Analysis and Probabilistic Environment Models

Dragan Ivanović
Universidad Politécnica

de Madrid
idragan@clip.dia.fi.upm.es

Peerachai Kaowichakorn
Universidad Politécnica

de Madrid
p.kaowichakorn@gmail.com

Manuel Carro
Universidad Politécnica de Madrid

and IMDEA Software Institute, Madrid
manuel.carro@imdea.org

Abstract—Complex software systems are usually built by
composing numerous components, including external services.
The quality of service (QoS) is essential for determining the
usability of such systems, and depends both on the structure
of the composition and on the QoS of its components. Since the
QoS of each component is usually determined with uncertainty
and varies from one invocation to another, the composite system
also exhibits stochastic QoS behavior. We propose an approach
for computing probability distributions of the composite system
QoS attributes based on known probability distributions of the
component QoS attributes and the composition structure. The
approach is experimentally evaluated using a prototype analyzer
tool and a real-world service-based example, by comparing
the predicted probability distributions for the composition QoS
with the actual distribution of QoS values from repeated actual
executions.

I. INTRODUCTION

Service-oriented [1], [2] and component-based software de-
velopment have become widely used software construction
approaches. The possibility of extensively reusing existing
services or components provides higher maintainability and
increases cost-efficiency. It also allows developers to design
and implement complex systems by combining and extending
existing reliable building blocks by means of, for example,
service compositions in the form of orchestrations or chore-
ographies.

Aside of external Web services deployed on the Internet,
a composition can involve backend application modules, pro-
gramming language APIs, or third party components. Most
of those components are usually seen as black boxes, i.e.
the developers know close to nothing about them except for
their functional descriptions. The implementation, deployment,
environment, location, etc. are all managed by external service
providers and are out of reach of service consumers. With
such information being unavailable, it is admittedly difficult
to analyze the performance of the system to be implemented.

Accordingly, engineering service-oriented systems which
respect a given Service Level Agreement (SLA) [3] is hard.
Different compositions can implement same functionality, but
may, in principle, yield different Quality of Service (QoS)
characteristics. Besides, compositions may be able to choose
between several services that provide the same functionality,
but different QoS. The goal would be to find a composition
that fulfills the functional requirements and, at the same time,
gives an acceptable (and ideally optimal) level of QoS.

QoS prediction on the composition level is an important
and challenging task in the field of service-oriented systems
and other complex systems whose boundaries and behavior
are not fully specified. Analyzing and predicting composition
QoS early during development and pre-production stages
can greatly reduce the amount of rework and the cost of
maintenance, help the adaptation of software architecture,
and increase the overall software quality by exploring design
decisions that minimize the risk of violating an SLA. Dur-
ing execution, predicting SLA violations ahead of time can
trigger adaptive measures aimed at avoiding the violations or
minimizing their undesired effects.

II. MOTIVATION

In a service-oriented system, the composition QoS depends
both on the QoS of the individual component services, and on
the structure and logic of the composition. This basic model
can be further refined by decomposing the QoS observed by
the remote client into the effects of the execution environment,
such network and processing speeds, and the net (local) QoS
behavior of the component services proper.

Stochastic properties of the composition and the component
service QoS have been sometimes described using fixed av-
erages or medians. These are neither precise nor informative
enough to compute the probability with which an actual QoS
value can be expected to fall inside some interval of interest:
knowing that some average response time is 3 seconds does not
help to know the probability that it answers in 2.5 seconds or
less, which is relevant from the point of view of both providers
and customers.

An alternative approach is to approximate the ranges of ac-
tual QoS values for the components with bounds of admissible
values. This is an advantage over the use of constants: it can,
at least, give an approximation to the question “what is the
probability that the service answers in 2.5 seconds or less”.
However, in order to retain some degree of completeness (i.e.,
cover situations that can happen), bounds for the admissible
values often need to be enlarged, especially taking into account
that services often exhibit a “long-tail” behavior. Having to
account for these extreme points reduce the meaningfulness
of the observations: bounds express in the end a uniform
distribution, and tell us that any value within range has the
same probability, which is normally not the case: outliers,

which are are in principle uncommon, will unnecessarily skew
the results without contributing to the accuracy of the analysis.

Additionally, and since we are dealing with artificial com-
putational systems whose macro-level behavior can ultimately
be traced to that of a discrete system, the actual behavior
exhibited is often complex and multi-modal. Therefore we
claim that a much higher level of accuracy can be attained by
representing and computing the component and composition
QoS variability directly with full-fledged probability distribu-
tions and operations on them [4].

The challenge here is to obtain the probability distribution
of the QoS of compositions from previously known probability
distributions of QoS for the component services. Additionally,
we want to be able to do that statically and at design time,
for which a (faithful) description of the composition is used.
In any case, we want the prediction to be obtained without
executing the real composition: doing online testing by re-
peatedly executing the deployed composition and measuring
its QoS may be impossible or undesirable for many real-world
and mission-critical applications in live systems that involve
privacy, security and transactions. Using a precise model for
predictions makes it possible, for example, to study the effect
of changes before deploying them.

To answer this challenge, the analysis must take into account
the structure and logic of the composition. This can always be
provided given by a developer (and this is the assumption we
made in this piece of work), or, if this is not possible, could in
principle be approximately inferred from adequate functional
specifications (e.g., interaction protocols, abstract workflows,
state machines), process mining [5], etc. We propose an ap-
proach that is based on interpretation of the (abstract) compo-
sition structure in a probabilistic domain, which takes as input
empirically collected QoS distribution profiles for component
services, and returns a computed probability distribution for
the composition QoS in a single run. The proposed approach
maintains a probabilistic description of the composition state
variables, together with operations (e.g., integer arithmetic),
whose values direct the algorithmic behavior, and thus the
overall composition QoS.

This computed probability distribution for the composition
QoS can be used to make several predictions. Notably, it can
be used to find the probability that QoS corresponding to
some execution of the composition will be less than some
given quantity (i.e., quoting a previous example, what is the
probability that the service answers in 2.5 seconds or less?).
Note that SLA constraints are often expressed in a similar way.

III. BACKGROUND AND RELATED WORK

A. Quality of Service

In distributed and service-oriented environments, QoS at-
tributes are increasingly important factor in service modeling
and selection, and several QoS taxonomies have been pro-
posed [6]–[8]. QoS attributes typically relate to execution time,
the required network bandwidth, cost, availability, and other
relevant performance and user experience factors. Several
standards have been proposed for describing service QoS

attributes and reasoning about them [9], [10]. The desirable
and acceptable levels of QoS is usually specified in a Service
Level Agreement (SLA) [3] between the service provider and
consumer. Thus, the analysis of QoS is very important to both
service consumers and providers, who have to ensure that QoS
of the service does not violate the value given specified in
SLA.

B. QoS Analysis

A relatively recent summary of analytic quality assurance (of
which QoS analysis is a subset) for Service-Based Systems
can be found in [11].

The principles of the classic approaches to analyzing QoS
for service compositions have been studied by Cardoso, in a
general case [12], and particularly in the context of BPEL
processes [13]. That approach is usually known as QoS ag-
gregation, i.e., the computation of the aggregate QoS values
for the whole composition from the QoS of the individual
component services, and was extended by several authors [14].
Most of the QoS aggregation approaches concentrate on the
control structure without considering data operations, and
express their results as the expected values, which are not
sufficient for reasoning about probability of exceeding limits.

Some more recent approaches try to attain a higher level
of precision by employing complexity analysis to infer the
upper and lower bounds of QoS based on input data and
the environmental factors (e.g., the processing and network
speeds) [15]. Other proposals [16] use constraint modeling to
predict potential and/or imminent SLA violations at runtime.
However, both of these approaches operate with the upper and
the lower bounds of the component and composition QoS, and
thus do not capture the shape of the distribution of values on
a finer level of accuracy.

A number of other recent proposals that are concerned
more with predicting SLA violations than with computing the
composition level QoS (or their distributions), are based on
data mining [17], online testing [18], and model checking [19].
We argue that the information that can be derived from
computed composition QoS distribution is much richer than
a yes/no prediction of some predefined SLA violation.

On the other hand, a recent proposal by Zheng et al. [4]
works directly with the QoS statistical distributions, but uses
a very abstract composition model that is remote from the
practical implementation languages and does not take into
account internal composition data and operations, which is
bound to give less accurate results.

Another interesting recent proposal by Kattepur et al. [20]
uses probability distributions to drive SLA negotiation and
optimization for service compositions that are expressed in a
Orc composition language. While the focus of that approach
is complementary to the one of the current paper, it does
not take into account the relationship between composition
internal state and data operations (including the initial inputs)
and its QoS, which is a major concern in the present paper.

IV. METHOD

A. Using Discrete Probability Distributions

We propose a method to represent and compute uncertainty of
service composition QoS, the QoS of the component services
it invokes, and of its internal state using a uniform frame-
work that operates on probability distributions and relies on
interpretation of composition control and data. This approach
offers several advantages. Firstly, probability distributions give
a much higher level of details than an aggregate central
tendency characterization, such as a mean or mode, and
do not depend on any assumption of normality, uniformity,
etc. of the behavior of the underlying processes. Secondly,
empirical observations can be readily converted into the form
of probability distributions and fed as inputs to the method.
And thirdly, the results from a single analysis of a service
composition are equivalent to those that would be obtained
from an exhaustive Monte Carlo-style simulation in which
the composition is used as a “black box,” without taking
into account the specifics of its control constructs and data
operations.

On the conceptual level, we model service compositions
with four main ingredients: the composition structure, the
internal composition data (i.e., state), the QoS attribute of
interest, and the component services used in the composition.

The composition structure describes the control constructs
and data operations. The composition data includes the input
given to the composition, as well as any data it uses to drive
looping and branching decisions that shape the composition’s
algorithmic behavior and thus its overall QoS.

The QoS attribute of interest may involve execution time,
amount of data sent/received, required bandwidth, number
of general or specific operations or component invocations
executed, monetary utilization cost, availability, or other per-
formance/quality attributes that can be suitably quantified
using some agreed unit of measure. The method is parametric
to the choice of the QoS attribute, and only requires (i) the
corresponding QoS probability distribution for each compo-
nent service, and (ii) a suitable aggregation operator for service
invocations (see Section IV-E below). For clarity of exposition,
in the text that follows we treat a single QoS attribute, but two
or more QoS attributes can be analyzed simultaneously and
independently of each other.

In the formal model, we use the concept of an integer
random variable to represent the QoS attribute of interest
(such as the execution time) for the composition and each of
its component services, as well as the composition’s internal
state variables. For the QoS attributes, the values are expressed
as integral values in some appropriate units of measure, which
are precise enough for the particular type of analysis. For
the state variables, the domain is either natively discrete (for
enumerated and integral types), or is discretized using some
appropriate abstraction of data (scalar or structure) size.

The three main groups of the random variables in our
composition model, whose typical relationships are shown in
Figure 1 are:

X control constructs
data operations

inputs

updates

S Q
component service QoS

processing
steps

Fig. 1. A typical relationship between the key components.

• X=X1X2X3 . . .Xn represent the internal composition state
variables, including those that represent parts of the
incoming and outgoing messages. They typically start
from some given input (distribution), and then change
depending on the control flow and data operations.

• S = S1S2S3 . . .Sm represent the QoS attributes for each
component service used in the composition. These typi-
cally reflect the state of the composition’s environment,
and their probability distributions come from the empiri-
cally collected data.

• Q is the QoS attribute for the composition. It changes in
response to both the behavior of the component services
S, and to concrete processing steps in the composition,
which are interdependent with the state variables X.

Next, we represent the values of the random variables from
the set QXS of N = n+m+1 random variables with a discrete
joint probability distribution, which is a function:

ρ : ZN → [0,1] (1)

If Y1,Y2, . . . ,Yk (0≤ k≤N) are distinct variables from QXS,
and V is an ordered set of N − k remaining variables from
QXS, we write:

ρ(Y1 = y1,Y2 = y2, ...,Yk = yk,V = v) (2)

to denote the probability that Y1,Y2, . . . ,Yk and V have exactly
the values y1,y2, . . .yk ∈ Z and v ∈ ZN−k, respectively. When
it is clear from the context to what random variables we refer,
we write (2) simply as ρ(y1,y2, . . . ,yk,v).

We require that ρ is such that ∑v∈ZN ρ(v) = 1 which means
that there exists exactly one true assignment of integer values
to the random variables from QXS. In a singular case, when
it is precisely known for some (q,x,s)∈ZN that Q = q, X = x
and S = s, then ρ(q,x,s) = 1, and for all other arguments ρ

gives zero. In a non-singular case, we can understand ρ as
a lottery from which an actual assignment of values to the
random variables is drawn.

In a computer approximation of ρ , the ranges of feasible
values for each random variable are always finite, and outside
them ρ gives zero. We assume that these ranges are either
given at the input to the analysis, or are maintained throughout
computations in a manner that is implementation dependent.

B. Probabilistic Interpretation of Compositions

The core of our method is a technique to interpret the control
structure and data operations of a given composition in the

C ::= (composition construct)
〈variable〉 := E (assignment)
| call 〈service〉 (service invocation)
| if B then C else C (conditional)
|while B do C (while loop)
|begin C[; C]∗ end (sequence)
| skip (do nothing)

E ::= (integer expressions)
〈numeral〉 | 〈variable〉 | E ◦E (◦ ∈ {+,−,∗,div,mod})

B ::= (Boolean conditions)
EρE | B ∧ B | B ∨ B | ¬B (ρ ∈ {>,≥,=, 6=,<,≤})

Fig. 2. Abstract syntax for composition constructs.

X1 X2 . . . Xn

S1 S2 . . . Sm

Q

(a) Initial conditions.

X1 X2 . . . Xn

S1 S2 . . . Sm

Q

(b) After calling S1 and S2.

X1 X2 . . . Xn

S1 S2 . . . Sm

Q

(c) After X1 := X2 +Xn.

X1 X2 . . . Xn

S1 S2 . . . Sm

Q

(d) Under condition X1 > X2.

Fig. 3. Initial conditions and dependencies.

probabilistic domain, by computing with discrete probability
distributions rather than with singular values.

Figure 2 gives a simple abstract syntax for several com-
monly supported composition constructs, including assign-
ments and integer arithmetic, service invocations, conditionals,
loops, and sequential flows.

The interpretation of each construct starts from some ρ

before the construct and produces a ρ ′ after the construct
according to the rules (discussed below) that express the
semantics of the construct.1 The interpretation is sound in the
sense that all relevant combinations of the random variable
values and probabilities from the input distribution are taken
into account and represented in the result. This means that
the after distribution ρ ′ from a single run of the probabilistic
interpreter describes all possible executions that are consistent
with the before ρ .

C. Initial Conditions and Independence

The interpretation starts from an initial distribution ρ in which
all random variables are independent of each other, and each
has its own primitive distribution of values, symbolized with
unconnected circles in Figure 3(a). For each Xi (1 ≤ i ≤ n),
ρXi : Z→ [0,1] describes the initial value of the state variable,

1Note that this is similar to the idea of before value and after value used
to model assignments logically.

x1 ρX1

0 1.0
x2 ρX2

1 0.3
2 0.5
4 0.2

xn ρXn

0 0.4
1 0.6

x1 x2 xn ρ ′X1|X2,Xn

1 1 0 1.0
2 1 1 1.0
2 2 0 1.0
3 2 1 1.0
4 4 0 1.0
5 4 1 1.0

x1 x2 xn ρ ′X1,X2,Xn

1 1 0 0.12
2 1 1 0.18
2 2 0 0.20
3 2 1 0.30
4 4 0 0.08
5 4 1 0.12

Fig. 4. Sample probabilities for X1 := X2 +Xn.

which may be singular or represent the distribution of input
messages. The aggregate state distribution ρX : Zn→ [0,1] is
computed as:

ρX(x1,x2, . . . ,xn) = ρX1(x1)×ρX2(x2)×·· ·×ρXn(xn) (3)

Next, for each Sj (1 ≤ j ≤ m), ρSj : Z→ [0,1] represents a
distribution obtained by tabulating relative frequencies of the
empirically recorded QoS for the corresponding service. The
aggregate distribution ρS : Zm→ [0,1] is computed as:

ρS(s1,s2, . . . ,sm) = ρS1(s1)×ρS2(s2)×·· ·×ρSm(sm) (4)

Finally, ρQ : Z→ [0,1] describes the initial value for the
composition QoS, Q. It is normally singular, as the starting
execution time, cost, availability of other quality attribute is
the part of the QoS attribute definition.

From these components, the overall ρ is computed as:

ρ(q,x,s) = ρQ(q)×ρX(x)×ρS(s) (5)

This initial case of full independence is modified by service
invocations and assignments. For instance, after invoking the
component services S1 and S2, Q is no longer independent,
which is symbolized with arrows in Figure 3(b). In the after
ρ ′ of (5), the independent ρQ(q) is replaced with ρ ′Q|S1,S2

(q |
s1,s2) which is the conditional probability of Q = q given
S1 = s1 and S2 = s2. To simplify the analysis, we assume that
the component service QoS distributions do not change and
remain independent during the execution of the composition.

D. Assignments and Arithmetic

An assignment has the form X := E, where X is from X and
E is an arbitrary expression from Figure 2 which may involve
any number of variables from X, including possibly X. The
after distribution ρ ′ needs to satisfy the condition:

ρ
′(x,v) = ∑{ρ(u,v) | x = E[u,v]} (6)

where E[u,v] represents the result of E for X = u and V= v. In
(6), the probability for (x,v) in ρ ′ aggregates the probabilities
of all tuples (u,v) form ρ where the expression E evaluates
to x, and for all other tuples, ρ ′ gives zero.

In general, assignments make the variable to the left of
“:=” dependent on all those appearing in E. For instance,
Figure 3(c) shows the reconfiguration with new dependency

arrows leading from X2 and Xn to X1 after (b) and X1 :=
X2 + Xn. These new dependencies replace the independent
probability ρX1(x1) from (3) with the conditional probability
ρ ′X1|X2,Xn

(x1 | x2,xn) which tells the probability of X1 = x1 given
X2 = x2 and Xn = xn.

Computing the conditional distribution ρ ′X1|X2,Xn
is straight-

forward. Figure 4 shows sample before and after distributions
for the same example of assignment (only for feasible values,
whose probabilities are greater than zero). The before ρX1
is discarded. Note that ρ ′X1|X2,Xn

is crisp, because the arith-
metic operations are deterministic. The after state distribution
ρ ′X1,X2,Xn

is computed as ρ ′X1|X2,Xn
×ρX2 ×ρXn .

Note that the computation of ρ ′ by introducing the condi-
tional distributions satisfies the condition (6), and its compu-
tational cost depends only on the size of feasible intervals of
the variables involved in the expression.

An important aspect of the probabilistic assignments and
arithmetic is that they can be used for computing both the
composition state variables from X, and for updating the
composition QoS represented by Q from S in a unified manner.

E. Service Invocation

A service invocation of the form callSi affects the composition
quality Q by composing its previous distribution of values
with the random variable Si that represents the component
service’s QoS. For cumulative QoS attributes, such as the
cost or execution time, which add up from one activity in
the execution trace to another, this update can be represented
as:

Q := Q+Si (7)

which is a special case of the assignment whose effects are
computed using equation (6). For other types of QoS attributes,
like availability, that represent probability, + in (7) needs
to be replaced with ×, or, in general, with an appropriate
aggregation operator.

If the execution of the invoked service sets some compo-
sition state variable X, e.g., one that holds the service result,
that can be modeled by replacing the factor that correspond to
X in the after ρ ′X with the distribution of the service results.

This approach assumes that both the QoS and the results of
the invoked service do not depend on the data that is passed to
it as an input message, which is the only assumption we can
make without further knowledge of the internal structure of
the invoked service and when relying only on the empirically
collected data. If, however, we know the structure of the
invoked service, we can obtain much more precise results by
a probabilistic interpretation of its definition, starting from the
known distributions of its inputs, which would give both the
distribution for the service quality Si and the distribution for
its outputs, using again the techniques we present in this paper.

F. Sequential Composition

A sequential composition of k constructs has the form:

begin C1; C2; . . . ; Ck end (8)

where each Ci executes after Ci−1 (for 1 < i ≤ k). If the
interpretation of each construct Ci (1≤ i≤ k) computes after
ρi from the before ρi−1, then the whole sequence (8) computes
after ρ ′ = ρk from the before ρ = ρ0.

G. Conditionals

We first look at the conditional construct of the form:

if B then C1 else C2 (9)

where B is a Boolean condition and C1, C2 are the nested
constructs. If v represents the value of all random variables
from QXS, then we can express the probability of executing
the then part as:

p = ∑{ρ(v) | B[v]} (10)

where B[v] represents the truth value of B when V = v. If
p = 1 or p = 0 we continue simply by interpreting C1 or C2,
respectively.

If 0 < p < 1, the initial distributions ρ1 for C1 and ρ2 for
C2 need to reflect the condition B. We have:

ρ1(x,v) =

{
0, ¬B[x,v]
ρ(x,v)/p, B[x,v]

(11)

and

ρ2(x,v) =

{
ρ(x,v)/(1−p), ¬B[x,v]
0, B[x,v]

(12)

which ensure the linear decomposition:

ρ = p×ρ1 +(1−p)×ρ2

If the probabilistic interpretation of C1 produces ρ ′1 from ρ1
and that of C2 produces ρ ′2 from ρ2, the result for the whole
construct (9) will be their linear combination:

ρ
′ = p×ρ

′
1 +(1−p)×ρ

′
2 (13)

To practically separate ρ into ρ1 and ρ2, it is sufficient to
separate the values of the variables involved in the condition
B. Rather than performing a comprehensive filtering of ρ in a
straightforward implementation of (10), (11) and (14), we can
group and split only the values of the random variables from
X that appear in B.

Figure 3(d) gives an example of grouping of X1 and X2 after
(c) and under the condition B ≡ X1 > X2. First, ρX1|X2,Xn and
ρX2 are replaced by:

ρX1,X2|Xn = ρX1|X2,Xn ×ρX2

which inherits X1’s dependency on Xn, and whose values
(continuing the assignment example from Figure 4) are given
in the table on top of Figure 5. Next, the table is split into
two cases, B and ¬B, and the value of p (10) is computed by
multiplying with the probabilities of the dependencies, in this
case Xn.

x1 x2 xn ρ ′X1,X2|Xn

1 1 0 0.3 ¬B
2 1 1 0.3 B
2 2 0 0.5 ¬B
3 2 1 0.5 B
4 4 0 0.2 ¬B
5 4 1 0.2 B

x1 x2 xn ρ ′X1,X2|Xn
ρXn

2 1 1 0.18
3 2 1 0.30
5 4 1 0.12

Σ : 0.60 ← p

x1 x2 xn ρ ′X1,X2|Xn
ρXn

1 1 0 0.12
2 2 0 0.20
4 4 0 0.08

Σ : 0.40 ← 1−p

Fig. 5. Grouping and splitting under X2 > X1.

H. Loops

Upon encountering a loop construct:

while B do C1 (14)

where B is a Boolean condition and C1 is the loop body, the
probabilistic interpreter unfolds it into the conditional:

if B then begin (15)
C1; while B do C1

end
else

skip

which is then executed according to the rules from the previous
subsection on conditionals. During the interpretation of the
then branch, the interpretation will again encounter a copy of
(14), which will be again unfolded into a nested conditional
with the shape (15). Although in the most general case, this
unfolding process may continue indefinitely, we are here inter-
ested only in the cases of the terminating service compositions,
which are a vast majority of the service compositions in use.2

We note that, in case of need, there are currently sophisticated
termination analyses [21] which can decide automatically
whether a given piece of code will terminate or not for generic
inputs.

I. Interpreting the Results

We are typically interested in the probability Pr[Q≤ a] which
expresses the probability that the composition quality Q does
not exceed some limit a∈Z. This probability can be computed
from the resulting ρ ′ as follows:

Pr[Q≤ a] = ∑
q≤a

∑
v

ρ
′(q,v) (16)

where v is a tuple of values for all random variables from
XS. Note that this means that in practice we are typically
not interested in knowing the probability of some value: the

2Of course there classes of systems, such as reactive systems, which are
not expected to terminate, but these are out of scope for this paper and would
likely need a different kind of treatment.

?− analyze(if(x>3, call(s1), call(s2)),
[x=[0−0.2,2−0.4,5−0.4]],
[s1=[2−0.3,4−0.5,10−0.2],
s2=[1−0.3,3−0.4,9−0.3]],

QoS
).

QoS = [1−0.18, 2−0.12, 3−0.24, 4−0.2, 9−0.18, 10−0.08]

Fig. 6. Sample analyzer invocation.

question “what is the probability that the process finishes in
3 seconds” is usually uninteresting, and it can even be argued
that it tends to zero.

Other interesting results can be easily derived from the
Pr[Q ≤ a], namely Pr[Q > a] = 1− Pr[Q ≤ a], Pr[Q ≥ a] =
1−Pr[Q < a], and Pr[Q < a] = Pr[Q≤ a−1]. Also, if we are
interested in knowing the probability that the value of Q lays
between some bounds a and b (a ≤ b), that can be easily
computed as:

Pr[a≤ Q≤ b] = Pr[Q≤ b]−Pr[Q≤ a−1]. (17)

This is necessary to answer, for example, “what is the proba-
bility that the process finishes in 2.95 to 3.05 seconds”.

V. IMPLEMENTATION NOTES

A fully-functional prototype of the tool has been implemented
in Prolog [22]. We have used it to evaluate experimentally the
accuracy of our proposal in Section VI.

The main reason for using Prolog is the ease of symbolic
representation and manipulation, for both the abstract syntax
of compositions and the data on probability distributions.
The automatic memory management of Prolog (as in other
declarative languages) also helps in quickly producing working
prototypes.

The tool receives as input the (abstract) syntax of the com-
position, a description of the observed QoS for the services,
and the expected values of the environment variables. The tool
interprets the program in a domain of probability distributions
and gives as result the expected QoS (time, in our examples).
While we are not using it in this paper, the tool also produces
the distributions of the internal and output variables of the
composition.

The analyzer receives as input the composition definition
(in abstract syntax), the initial distributions of values for the
state variables, and the QoS distributions for the component
services. Its output is the QoS distribution for the composition
for the given inputs.

A sample invocation of the analyzer (for the execution time)
is shown in Figure 6. The first argument is the representation
of the composition structure using Prolog terms, in this case
a simple conditional that calls either service S1 or service
S2 depending on the value of the input message X. The
second argument represents the initial distribution for the state
variables, here only x. The distribution is specified as a list
whose members have the form i−pi, where i∈Z is a feasible

value, and pi ∈ (0,1] is the probability Pr[X = i], such that
∑i pi = 1.3

The third argument to analyze is the list of the execution
times for services S1 and S2, in some suitable unit of measure.
Finally, the fourth argument QoS stands for the distribution of
the execution times of the composition, which is returned as
the result after executing analyze/4. The interface includes
also calls to read and write data from and to files.

VI. EXPERIMENTAL VALIDATION

In this section we present the design, conduct and results
of several experiments whose aim is to evaluate accuracy of
QoS the proposed method when used for predicting QoS of a
service composition.

A. General Experimental Setup

The experiment is conducted on a fully-deployed service
provision/consumption system, and focuses on the execution
time as the QoS attribute of interest. The collected execution
times corresponding to actual executions of the composition,
obtained from a large number of repeated executions, are
compared with the predicted distribution of the composition
execution time from the single run of the analyzer, to asses
the accuracy of the predictions provided by the method.

Services are implemented as Java servlets and deployed on
Google App Engine [23], a Platform-as-a-Service cloud. The
composition is implemented as a client-side Java application
that connects to the services, sends the requests, receives
the responses, and records the elapsed time. The time is
measured and predicted in nanoseconds. The functionality of
the composition and the individual services varies from one
experiment to another, and is explained below.

The client-side composition code is repeatedly executed
to produce the distribution ρE for the actual composition
execution time, represented by the random variable TE. The
distribution ρP of the predicted execution time TP, is produced
from the single run of the analyzer.

The execution time distributions for the services, needed
as the input to the analyzer, are the computed from relative
frequencies of the empirically collected values from a separate
set of several hundreds of individual service invocations.

The composition and the services were written to use all
of the structural patterns presented in the previous section
in order to validate different combinations of before-to-after
distribution computations used in the interpretation method.
The algorithms run by the client and the services are given to
the analyzer in the abstract syntax representation.

B. Accounting For Network Variability

The execution time analysis needs to take into account the
stability of network throughput. Running non-trivial examples
1000 times to obtain the empirical execution time distributions
for the component services and the whole composition can
take more than 2 hours, and changes in the network conditions
during that time can introduce inaccuracies in the result. This

3Note that “−” here is a data constructor, and not a subtraction sign.

begin
x := 0;
while x < 5 do begin

call MatrixMultiplicationService;
x := x + 1

end
end

Fig. 7. Experiment one composition structure.

is practically unavoidable in a realistic WAN setting, such as
the one used in our experimental setting.

In order to find out how much network variability affects
our results, for each component service we measured time both
on the client and the remote end:

1) Total execution time (ta) is the time observed on the
client (i.e., composition) end. It includes the time needed
to transmit messages and to execute the component
service logic.

2) Net execution time (te) is measured on the remote (i.e.,
component service) end, and is passed to the client
side along with the service results. It excludes the time
needed to transmit messages.

3) Network transmission time (tn) is computed as ta− te on
the client side.

C. Experiment One: Matrix Multiplication

This experiment aims at testing the accuracy of the predic-
tion in cases involving loops. The deployed remote service
performs matrix multiplication. It receives two matrices from
the composition, and returns their product. In order to obtain
significant execution times, the composition sends large square
matrices with dimensions 100×100 or greater. Figure 7 shows
the structure of the composition.

To compute the service execution time distributions needed
by the analyzer, the multiplication service is called 500 times,
and for each invocation the three measurement times (total ta,
net te, and network tn) are recorded.

The composition performs five invocations of the matrix
multiplication service, and is invoked 500 times, giving the
total of 2.500 component service invocations. The distribu-
tions ρEa, ρEe, and ρEn for the respective actual composition
execution (total, net, and network) times TEa, TEe, and TEn
are obtained by measurement, and the analyzer produces the
distributions ρPa, ρPe, and ρPn for the respective predicted
times TPa, TPe, and TPn..

D. Experiment Two: Sorting

In this experiment tests the accuracy of the prediction of
a more complex composition which uses all the patterns
mentioned in the previous section.

Two Java servlets are implemented to provide sorting ser-
vices, one for BubbleSort and another one for QuickSort. Both
services receive an array of integers as input and return a sorted
array to the client by using its respective sorting algorithm.

A client-side composition creates 10 arrays of integers
between 0 and 99. The size of each array is 1000 elements to
ensure significant sorting times for the observation. The client

begin
// Input: value of n from 0 to 9

// Choosing the sorting mode
if n < 2 then

m := 1;
else if n >= 2 and n < 5 then

m := 2;
else if n >= 5 and n < 10 then

m := 3;

x := 0;

// Sort depending on the mode
if m = 1 then // bubble sort

while x < 10 do begin
call BubbleSortService;
x := x + 1

end

else if m = 2 then // quick sort
while x < 10 do begin

call QuickSortService;
x := x + 1

end

else if m = 3 then begin // mix sort
while x < 5 do begin

call BubbleSortService;
x := x + 1

end
while x < 10 do begin

call QuickSortService;
x := x + 1

end
end

end

Fig. 8. Experiment two: composition structure.

then connects to the servlet as same as in the first experiment
to record the total/net execution and the network times.

To generate service time distributions for the analyzer, each
service is invoked 500 times, and the relative frequencies of
the collected ta, te and tn values are used to build the corre-
sponding input distributions for the analyzer, which computes
the distributions ρPa, ρPe, and ρPn of the respective predicted
composition times TPa, TPe, and TPn.

Figure 8 shows the algorithm used by the composition. The
input is variable n which determines the sorting mode, which
is chosen with uniform probability from the range 0..9. Based
on n, the mode m is computed, so that it gets value 1 in 20%
of time, value 2 in 30% of time, and value 3 in 50% of time.

The composition is executed 500 times, and the distribu-
tions ρEa, ρEe, and ρEn of the respective actual composition
execution times (total, net, and network) TEa, TEe, and TEn,
are recorded, and the distributions of the respective predicted
times TPa, TPe, and TPn are again obtained from a single run
of the analyzer.

E. Experimental Results

Figures 9, 10, and 11 show the comparison between the
predicted probability Pr[TP < t] and the actual probability
Pr[TE < t] for the total, net, and network times, respectively
in Experiment One. The corresponding comparisons between

Fig. 9. Experiment 1: Comparison Between Pr[TPa < t] and Pr[TEa < t]

Fig. 10. Experiment 1: Comparison Between Pr[TPn < t] and Pr[TEn < t]

the predicted and actual probabilities in Experiment Two are
shown in Figures 12, 13, and 14. Note that Figures 9 and 11
(resp. Figures 12 and 14) look identical. The reason is that,
since they represent total time and network time, the difference
between them is net time, which is comparatively small.

The visualization of both experiments suggest the same
conclusion. The prediction fits very well with the actual
execution. Figures 9 and 12 illustrate that the overall predicted
execution time is not perfect. However, Figures 11 and 14
show that most of the errors come from the network transmis-
sion time. Additionally, Figures 10 and 13 clearly show that
the net execution time prediction (which excludes the network
transmission time) has a very small error. According to these
figures, it can be concluded that the prediction is very precise.

Fig. 11. Experiment 1: Comparison Between Pr[TPe < t] and Pr[TEe < t]

Fig. 12. Experiment 2: Comparison Between Pr[TPa < t] and Pr[TEa < t]

Fig. 13. Experiment 2: Comparison Between Pr[TPn < t] and Pr[TEn < t]

Note that the cumulative probability graphs shown in the
figures are deceptively smooth, due to the great number of
data points. In fact, the points in probability distributions are
rather noisy, but when added together they exhibit an relatively
smooth increase in the cumulative probability.

F. Error Estimation

To further assess the adequacy of our prediction, the Mean
Square Error (MSE) is calculated in order to evaluate the error
of the prediction (Tables I and II), using the following formula:

MSE =
1

tmax− tmin

tmax

∑
t=tmin

(Pr[TP < t]−Pr[TE < t])2 (18)

The smaller the MSE, the more accurate the prediction is.
As the MSE gives just a number which is a raw approximation

Fig. 14. Experiment 2: Comparison Between Pr[TPe < t] and Pr[TEe < t]

of fitting, it would be desirable to make this comparison
against other prediction technique. This is difficult on one
hand because it is very time-consuming, and on the other
hand because as most papers / studies do not make the source
code and all of the details of their benchmarks accessible.
Therefore it was decided to take a different path in order to
test the accuracy of the approach in this paper against other
approaches.

One of the defining characteristics of the approach in
this paper is the use of full-fledged probability distributions,
while in most other cases predictions are made using just
average QoS (i.e., taking a single point as representative of
the behavior of some external service) or, at most, upper and
lower bounds of QoS (i.e., a uniform distribution between the
upper and lower bounds).

Therefore the experiments were repeated by using as in-
put data for the probability distributions either a singleton
distribution where a single point (the average) characterizes
the behavior of external services (Constant Probability) or
a uniform distribution ranging from the observed lower to
the observed upper bound (Uniform Probability). These were
generated taking as starting point the observed probability
distribution of the services. Since the uniform probability
distribution and the constant probability distribution contain
less information than the observed probability distribution,
we expect the predictions performed using them to be less
accurate than those performed with the observed probability
distribution. The results are depicted in the graphs as (blue)
star for the constant probability and as a purple curve for
the uniform probability, and they are evaluated in Table I and
Table II for the first and the second experiment respectively.

Tables I and II show a comparable landscape: it is clear
that using the observed probability distribution produces pre-
dictions which are much more accurate (the MSE is smaller)
than those generated using either the uniform probability
distribution or the constant probability distribution. It can
also be seen that most of the prediction errors come from
Pr[TPn < t], which is difficult to control. If the network issues
are excluded (Pr[TPe < t]), the predictions show very promising
results with very small MSE.

Measurement Observed
Probability

Uniform
Probability

Constant
Probability

Pr[TPa < t] 0.070 0.383 0.577
Pr[TPn < t] 0.012 0.310 0.434
Pr[TPe < t] 0.0003 0.138 0.537

TABLE I
EXPERIMENT 1: MEAN SQUARE ERROR

Measurement Observed
Probability

Uniform
Probability

Constant
Probability

Pr[TPa < t] 0.006 0.388 0.494
Pr[TPn < t] 0.010 0.306 0.383
Pr[TPe < t] 0.0001 0.126 0.488

TABLE II
EXPERIMENT 2: MEAN SQUARE ERROR

VII. CONCLUSIONS AND FUTURE WORK

We presented an approach to predict the QoS of service-
oriented systems by using probability distributions. The pre-
diction is useful for the point of view of both service providers
and service consumers in order to make better-informed
decisions which involve the quality of service agreements
in an SLA. At the moment, the method covers the basic
coding patterns common to many programming / coordination
languages, and can also be applied to other structured systems
which are not implemented through computers (i.e., human-
provided services).

We also present and use in the evaluation a working proto-
type which analyzes the input composition w.r.t. a description
of the input arguments and the QoS of the services it accesses
and produces the predicted probability distribution of QoS
of the program. The experimental evaluation show that our
approach is able to produce accurate predictions.

We are working on improving the prototype to perform
e.g. reverse calculations (i.e., which probability distributions
should characterize the services so that certain qualities in
the output are met). We also want to improve the internal
algorithms and representations. At the moment, all point-
wise calculations are exact, which may be a drawback in
large examples. We plan to explore abstraction mechanisms
(i.e., transforming probability samplings to reduce the number
of points) which trade precision for speed and interpolation
mechanisms which avoid representing all points in the domain
or which make it possible to answer questions for QoS values
for which no data is available.

As in all systems relying on historical, the accuracy of
the predictions depends on how up-to-date is the data of the
QoS of the external services. As services evolve, their QoS
profile can change (due to e.g. hardware / software updates,
changes in physical location, network speed, and bandwidth,
etc.) These changes are in general unknown to customers, and
the data regarding the QoS of the services can be easily get
outdated. Hence, QoS data should be updated periodically.
Besides being time consuming, this requires a strategy to
decide when this data needs to be refreshed and a non-intrusive
technique (e.g., online data refreshing) to actually refresh it.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Unions Seventh Framework Programme
(FP7/2007-2013) under grant agreement n 258862 4Caast,
from the Madrid Regional Government under CM project
P2009/TIC/1465 (PROMETIDOS), and from the Spanish Min-
istry of Economy and Competitiveness under projects TIN-
2008-05624 DOVES and TIN2011-39391-C04-03 StrongSoft.
The authors would also like to thank the European Commis-
sion Erasmus Mundus programme.

REFERENCES

[1] M. P. Papazoglou and D. Georgakopoulos, “Service-Oriented Comput-
ing,” Communications of ACM, vol. 46, no. 10, pp. 24–28, 2003.

[2] F. Curbera, B. J. Krämer, and M. P. Papazoglou, Eds., Service Oriented
Computing (SOC), ser. Dagstuhl Seminar Proceedings, vol. 05462.
Internationales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, November 2006.

[3] W. Sun, J. Zhang, and F. Liu, “WS-SLA: A Framework for Web Services
Oriented Service Level Agreements,” Computer Supported Cooperative
Work in Design, 2006. CSCWD ’06. 10th International Conference on,
pp. 1–4, May 2006.

[4] H. Zheng, J. Yang, W. Zhao, and A. Bouguettaya, “QoS Analysis for
Web Service Compositions Based on Probabilistic QoS,” in Proceedings
of the 9th international conference on Service-Oriented Computing,
ser. ICSOC’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 47–61.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-25535-9 4

[5] W. M. P. van der Aalst, “Process mining,” Commun. ACM, vol. 55, no. 8,
pp. 76–83, 2012.

[6] B. Sabata, S. Chatterjee, M. Davis, J. Sydir, and T. Lawrence, “Taxon-
omy for QoS specifications,” Third International Workshop on Object-
Oriented Real-Time Dependable Systems, pp. 100–107, 1997.

[7] M. Godse, U. Bellur, and R. Sonar, “A Taxonomy and Classification
of Web Service QoS Elements,” Int. J. Commun. Netw. Distrib. Syst.,
vol. 6, no. 2, pp. 118–141, Feb. 2011.

[8] T. O. Group, “Summary of Quality Model for Web Services,” The Oasis
Group, Tech. Rep., 2005.

[9] C. Zhou, L.-T. Chia, and B.-S. Lee, “Web Services Discovery with
DAML-QoS Ontology,” Int. J. Web Service Res., vol. 2, no. 2, pp. 43–66,
2005.

[10] S. Bajaj, D. Box, D. Chappell, F. Curbera, G. Daniels, P. Hallam-
Baker, M. Hondo, C. Kaler, D. Langworthy, A. Nadalin, N. Nagaratnam,
H. Prafullchandra, C. von Riegen, D. Roth, J. Schlimmer, C. Sharp,
J. Shewchuk, A. Vedamuthu, c. Ümit Yal and D. Orchard, Web Services
Policy Framework (WS- Policy), IBM, March 2006.

[11] A. Metzger, S. Benbernou, M. Carro, M. Driss, G. Kecskemeti,
R. Kazhamiakin, K. Kritikos, A. Mocci, E. D. Nitto, B. Wetzstein,
and F. Silvestri, “Analytical Quality Assurance,” in S-CUBE Book, ser.
LNCS, M. P. Papazoglou, K. Pohl, M. Parkin, and A. Metzger, Eds.,
vol. 6500. Springer, 2010, pp. 209–270.

[12] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, “Quality of
Service for Workflows and Web Service Processes,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 1, no. 3, pp.
281 – 308, 2004.

[13] J. Cardoso, “Complexity Analysis of BPEL Web Processes,” Software
Process: Improvement and Practice, vol. 12, no. 1, pp. 35–49, 2007.

[14] M. Dumas, L. Garcı́a-Bañuelos, A. Polyvyanyy, Y. Yang, and L. Zhang,
“Aggregate Quality of Service Computation for Composite Services,” in
ICSOC, 2010, pp. 213–227.

[15] D. Ivanović, M. Carro, and M. Hermenegildo, “Towards Data-Aware
QoS-Driven Adaptation for Service Orchestrations,” in Proceedings of
the 2010 IEEE International Conference on Web Services (ICWS 2010),
Miami, FL, USA, 5-10 July 2010. IEEE, 2010, pp. 107–114.

[16] ——, “Constraint-Based Runtime Prediction of SLA Violations in
Service Orchestrations,” in Service-Oriented Computing – ICSOC 2011,
ser. LNCS, G. Kappel, H. Motahari, and Z. Maamar, Eds., no. 7084.
Springer Verlag, December 2011, pp. 62–76, best paper award.

[17] P. Leitner, W. Hummer, and S. Dustdar, “Cost-Based Optimization
of Service Compositions,” IEEE Transactions on Services Computing,
vol. 99, no. PrePrints, 2011.

[18] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl,
“Usage-based Online Testing for Proactive Adaptation of Service-based
Applications,” in COMPSAC 2011 – The Computed World: Software
Beyond the Digital Society. IEEE Computer Society, 2011.

[19] E. Schmieders and A. Metzger, “Preventing Performance Violations of
Service Compositions Using Assumption-Based Run-time Verification,”
in ServiceWave 2011, ser. LNCS, A. Zisman, I. Llorente, S. M., A. W.,
and V. J., Eds. Springer, 2011.

[20] A. Kattepur, A. Benveniste, and C. Jard, “Negotiation strategies for
probabilistic contracts in web services orchestrations,” in ICWS, 2012,
pp. 106–113.

[21] B. Cook, A. Podelski, and A. Rybalchenko, “Proving program termina-
tion,” Commun. ACM, vol. 54, no. 5, pp. 88–98, 2011.

[22] L. Sterling and E. Y. Shapiro, The Art of Prolog - Advanced Program-
ming Techniques, 2nd Ed. MIT Press, 1994.

[23] G. D. Team, “Google App Engine,”
https://developers.google.com/appengine/, last accessed on 31st
August 2012.

