
Dynamic Program Code Distribution in

Infrastructure-as-a-Service Clouds

Rostyslav Zabolotnyi, Philipp Leitner, Schahram Dustdar

Distributed Systems Group

Vienna University of Technology

Argentinierstrasse 8/184-1, 1040 Vienna, Austria

rstzab@infosys.tuwien.ac.at, leitner@infosys.tuwien.ac.at, sd@infosys.tuwien.ac.at

Abstract—Elastically scaling cloud computing applications are
becoming more and more prevalent in today’s IT landscapes.
One problem of building such applications in an Infrastructure-
as-a-Service cloud is the runtime distribution of program code,
configuration files and other resources. While it is possible to
include all required program code in the used IaaS base images,
this severely restricts the achievable dynamicity at runtime. In
this paper, we present a framework for dynamic program code
distribution. Our approach handles code distribution entirely
transparently on middleware layer. We base our solution on an
existing middleware, CloudScale. The paper discusses the design
and implementation of our code distribution approach on top
of CloudScale, and numerically evaluates the practicability and
performance of the approach based on an illustrative case study.

I. INTRODUCTION

In the last years, the advancement of cloud computing [16]

has transformed the entire IT industry, and has given new

opportunities and abilities to developers and users. Moreover,

cloud computing simplifies the implementation of innovative

ideas for small companies or individuals, and lowers pro-

duction and maintenance costs for industrial applications [1].

Because of cloud computing, elasticity of resources becomes a

feature of applications instead of a description of data centers.

The notion of elasticity for cloud applications morphs into

elasticity of cost, resource and quality [10], giving additional

dimensions and abilities for developers to optimize application

and service provisioning.

Cloud computing is a promising technological choice for

new application development projects, but if an application

already exists, migration costs have to be considered before

the advantages of the cloud can be leveraged. Cloud migration

is known to be a challenging problem [12]. Often, migration

reveals architectural problems and requires refactoring or re-

designing of applications. However, even when the application

architecture already fits the cloud computing paradigm, some

amount of additional work is required in order to let the

application fully benefit from the cloud.

The most basic cloud service model is the Infrastructure-

as-a-Service (IaaS) approach [16]. On this level, cloud service

providers offer virtual machines with requested configuration

and operation system (usually in a form of hard drive im-

age) to satisfy application computation requirements [5]. This

layer is preferable for cloud migration as it requires less

migration effort (and is better standardized) than Platform-

as-a-Service [16] (PaaS). When an IaaS application has to

scale up (i.e., use more virtual machines than before), one

problem is how the availability of the current version of the

application code, configuration files and other resources can be

ensured on the new host. In the following, we will use the term

"program code" as shorthand for the application code and all

dependent files. The trivial approach is to include this program

code in the virtual machine base image, but this approach is

reasonable only in situations when it is entirely static and will

not be modified during application lifetime. However, real-

life applications are typically not quite as static. Instead, the

program code often evolves over time, and multiple different

versions of an application have to be executable in parallel.

In such scenarios, hardcoding the program code and other

files into the virtual machine images becomes complicated or

even impossible. An alternative way to achieve program code

distribution is to include facilities for dynamic code search

and distribution on middleware level.

This paper introduces a framework for seamless runtime

program code distribution. The framework is based on our

earlier CloudScale [15] research prototype, but due to high

independence level, can be used separately in other systems

as well. CloudScale is a middleware, which simplifies the

development of Java application in an IaaS cloud. In our

framework, program code distribution is entirely handled by

the underlying CloudScale middleware. We evaluate different

configuration and implementation options, and present numer-

ical performance results based on an illustrative case study.

The remainder of this paper is structured as follows. Sec-

tion II describes illustrative case study that demonstrates the

code distribution problem based on a real-world application.

Section III describes research related to our work. Afterwards,

Section IV presents the background of the approach we present

in this article, most importantly, the CloudScale framework.

Section V presents the actual contribution of this paper, which

is consequently evaluated in Section VI. Finally, the paper is

concluded in the Section VII.

II. ILLUSTRATIVE CASE STUDY

In the rest of the paper, we will use a Web 2.0 sentiment

analysis [17] application for illustrative purposes. This case

study application has originally been introduced in [14], and

978-1-4673-6435-5/13/$31.00 c© 2013 IEEE PESOS 2013, San Francisco, CA, USA29

discusses a cloud-based Software-as-a-Service (SaaS) system.

The SaaS application allows clients to register with their

service, and have the online popularity of their brands and

products monitored. To this end, a data collector application

will analyze content posted to various social media (e.g.,

Twitter, Facebook, status.net). This data is then used by the

SaaS application to produce detailed reports based on real-time

sentiment data.

Data Collector Application

S
a

a
S

 A
p

p
lic

a
ti
o

n

Customer 1

Customer 2

Customer 3

query

query

register

new data

new data

new data

IaaS Cloud

Cloud Virtual
Machine

Cloud Virtual
Machine

Cloud Virtual
Machinedelegate

delegate

delegate

delegate

Figure 1. Sentiment Analysis Scenario Overview (Based on [14])

A high-level overview over this setting is depicted in Fig-

ure 1. Various clients access the SaaS application with requests

for reports. In order to achieve elasticity and scalability, the

application delegates the execution of processing-intense tasks,

such as report generation, to a number of different virtual ma-

chines, which are rented on demand from an IaaS cloud, e.g.,

Amazon EC2.1 Similarly, the data collector part of the case

study uses IaaS virtual machines to retrieve, normalize and

store data items retrieved from social networks. Normalization

includes tasks such as stop word removal and stemming.

III. RELATED WORK

The problem of code distribution over the network appeared

almost at the same time as network communication became

possible. The simplest solution that requires minimal devel-

opment effort is to update code manually prior to execution.

This solution is good enough for systems that update rarely,

or in situations when the network speed is insufficient for

code transmission or version verification at runtime. However,

with further development of networking and network-aware

applications, automated code updating has become common.

Nowadays, applications often check for updates periodically

or at startup, and download updated code versions when

necessary. This approach is suitable and becomes a standard

1http://aws.amazon.com/ec2/

for common user-oriented applications, but in other cases more

sophisticated methods are to be used.

One scientific area that inherently faces the problem of code

distribution is grid computing. Usually, tasks developed for

grid execution are computation-intensive and long running.

Therefore, it is applicable to distribute code to the appropriate

grid nodes prior to execution either manually or automatically.

However, some approaches to distribute program code and

additional data on-a-fly were proposed in [20]. Still, code

distribution in grid computing is different from the approach

we present, as they solve the problem of initial long-running

code distribution or "hot patching" [6], but we provide the

framework for the encapsulated task execution, that allows

running different code versions on the same machine. This

is important for development, testing and multiple user usage

scenarios (multi-tenancy [4]).

The approach we present is more similar to the idea of

mobile agents in agent-based computing. With this paradigm,

applications are able to migrate from one computer to another

autonomously and continue their execution on the destination

computer [11]. Code distribution is a vital concept for such ap-

plications and a lot of research has been conducted to achieve

different goals and improve code migration [3], [18], [2], [7],

[8]. However, in contrast to our approach, mobile agents are

active and choose themselves to migrate between computers

at any time during their execution [9]. In the framework we

present, the application is distributed transparently and is not

aware that the code is being distributed. From this point of

view, the presented approach is more similar to the idea of

remote code evaluation [19], when a task is transmitted to the

server to execute. Also, our approach exhibits some features

of the code on demand approach [2], when missing code

and related files can be fetched from the remote location on

demand.

Finally, it should be noted that the solution we present here

falls into the larger class of weak code mobility [7], as both

code and data is transmitted, but not application state.

IV. BACKGROUND AND CONTRIBUTION CONTEXT

The work we discuss in this paper has been carried out

within the larger CloudScale research project, which has been

initially presented in [15], [13], [14]. In the following, we will

introduce CloudScale to the extent necessary for the purposes

of this paper, and further detail the challenges that are being

addressed in this contribution.

A. The CloudScale Framework

The general concept of CloudScale is to use aspect-oriented

programming (AOP) techniques to dynamically modify the

bytecode of Java-based applications, and transparently move

designated parts of the application (which we refer to as cloud

objects) to virtual resources in the cloud (referred to as cloud

hosts). This process is entirely invisible to the application

developer, and happens fully automated at application run

time. In the end, applications built on top of CloudScale look

like regular (local) Java applications, but are actually executed

30

in a heavily distributed fashion. A simplified architectural

overview of the CloudScale framework is depicted in Figure 2.

Essentially, client applications access the cloud via a local

cloud manager component. The cloud manager moves the

execution of part of the application to various cloud hosts in

the IaaS cloud. To this end, the cloud manager monitors the

performance of each host [14] and schedules requests so that

the total performance of the application is optimal, according

to policies defined by the application developer [13].

Cloud Hosts

Remote
Server

Interface

Cloud Object Repository

Application Execution
Environments

IaaS Cloud

Client Host

Client
App Cloud Manager

Scaling
Manager

CloudScale

Host
Monitor

Figure 2. Simplified CloudScale Architecture (Adapted from [15])

In order to implement this CloudScale model, a plethora

of challenges need to be addressed, including virtual ma-

chine management, application parallelization, scheduling of

requests to virtual machines, performance as well as cost

monitoring, and application code distribution. The latter chal-

lenge is the main focus of this paper. More thoughts on

the other challenges can be found in our earlier CloudScale

publications [15], [13], [14].

B. Program Code Distribution Challenges

Dynamically distributing program code in a real-life IaaS

cloud requires a number of aspects to be addressed. (1) Firstly,

the framework needs to detect when the code that is to be

executed is not available at all, and request the code from

a code server (the machine that has correct version of the

application binaries). For instance, if the SaaS application

described in Section II wants to delegate the generation of

a report to a cloud host, the required program code needs

to be available at this virtual machine. (2) If this is not the

case, cloud host has to find the trusted code storage where

appropriate code can be retrieved from. In our case, usually

the application itself will act as a code server and deliver

the required program code on demand, including the correct

versions of all missing dependencies that are required to exe-

cute this code. Alternatively, it is possible to install a specific

dedicated code server in the cloud, which then takes over this

task from the client application to reduce its load. Evidently,

it is possible to hard-code all required program code directly

into the virtual machine images used by CloudScale, but this

drastically reduces the flexibility of the system and makes

Table I
SUMMARY OF CODE DISTRIBUTION CHALLENGES

Challenge Name Challenge Synopsis

1 Missing Code Detection Cloud hosts need to be able to
dynamically detect if program
code needs to be loaded on
demand

2 Trusted Code Storage Cloud hosts need to be able to
locate the code storage service
(typically the client application
or a dedicated code server in
the cloud)

3 Communication Middleware Cloud hosts need to have ac-
cess to a suitable communi-
cation middleware that allows
them to dynamically load code

4 Communication Protocol Cloud hosts and client appli-
cation need to use an efficient
protocol for minimizing the
communication overhead in-
curred by dynamic code load-
ing

5 Code Versioning Cloud hosts need to be aware
that program code can change,
and that loaded program code
is not valid indefinitely

maintenance of the system cumbersome and time-consuming.

(3) Thirdly, some means of communication need to be estab-

lished which allow program code to be transferred at runtime

from the trusted code storage to the cloud virtual machines.

This communication can be handled either in a point-to-point

fashion (e.g., via Web services technology, such as SOAP)

or via a messaging middleware. (4) Fourthly, for practical

performance reasons, the middleware needs to optimize the

communication protocol between application and cloud hosts.

For instance, it is typically not feasible to initiate the dynamic

code exchange routines separately for each missing class of

application code. Instead, the middleware needs to smartly

decide which additional code and non-code resources (e.g.,

images, configuration files) will also be required in addition

to the already detected missing code. These dependencies

should be distributed over the cloud at the same time to

minimize the overhead of the code distribution. (5) Fifthly,

after dynamically loading the program code, the middleware

needs to decide how long this code and its dependencies can

now be considered as valid. To this end, it is required that

the CloudScale middleware is able to detect when a different

version of the program code is needed and use it.

These challenges are summarized in Table I. In the re-

maining paper, we will discuss our approach to solve these

challenges within the CloudScale project.

V. DYNAMIC PROGRAM CODE DISTRIBUTION

Whenever a cloud host in the CloudScale middleware has to

execute a new task, the system has to ensure that all necessary

resources are available and schedule the execution of the task.

In this section we will describe our approach and show how we

try to achieve efficient and seamless code distribution, solving

the challenges described in Section IV-B.

31

A. System Overview

When the client application approaches a code segment that

can be delegated to the cloud, it schedules the execution on

the cloud hosts that are available at the moment. If there are

no hosts available, additional cloud machines can be started.

In more details this process is described in [15]. On the cloud

host, the scheduled code starts executing, while a special class

loader on platform level maintains and fetches all required pro-

gram code and other relevant resources, such as configuration

files. The architecture of our solution is visualized in Figure 3,

where you can see application started from the client host

distributing work to the set of cloud machines that retrieve

necessary code from the cloud code cache or directly from

the client. Due to this architecture, code that is being executed

does not have to care about code availability and version, as the

underlying infrastructure handles these problems seamlessly

and transparently.

IaaS Cloud

JVM

Cloud Scale Server

Class loader

JVM

Cloud Scale Server

Class loader

Client Host

JVM

CloudScale Client

Client Code storage

Cloud Host 1

JVM

CloudScale Server

Class Loader

Application

Application

Cloud Host 2

JVM

CloudScale Server

Class Loader

Application

Program CodeProgram Code Program CodeProgram Code

Code

Cache

Code

Storage

Figure 3. Overview of program code distribution model

1) Missing Code Detection: In most programming lan-

guages (including Java, as used by CloudScale), detection

of missing resources (both code and non-code files) can be

handled by the developer through an Application Programming

Interface (API). However, in order to avoid misbehaviors,

solve stated challenges and be able to control code availability

and load sequence, we implemented, basing on available API,

a special module in our middleware to intercept all requests for

program code at cloud hosts. Concretely, we intercept the class

loading mechanism of the programming language to check

against a set of already resolved classes. If the required code

has already been loaded, it can be provided again without any

additional work required from the class loader. If the required

code has not been loaded before during this execution, the

class loader checks a code cache for it, as shown in Figure

4. The details of this mechanism will be explained later. If

the code was not found in the cache, the class loader requests

the code from the client (or from a trusted code storage), and

waits for the response (see Figure 3).

Missing code load

attempt

Check cache

for code

Verify code with

code storage

Code is

in cache

Query code from

code storage

Code is missing

in cache

Register new code

in cache

Verification failed,

correct code provided

Resume execution

Verification

succeeded

Figure 4. Code loading strategy

2) Communication Middleware: Our code loading system

does not have any specific requirements for a particular

communication channel, and usually can be used over the

same communication facilities as used by the rest of the

CloudScale middleware. Resource loading works based on

simple blocking calls and may require the ability to initiate

communication with the trusted code storage facility. The only

communication channel properties that are important for this

use case are reliability and a reasonable data transfer speed.

Channel speed is very important as communication delay is

directly influencing the application performance on the cloud.

Evidently, any network communication is slow as compared

to local code retrieval, and the slower the communication,

the lower the performance benefits that can be reached by

distributing the application over the cloud in the first place.

Reliability is also vital. Transfer errors, which cloud host

can detect with the help of check sums, can dramatically

impact communication speed due to code retransmission. In

case of communication failure, the application has to shutdown

gracefully, as there is no code to continue executing the task.

In our current version of CloudScale, we require a JMS-

32

compatible message queue (e.g., Apache ActiveMQ2) to pro-

vide the communication channel used for all client-host com-

munication, including dynamic code loading.

3) Trusted Code Storage Location: While the creation of

dedicated code server may improve reliability and performance

of code distribution framework, for some cases this solution

is not preferable. Sometimes it is required to be able to fetch

actual code directly from the CloudScale application. For

example, during software development or testing, it makes

more sense to use initial application startup machine for code

distribution instead of dedicated server that has to be updated

prior to every run. In such situations, code delivery service

has to be provided from the client application. Moreover, the

client application is typically the most reliable source of the

code, as the client application codebase contains exactly the

code that the developer expected to run. Therefore, by default,

the client application always runs the code distribution service,

even in situations when a dedicated code server is expected to

be used. This simplifies framework configuration and allows

using the client application to update or verify code on the

code server, or as a fallback option in case the code server is

offline or overloaded.

The code delivery service within the client application

has to be able to provide the code to the cloud machines

without interrupting the main application thread. To achieve

this, the service is started in dedicated thread. When the code

distribution service receives a request, it checks for availability

of the requested code and decides what to send. The code

provided by the trusted source is then stored in the cache,

mapped to the appropriate task to enable multi-tenancy and

execution is resumed.

4) Code Versioning: To solve the challenges related to

code version control and updated code propagation, we imple-

mented a code verification system as part of the CloudScale

class loading mechanisms. In case the code is available in

cache, the class loader still has to ensure that the code has the

same version as the client expects. Therefore, the class loader

carries out code verification based on the last modified date

and size of the code files, as depicted in Figure 4. Evidently,

some other alternatives to implement code verification are

feasible as well (e.g., using hash-codes, explicit versioning

via version numbers, or partial transfer), but we deemed the

selected heuristic approach to be the fastest, while still being

reliable enough for practical applications. This point of view is

supported by the fact that similar approaches are used in other

state-of-the-art solutions, e.g., RSync,3 Apache Ant,4 GNU

Make5 and others.

As code is stored in the cache, not only the required program

code itself, but rather all files that were provided previous time

for the same code request are verified. For each file in this

set, client either confirms that this is the expected code or

provides the file that should be used (see Figure 4). After this,

2http://activemq.apache.org/
3http://rsync.samba.org/
4http://ant.apache.org/
5http://www.gnu.org/software/make/

the class loader delivers the correct code for the execution and,

if necessary, updates the cached version.

B. Code Caching

In CloudScale, cloud hosts execute each separate request in

a sandbox. To this end, the class retrieval infrastructure on each

cloud host resolves all resources for each request separately.

This allows the execution of different requests using different

code bases, and restricts any possible influence of one request

on others. However, evidently this approach introduces some

redundant code transmission, because if the same program

code should be used more than once, it still will be transmitted

separately for each request. To avoid this redundancy, we

introduce a smart code caching mechanism.

For the first code request, when the required code is not yet

cached, it has to be downloaded from the trusted code storage,

while each of the following requests only uses the code avail-

able from the cache (if code verification is successful). When

changes are detected during verification, the outdated code

is either replaced or used in parallel to the updated version,

depending on the cache usage and configuration policy. When

there are no changes, the cached code can be used without

transmission through the communication channel.

Table II
CACHE DEPLOYMENT SELECTION TRADEOFF

Host Private Cache Cloud Cache

Cloud-Based
Code Storage

+ code access speed
- low cache hit rate

- no speed up
+ good cache hit rate

External Code
Storage

+ code access speed
- low cache hit rate

+ code access speed
+ good cache hit rate

The main task of the caching mechanism is to provide

faster code fetching in the situations when the same code

is requested multiple times. Therefore, code from the cache

has to be accessible faster than from the trusted code storage

(e.g., the client application). The fastest possible location of

the cache is the hard drive or even memory of the cloud host.

This will give ideal access speed, but will reduce the cache hit

rate, as each cloud host will have to maintain its own cache. In

case of some distributed applications, this approach may give

no benefits at all, as it is shown in Table II. Another possible

approach is to create a dedicated cache server or share one

cache between multiple cloud hosts. This is a good solution if

the code is initially transmitted through an unreliable or slow

channel, but if the application is already using a dedicated

code service, a shared cache in the cloud hardly makes any

sense, as access speed will be almost identical as to the code

server.

From the situation described above, it is clear that we face

a tradeoff as discussed in the Table II. Depending on the

environment configuration and situation, different approaches

will be more efficient and, hence, preferable. Therefore, to

achieve the best performance, it makes sense to allow the

application to decide on the preferred caching strategy.

33

C. Batch Loading

When the class loading infrastructure receives the request

for new classes or resources to be loaded, there is not much

information available to make some assumptions about the

data that should be loaded. The only thing that is available is

the name of the resource that should be retrieved. Therefore,

cloud host has to send request to the storage facility with

only required resource name specified (as described above,

the situation is slightly different when there is code already

available in the cache, we will omit this case now for the sake

of simplicity).

When the code retrieval request arrives to the storage

facility, appropriate service has to find the required piece

of code and decide what to send along with it. Of course,

the simplest scenario would be to send only the requested

resource, but this would increase the cost of dynamic code load

and slow down application, especially at the startup. Another

extreme would be to send all application code at the first

request: this would decrease amount of messages, but might

introduce even longer delay for the very first request, when the

entire set of libraries and code base is transmitted. Considering

the fact that usually not all code would be required on each

cloud host, this option may introduce even more overhead than

the first one.

One possible option to solve this tradeoff would be to

allow end-user application to configure amount of code that

should be transferred for each request. However, this approach

would be rather cumbersome for the developers and against the

primary design goals of CloudScale (making it easy to build

cloud applications). Another choice would be to use heuristics,

which would propose satisfying solution for common usage

scenarios.

For example, if the requested class belongs to a library (e.g.,

a jar file), it makes sense to send the entire library instead,

as the chances that other resources from that library will be

requested are high. Similarly, if the class belongs to a package,

it makes sense to consider sending the entire package. Also,

if the class has some dependencies or belongs to hierarchy of

the classes or interfaces, other classes are very likely to be

needed as well.

All of these heuristics have their own benefits and problems

and it is complicated to determine which of them should be

used as the default behavior. To determine the influence of

these factors on real-life applications, we included a number of

different batch loading algorithms in our numerical evaluation

and present evaluation results in the following section.

VI. EVALUATION

To support our arguments and evaluate costs and benefits

of our code distribution approach, we use an implementation

of the sentiment analysis application described in Section II.

This application has a number of features that allow us to

better evaluate different code distribution strategies. Firstly,

the application is easily parallelizable, therefore we can find

appropriate task size to achieve effective load on different

amount of hosts to evaluate the influence of the selected code

distribution strategy on the application setup. Secondly, the

code base of this application is of significant size (8 MB

in 6 JARs), and also makes use of a number of large non-

code resources (42MB in 14 files). This allows us to measure

influence of the network communication and storage delay on

application performance.

A. Evaluation Setup

We run our evaluation on a private IaaS cloud based on

OpenStack.6 Our private cloud consists of 8 physical machines

(Dell blade servers with two Intel Xeon E5620 CPUs running

at 2.4 GHz Quad Core and 32 GB of RAM each), which

are connected via dedicated Gigabit Ethernet. The sentiment

analysis application was hosted on a conventional laptop,

which was connected to the private cloud via LAN. The

application code was implemented in Java, and configured to

work with the CloudScale framework [13], [15] and our private

cloud. In our evaluation we used one medium-sized cloud

instance (2 virtual CPUs, 3.75 GB of RAM) for the ActiveMQ

communication server, and between 1 and 5 small instances

(1 virtual CPU and 1.7 MB of RAM each) as application

execution hosts. All hosts were running Ubuntu Linux 12.047

and Java 1.7.

The first step of our evaluation was to create a base line

for the evaluation of code distribution. To do this, we ran

the sentiment analysis application with all required code and

files embedded into cloud machines in 3 setups: using 1, 3

and 5 small cloud instances as computational resources. This

approach does not require any code distribution, therefore al-

lows us to quantify the overhead of different code distribution

strategies. After that, we repeated the same tests using the 3

different code distribution strategies that were described above:

• Complete Code Distribution Strategy, when all applica-

tion code is provided on the first request at the startup.

• Class-based Code Distribution Strategy, when only the

requested class or resource is provided, and the cloud

host has to ask for each resource separately.

• Smart Batching Code Distribution Strategy, when code is

delivered in highly-related batches, therefore optimizing

amount of necessary requests and minimizing unneces-

sary code transmission.

On the cloud hosts side, we evaluate the performance of

2 different code caching strategies (private to each host and

shared within the cloud), as described in Section V. The private

caching strategy is using each machine’s private hard disk as

storage, while the shared caching is implemented on top of a

Riak8 key-value database hosted on a separate cloud instance.

Each experiment was executed multiple times, and mean

values are used in the following. Still, we faced some ex-

ecution anomalies that were caused by different application

execution speed and environmental conditions, partially due

to Twitter request rate limits. 9

6http://www.openstack.org/
7http://releases.ubuntu.com/precise/
8http://basho.com/riak/
9https://dev.twitter.com/docs/rate-limiting

34

B. Evaluation Results

Average baseline experiment execution time was about 1.5

minute, while usage of code distribion algorithm extended this

time to 22.5 minutes. To focus on performance costs of each

class loading strategy, we decided to compare the execution

duration overhead of each strategy in each environment config-

uration. In Figure 5 one can see the mean execution overhead

(i.e., the actual execution time minus the baseline established

before, by executing the application without code distribution)

of different strategies in different setups (1, 3 and 5 cloud

hosts) with private cache used on each host.

With this evaluation run we wanted to determine how our

Smart Batching code distribution strategy behaves compared

to two other extremes: Complete code distribution and Class-

based code distribution.

29

53

81

125

68

77

43
50 50

0

20

40

60

80

100

120

140

1 3 5

E
x
e
c
u

ti
o
n

 O
v
e
r
h

e
a
d

 (
se

c
)

Used Cloud Hosts Count

Complete

Class-based

Smart Batching

Figure 5. Sentiment analysis application execution time overhead caused by
different class distribution strategies with local cache.

Comparing private and shared caching strategies, we would

like to focus on Figure 6, where we show the execution

overhead of the Smart Batching code distribution strategy with

private and shared batching used on cloud hosts.

C. Discussion

In Figure 5, we can see that if we are using only one cloud

host, the Complete Code distribution strategy is indeed the

fastest, while Class-based is the slowest. The reason of this

is that network bandwidth in our evaluation setup is good

enough that transferring all necessary code a few times induces

a lower delay than establishing a large number of interactions

for smaller code batches. In this evaluation setup, the Complete

Code provider sent in total over 110 MB of data and showed

the smallest execution time overhead, while the Class-based

and Smart Batching sent only close to 50 MB.

Additionally, it can be seen that the Smart Batching strategy

is comparable to the Complete strategy, but much faster than

Class-based. The reason of this is that Smart Batching strategy

transferred almost the same amount of code as Class-based

strategy, but using significantly less requests. However, please

43
50 50

124

97
92

0

20

40

60

80

100

120

140

1 3 5

E
x
e
c
u

ti
o
n

 O
v
e
r
h

e
a
d

 (
se

c
)

Used Cloud Hosts Count

Private File Cache

Shared Riak Cache

Figure 6. Comparison of execution overheads of private and shared cache
with Smart Batching code distribion strategy.

note that in a different setup, when the connection between the

client application and the cloud is slower, and the amount of

transferred data is more important than the amount of requests,

the Smart Batching strategy would be more efficient than any

of competitors.

With the increasing amount of cloud hosts used, it can be

seen that cost of Class-based strategy decreases, while amount

of requests logically stays the same or even increases. This

happens because these requests can be handled in parallel,

reducing influence on overall application execution time. At

the same time, the overhead of using the Complete strategy

increases as it hits the bandwidth limit of the network com-

munication between client and cloud hosts. It can be seen,

that execution time in this case increases almost linearly with

the number of hosts. This is caused by the fact that all hosts

need code roughly at the same time (at the beginning of the

execution), causing the client application to send the same

code to each host at the same time, slowing down the overall

execution of the application. For the Smart Batch strategy

this cost is not as high and it keeps approximately the same

performance, hence quickly becoming the best strategy if

multiple cloud hosts are used.

Discussing Figure 6, it can be seen that when the hosts

use a private cache, each of them is competing over the

communication channel between client and cloud, while in

the shared cache setup it is enough to download the required

data only by 1 host, making it available to every host in the

cloud at the same time. Hence, with the number of cloud

hosts increasing, the private cache setup overhead increases,

while the shared cache overhead decreases. However, it can

be clearly seen from the figure, that overall overhead of the

shared setup is still significantly higher. This is caused by

the larger amount of communication and data transmission

required for the shared cache setup. In the private cache setup,

cloud hosts download data directly from the client, while in the

shared cache case, one host has to download code from client,

35

put it into cache and then other hosts can access it. Hence,

there are actually 3 transmissions instead of just one, which is

significant in our case, when transmission speed from client

to cloud is comparable to the communication speed inside the

cloud.

Basing on our evaluation results, we can state that the

Smart Batch code distribution strategy is usually the preferable

way to achieve seamless dynamic code distribution with least

overhead compared to other, simpler, options. Additionally,

from this evaluation, we saw that caching strategy can influ-

ence application performance a lot; therefore it makes sense

to allow users to configure this parameter according to their

communication channel characteristics.

VII. CONCLUSIONS

With increased popularity of cloud computing, more and

more developers and companies think about cloud-aware ver-

sions of their applications. With the cloud-oriented applica-

tions development, a set of problems arises that did not exist

or were not that significant before. One of them is a problem

of code distribution to the cloud hosts.

The seamless code distribution framework that was intro-

duced in this paper, allows distributing code to the cloud

on demand and seamlessly to the application. The intro-

duced framework was evaluated on a real-life application and

overhead of different code distribution and caching strategies

where compared and analyzed. The evaluation showed that

selected code distribution approach provides a list of benefits

over alternatives and minimum overhead for the users, while

requiring insignificant amount of time to configure and use.

In the future, we plan to improve our Smart Batch code

distribution approach and implement some other performance

tweaks. For example, in our current architecture we do not

consider possibilities of predicting required code and sending

multiple requests to the client with the same package or

implementing some smart code prefetching algorithm that

would improve code execution speed and allow background

code loading. Additionally, historical information can be con-

sidered. For example, history of requests from similar parallel

or previous executions can be used to predict future requests

and ask all required information upfront.

ACKNOWLEDGEMENTS

The first author of this paper is financially supported by

the Vienna PhD School of Informatics.10 Furthermore, the

research leading to these results has received funding from

the Austrian Science Fund (FWF) under project references

P23313-N23 (Audit4SOAs), as well as the European Commu-

nity’s Seventh Framework Programme [FP7/2007-2013] under

grant agreement 257483 (Indenica).

10http://www.informatik.tuwien.ac.at/teaching/phdschool

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud
computing. Communications of the ACM, 53(4):50–58, 2010.

[2] M. Baldi, S. Gai, and G. Picco. Exploiting code mobility in decentralized
and flexible network management. In Mobile Agents, pages 13–26.
Springer, 1997.

[3] J. Baumann, F. Hohl, K. Rothermel, and M. Straßer. Mole–concepts of
a mobile agent system. World Wide Web, 1(3):123–137, 1998.

[4] C.P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t Hart.
Enabling multi-tenancy: An industrial experience report. In Proceedings

of the 2010 IEEE International Conference on Software Maintenance,
ICSM ’10, pages 1–8, Washington, DC, USA, 2010. IEEE Computer
Society.

[5] S. Bhardwaj, L. Jain, and S. Jain. Cloud computing: A study of
infrastructure as a service (iaas). International Journal of Engineering

and Information Technology, 2(1):60–63, 2010.
[6] S. Bratus, J. Oakley, A. Ramaswamy, S.W. Smith, and M.E. Locasto.

Katana: Towards patching as a runtime part of the compiler-linker-
loader toolchain. International Journal of Secure Software Engineering

(IJSSE), 1(3):1–17, 2010.
[7] G. Cabri, L. Leonardi, and F. Zambonelli. Weak and strong mobility

in mobile agent applications. In Proceedings of the 2nd International

Conference and Exhibition on The Practical Application of Java (PA

JAVA 2000), Manchester (UK), 2000.
[8] A. Carzaniga, G.P. Picco, and G. Vigna. Designing distributed ap-

plications with mobile code paradigms. In Proceedings of the 19th

International Conference on Software Engineering, pages 22–32. ACM,
1997.

[9] V. CeronmaniSharmila and V. KomalaValli. Enhanced security through
agent based non-repudiation protocol for mobile agents. International

Journal of Power Control Signal and Computation(IJPCSC), 3(1), 2012.
[10] S. Dustdar, Y. Guo, B. Satzger, and H.L. Truong. Principles of elastic

processes. Internet Computing, IEEE, 15(5):66–71, 2011.
[11] M. Ghorbel, M. Mokhtari, and S. Renouard. A distributed approach

for assistive service provision in pervasive environment. In Proceedings

of the 4th International Workshop on Wireless Mobile Applications and

Services on WLAN Hotspots, pages 91–100. ACM, 2006.
[12] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville. Cloud mi-

gration: A case study of migrating an enterprise it system to iaas. In
Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference

on, pages 450–457. IEEE, 2010.
[13] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar. Cost-

Efficient and Application SLA-Aware Client Side Request Scheduling
in an Infrastructure-as-a-Service Cloud. In 5th IEEE International

Conference on Cloud Computing, 2012.
[14] P. Leitner, C. Inzinger, W. Hummer, B. Satzger, and S. Dustdar.

Application-Level Performance Monitoring of Cloud Services Based
on the Complex Event Processing Paradigm. In Proceedings of the

2012 IEEE International Conference on Service-Oriented Computing

and Applications (SOCA’12), 2012. To appear.
[15] P. Leitner, B. Satzger, W. Hummer, C. Inzinger, and S. Dustdar.

CloudScale - a Novel Middleware for Building Transparently Scaling
Cloud Applications. In ACM Symposium on Applied Computing (SAC),
2012.

[16] P. Mell and T. Grance. The nist definition of cloud computing (draft).
NIST Special Publication, 800:145, 2011.

[17] B. Pang and L. Lee. Opinion mining and sentiment analysis. Found.

Trends Inf. Retr., 2(1-2):1–135, January 2008.
[18] K. Rothermel, F. Hohl, and N. Radouniklis. Mobile agent systems:

What is missing? Distributed Applications and Interoperable Systems

(DAIS’97), Chapman & Hall, pages 111–124, 1997.
[19] E. Sanchis. Mobility and remote-code execution. In Mobile Wireless

Middleware, Operating Systems, and Applications-Workshops, pages 85–
97. Springer, 2009.

[20] A. Van Hoff, J. Payne, and S. Shaio. Method for the distribution of
code and data updates, July 6 1999. US Patent 5,919,247.

36

