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Abstract

We complete and bring together two pairs of surface
constructions that use polynomial pieces of degree (3,3) to
associate a smooth surface with a mesh. The two pairs
complement each other in that one extends the subdivision-
modeling paradigm, the other the NURBS patch approach
to free-form modeling.

Both Catmull-Clark [3] and polar subdivision [7] gener-
alize bi-cubic spline subdivision. Together, they form a pow-
erful combination for smooth object design: while Catmull-
Clark subdivision is more suitable where few facets join,
polar subdivision nicely models regions where many facets
join, as when capping extruded features. We show how to
easily combine the meshes of these two generalizations of
bi-cubic spline subdivision.

A related but different generalization of bi-cubic splines
is to model non-tensor-product configurations by a finite
set of smoothly connected bi-cubic patches. PCCM [12]
does so for layouts where Catmull-Clark would apply. We
show that a single NURBS patch can be used where po-
lar subdivision would be applied. This spline is singularly
parametrized, but, using a novel technique, we show that
the surface is C1 and has bounded curvatures.

1. Motivation, Literature and Overview

While the mesh-based subdivision representation yields
an intuitive visualization for interactive modeling, surfaces
constructed from finitely many NURBS patches are pre-
ferred in CAD packages and convenient for GPU imple-
mentations. Here, we show how four bi-cubic options (see
Table 1) coexist and complement each other. Generalized

Table 1. Bi-cubic surface constructions
patches quadrilateral polar
subdivision Catmull-Clark [3] bi-cubic polar [7]
finite PCCM [12] new (Section 4)

bi-cubic subdivision is typically associated with Catmull-

Clark subdivision [3]. Catmull-Clark subdivision is popular
due to its close relation to the industry standard bi-cubic

Figure 1. Augmenting Catmull-Clark meshes
with polar vertices: nose of airplane (left) and
tips of fingers (right).

tensor-product splines or NURBS. However, where many
facets join (high valence n) or where features are extruded,
the resulting shape can be poor and show unintended rip-
ples (see e.g. Figure 2). Moreover, Catmull-Clark is prone
to generating saddle points in the limit even though the con-
trol net is designed for convex shape [8]. The second prob-
lem has recently been addressed in [9, 4, 1] and suppressing
macroscopic ripples arising in the first subdivision step mo-
tivated the global shape optimization in [5]. In [6], it was
argued that both ripple and saddle problems can be resolved
by switching to a polar layout of facets. A neighborhood
of a high-valence vertex (Figure 3, top of mushroom, finger
tips) has polar layout if the vertex is surrounded by one layer
of triangles while the remaining mesh consists of quadri-
lateral facets, with always four joining at a vertex (formal
definitions follow in Section 1.1). Polar layout naturally
appears in the design of surfaces of revolution. Recently, in
[7], a simple generalization of bi-cubic subdivision to polar
layouts was proposed. Polar meshes can also be refined us-
ing the more general tool of quad-tri subdivision [19, 18];
but polar subdivision [7] is preferable for polar layout as
it generates a finite number of bi-cubic patches in the sur-
face corresponding to the transition from a quad to a trian-



Figure 2. (left) Airplane with polar nose. (mid-
dle) Catmull-Clark subdivision generates rip-
ples, whereas (right) polar subdivision looks
natural.

gle facet while [19, 18] creates infinitely many, half of them
three-sided. Also for the polar layout, Jet Subdivision [6]
generates C2 surfaces with good curvature distribution. But
the construction is more complex and of degree (6,5) and
therefore outside of our focus on bi-cubic schemes. Sim-
ilarly, replacing Catmull-Clark meshes by those generated
in [9] is compatible with polar subdivision but outside the
focus.

Our approach for combining polar and Catmull-Clark
subdivision meshes is to use Catmull-Clark subdivision ex-
cept for special rules where the mesh has a polar layout.
This has the advantage that any input mesh admissible for
Catmull-Clark can be handled by the combined subdivision.
In effect, the polar submeshes will be temporarily split off
from the remaining mesh so that the same code base as for
Catmull-Clark subdivision can be used and just one spe-
cial subroutine for polar submeshes is added to improve the
surface quality. The resulting surface pieces match exactly
at their interfaces where they represent the same bi-cubic
polynomial spline patches.

Our approach for complementing a finite bi-cubic spline
construction with a finite polar construction is analogous
and compatible with PCCM [12]. We interpret, after a few
steps, the polar subdivision control mesh as the control net
of a NURBS surface. This single polynomial NURBS patch
has a degenerate edge and only the NURBS coefficients
next to it have to be adjusted. The result is a C1 surface
with bounded curvature. Due to the growth of the regu-
lar mesh and the boundedness of the construction near ir-
regular mesh points, refining the input mesh trivially but
importantly allows switching from the subdivision mesh to
the NURBS representation and vice versa with an arbitrarily
small error.

In Section 2, we review and extend the recently devel-
oped bi-cubic polar subdivision and in Section 3 we show
how to apply it in the context of meshes of arbitrary con-
nectivity. In Section 4, we construct single NURBS patches
for polar vertices. This is analyzed in the Appendix with the
help of a novel use of new proof techniques.

1.1. Definitions

A control net or mesh is an embedding of a graph, in R
3

with vertices identified as points and connectivity indicated
by line segments. The graph is assumed to have the con-
nectivity of a 2-manifold. The number of neighbors of a
vertex is called the valence of the vertex. It is denoted by n.
The i-link of a vertex consists of points that can be reached
by traversing a shortest path of i edges. The 0-link consists
only of the vertex itself. The i-layer of a vertex v is the col-
lection of faces, whose closest vertex to v is in v’s i-link.
The 0-layer of v consists of all its incident faces.

A polar vertex is one whose 0-layer consists only of tri-
angles (see Figure 3). A polar structure consists of a polar
vertex of valence n ≥ 6 whose 1-layer and 2-layer consist
only of quadrilateral facets (quads) and such that the ver-
tices of the 1- and 2-link are 4-valent (see Figure 3). We
will not need to consider polar rules for boundaries. A po-
lar structure makes the term polar layout precise.

2. Compatible polar mesh refinement

Figure 3. Polar vertices and structures.

Compatible polar mesh refinement is derived from [7]
to yield a consistently k-times subdivided mesh when the
Catmull-Clark mesh is augmented with polar structures.

Consider a mesh with the latitude-longitude connectivity
of the sphere as in Figures 3, left, and 7. This yields two
polar vertices. Except for constructing polar vertices and
their 1-links, the refinement algorithm in [7] applies cubic
spline refinement only in the longitudinal (radial) but not in
the latitudinal (circular) direction. For the polar vertex and
its 1-link, the stencil weights for Figure 4, left, are given as

α := β − 1
4
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n + (ck
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1
2
(ck

n)3
)
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where n is the valence of the polar vertex. The analysis in
[7] shows that, for n ≥ 6, this radial subdivision results in
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Figure 5. Generalized bi-cubic subdivision steps. (1) Separating the input mesh. (2) Subdividing the
polar structure radially (2a) then circularly (2b). (3) Subdividing the remainder. (4) Joining the refined
meshes after removal of overlapping facets. (right) The limit surface.
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Figure 4. Refinement stencils for polar subdi-
vision ([7]). (left) Radial subdivision at the po-
lar vertex, (middle) radial subdivision every-
where else, (right) circular subdivision every-
where else.

an everywhere C2 surface except at the central limit point.
At the central point the surface is C1 with bounded curva-
ture. Moreover, the ripple and saddle artifacts of Catmull-
Clark subdivision do not appear.

As illustrated in Figure 6, purely radial refinement results
in a mismatch or a mesh with T-corners at the transition to
Catmull-Clark subdivision since Catmull-Clark subdivision
simultaneously subdivides radially and circularly.

In order to leverage and preserve the good results of ra-
dial subdivision and still display a consistent control net af-
ter k steps, we proceed as illustrated in Figure 7: we do not
alternate radial and circular subdivisions in the k steps but
use compatible polar mesh refinement.

(a) Apply k steps of radial subdivision and save the level
k polar structure in case we continue subdivision later.

?

Figure 6. Mismatch on the mesh between ra-
dial subdivision ((a)) and Catmull-Clark sub-
division ((b)).

(b) Apply k circular subdivision steps.

Since step (a) preserves the valence and hence the analy-
sis of reference [7], we base any continued refinement on
the saved polar structure. Alternating radial and circular
subdivision creates local curvature fluctuations By contrast,
applying step (b) only a posteriori is simply knot insertion
that does not change the surface. So, the simple scheme
outlined above is preferable.

3. Generalized bi-cubic subdivision

Since we only locally improve Catmull-Clark subdivi-
sion, all input meshes suitable for Catmull-Clark subdivi-
sion will be admissible. In particular, global boundaries
and n-sided facets are covered by Catmull-Clark rules. A
designer wanting to treat a vertex with polar subdivision,
has to configure its neighborhood as a polar structure (Sec-
tion 1.1). A typical scenario is a cylindrical extrusion sur-
rounded by 5-sided facets. Given an input mesh and the
maximal subdivision level k, generalized bi-cubic sub-
division for Catmull-Clark meshes augmented with polar
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Figure 8. Finite polar capping by a periodic singular NURBS patch. (left) Initial polar structure, (middle)
polar mesh with vertices pi after one subdivision; (right) bi-cubic NURBS representation with control
points cij : the collapsed center c0i and the exterior boundary are associated with 4-fold knots.

radial circular

Figure 7. Mesh refinement preserving the
limit surface of bi-cubic polar subdivision.
From left to right: original mesh, two applica-
tions of radial subdivision, followed by two
applications of circular subdivision, and limit
surface.

structures is straightforward (see Figure 5).

1. Split off polar structures: Copy all the polar structures
and remove polar vertices from the input mesh.

2. Subdivide polar structures: For each polar structure,

(a) subdivide k times radially, and then

(b) subdivide k times in the circular direction.

3. Subdivide the remaining mesh: Apply k steps of
Catmull-Clark subdivision to the mesh without the po-
lar vertices.

4. Merge results: Drop the boundary facets of the meshes
subdivided in steps 2 and 3 and join them by identify-
ing the resulting boundary vertices.

By splitting the mesh into overlapping pieces, we intro-
duced new boundaries in addition to any global boundaries
of the input mesh. Subdivision steps 2 and 3 deal with these
boundaries by dropping the vertices that do not have enough
neighbors to apply the regular rules.

If a designer placed polar vertices too close together,
or did not separate extraordinary limit points of Catmull-
Clark subdivision, or created polar points of low valence,

Figure 9. Separating Catmull-Clark and polar
extraordinary limit points.

then applying step 3 and standard bi-cubic subdivision also
in the 0-layer of the polar vertex (by interpreting triangu-
lar facets as degenerate quadrilaterals) doubles the valence
and separates extraordinary limit points (see Figure 9). For
this one initial step, computing the polar vertex with weight
α := 3

8(1−β) − 1
2 yields good shapes for a range of β. We

suggest β := 1
2 and α = 1

4 .

4. Finite bi-cubic constructions

A related, different but complementary generalization of
the bi-cubic setting is to model areas deviating from the
tensor-product setting by a few bi-cubic NURBS patches.
Since PCCM [12] gives a construction for Catmull-Clark
layouts, we focus here on constructing a single bi-cubic
spline for a polar structure. Just as PCCM yields a finite
bi-cubic surface that is at least C1 everywhere, the single
bi-cubic NURBS surface will be C1. Despite its singular
parametrization at the central polar point, it can be shown
to have bounded curvature. On input of a polar structure,
the finite bi-cubic NURBS construction has the following
steps (cf. Figure 8).

(i) (recommended for better shape) Subdivide the polar
structure. Subdivide radially, twice for elongated ex-
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amples like tips of fingers. The resulting mesh p is
labeled as in Figure 8, middle.

(ii) Convert the polar structure to a spline mesh. Initialize
cij := p(i−1)n+j+1 for i > 1 and j = 0, . . . , n−1.
Both u and v knot sequences are uniform. The circular
direction with parameter u is periodic.

(iii) Interpolate the extraordinary limit point of bi-cubic
polar subdivision. For i = 0, . . . , n−1, set

c0i := ηp0 + (1− η)
1
n

n∑
j=1

pj , η :=
4(1− β)

3
, (2)

the limit formula derived in [7], and change the start
of the radial knot sequence to a 4-fold knot associated
with c0i.

(iv) Match the limit normal of bi-cubic polar subdivision
We project the neighbors of the central point into a
common plane. For i = 0, . . . , n−1,

c1i := c0i + 2σ
n−1∑
j=0

Γj−ipj+1, σdefault :=
3
4
, (3)

Γk :=
1
n

cos
(

2πk

n

)
.

The projection of the spline coefficients does not alter
the inherent C2 continuity apart from the singularity at
the extraordinary limit point; and the projection maps
all radial tangents into the same plane with normal di-
rection (c11 − c00)× (c12 − c00) at the extraordinary
limit point.

(v) (optional) Additional knot insertion. It is common
to have cubic NURBS patches with four-fold end
knots. Knot insertion at the outer boundary yields
e.g. 0, 0, 0, 0, 1, 2, . . . , m− 1, m, m, m, m for the ra-
dial knots. The circular knot sequence remains uni-
form due to periodicity.

Figure 10 and 11, right, show examples of the NURBS con-
struction. The spline surface is C0 due to the common inter-
polated control vertex c00 that represents a collapsed edge
c0i := c00, i = 0, . . . , n− 1. The surface is singularly
parametrized. Since singularly parametrized surfaces are
commonly used in CAD applications, such packages han-
dle and display the NURBS patch without problems. How-
ever, singularly parametrized surfaces are tricky to analyze
[10, 11, 14, 2, 16]. The classical approach is an algebraic
reparametrization of the surface in the singular point. In the
Appendix, we use a novel approach that only becomes nat-
ural due to improved understanding of subdivision surfaces:
we re-parametrize by a subdivision scheme that traces out
the same surface as the NURBS patch. We find that the
surface is C1 and curvature bounded.

5. Summary and Discussion

Bi-cubic polar subdivision augments the capabilities of
existing Catmull-Clark implementations. The extension
is particularly valuable for extruded features and naturally
complements Catmull-Clark in regions of high-valence. We
propose compatible polar mesh refinement to minimally
modify the existing infrastructure and add the good shape
and simplicity of bi-cubic polar subdivision.

We also developed a finite polar spline generalization of
standard bi-cubic splines. Pleasantly, this construction con-
sists of a single NURBS patch. The representation is easy
to add to existing CAD and animation modeling packages
and is suitable for evaluation on the GPU. The central sin-
gularity presents no problem for rendering since the explicit
normal is known and the Appendix shows that the surface
curvatures are bounded.

The analysis of the finite construction in the Appendix
defines and uses another polar subdivision scheme, called
pbs. This raises the question whether we could use pbs in
place of bi-cubic polar subdivision and thereby obtain a uni-
fied finite-plus-subdivision representation. We consider pbs
less practical since it has a large subdivision footprint, with
special rules for every i-link for i = 0, 1, 2, 3. Moreover,
the generating functions associated with the 1-link vertices
are dependent and a special first step is required without
which the convex hull property is not guaranteed.

All four surface types of Table 1 are compatible with
one another in that their transitions are identical bi-cubic
splines. The resulting surfaces are piecewise bi-cubic, C2

almost everywhere and C1 at isolated points (curves in
the case of PCCM). Both the subdivision and the NURBS
construction give equally valid meaning to the input mesh
created and manipulated by the designer. And, by in-
creasing the subdivision level, the resulting surfaces can be
made arbitrarily close to allow switching from one model-
ing paradigm to the other. Conveniently, the polar pieces of
each approach can be implemented as a simple extension of
existing modeling tools.
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6. Appendix

To analyze the singularly parametrized polar NURBS
patch with coefficients cij defined in Section 4, we derive a
new projected bi-cubic subdivision (pbs). Pbs traces out the
same surface as the NURBS patch so that we can analyze
the NURBS patch by analyzing pbs. We start by showing
that bi-cubic spline subdivision of the NURBS patch does
not yield a useful analysis.

6.1. Failure of standard subdivision of the
polar spline.

We focus on the i-links of the polar vertex c00 for
i = 0, 1, 2, 3, and initialize for subdivision level m = 0,
cm

ki := cij for j = 0, . . . , n−1, k = 0, 1, 2, 3. If the radial
curve with coefficients [cm

0i cm
1i cm

2i cm
3i]

t has initially the
knot sequence 0, 0, 0, 0, 1, 2, 3, 4, the standard cubic sub-
division amounts to inserting knots at 1/2 and 3/2, i.e. to
applying the curve subdivision matrix

 cm+1
0i

cm+1
1i

cm+1
2i

cm+1
3i


 =

[
1 0 0 0

1/2 1/2 0 0
0 3/4 1/4 0
0 3/16 11/16 1/8

][ cm
0i

cm
1i

cm
2i

cm
3i

]
. (4)

The radial subdivision matrix of the NURBS patch com-
bines n curve subdivision matrices. Since an arbitrary
B-spline with one end collapsed to an interpolated vertex
needs not be C1, the spectral analysis of this subdivision
must certainly fail. The apparently n-fold eigenvalue of 1
becomes a single leading eigenvalue by the standard ap-
proach of distributing the contribution c0i = c00 evenly
with weight 1/n. However, there are also n subdominant
eigenvalues of size 1/2 that, off hand, contradict the unique-
ness of a tangent plane. In general, such a scheme is not C1.
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6.2. Projected subdivision of the polar
spline.

Construction step (iv) in Section 4 maps the 1-link into a
unique plane. To use this projection in the analysis, we say
the 1-link vertices c1i are in oval position if there exist two
linearly independent vectors e1 and e2 such that

c1i = c00 + e1 cos(2πi/n) + e2 sin(2πi/n). (5)

That is, the 1-link is equally distributed on an oval, the
affine projection of a circle centered at the extraordinary
limit point c00, and lies in the plane containing c00 and
spanned by e1 and e2. We observe that,
— if the control points cm

1i are in oval position, row two of
Equation 4 assigns (cm

00 + cm
1i) /2 to cm+1

1i so that the points
cm+1
1i are also in oval position.

— Equation 3, in the form

cm
1i ← cm

00 + 2σ

n−1∑
j=0

Γj−icm
1j , (6)

maps a 1-link c1i into oval position. Applying this projec-
tion (6) with σ = 1 to Equation 5 shows that a 1-link in oval
position remains unchanged under the projection.

We now define the projected bi-cubic subdivision (pbs)
scheme to be standard bi-cubic subdivision with the second
row in Equation 4 modified by applying the projection (6):

cm+1
1i =

1
2
cm
0i +

1
2


cm

0i + 2
n−1∑
j=0

Γj−icm
1j




= cm
0i +

n−1∑
j=0

Γj−icm
1j . (7)

Lemma 1. The singular NURBS patch defined in Section 4
is identical to the limit surface generated when pbs is ap-
plied to its control points.

Proof. By construction of the NURBS patch, the 1-link c0
1j

is in oval position. For a 1-link c1j in oval position, Equa-
tion 7 and row two of Equation 4 yield identical new 1-
links.

6.3. Analysis of projected bi-cubic subdivi-
sion

A standard analysis below shows pbs to generate C1 sur-
faces with bounded curvature. The usual caveat that control
points should be generic ([17], pg. 164) applies to the mesh
with the union of c0i interpreted as a single point.

Lemma 2. Surfaces generated by the pbs scheme are C1

and have bounded curvature.

Proof. We split the contribution of c00 evenly amongst the
c0i i ∈ 0, . . . , n−1 and write the pbs circulant matrix as



...
cm+1
0i

cm+1
1i

cm+1
2i

cm+1
3i

...




=




A0 A1 ... An−1
An−1 A0 ... An−2

...
. . .

...
A1 ... An−1 A0







...
cm
0i

cm
1i

cm
2i

cm
3i

...


 (8)

where for i > 0,

A0 :=

[
1/n 0 0 0
1/n Γ0 0 0
0 3/4 1/4 0
0 3/16 11/16 1/8

]
, Ai :=

[
1/n 0 0 0
1/n Γi 0 0
0 0 0 0
0 0 0 0

]
.

Under discrete Fourier transform, Âi :=
∑n−1

j=0 wijAj ,

wij := exp
(
2πij
√−1/n

)
, the circulant system diagonal-

izes into diag
(
Â0, ..., Ân−1

)
where Γ̂i :=

∑n−1
j=0 wijΓj and

Â0 :=

[
1 0 0 0
1 Γ̂0 0 0
0 3/4 1/4 0
0 3/16 11/16 1/8

]
, Âi :=

[
0 0 0 0
0 Γ̂i 0 0
0 3/4 1/4 0
0 3/16 11/16 1/8

]
.

The eigenvalues of Â0 are 1, Γ̂0, 1/4, 1/8, and those of Âi

are 0, Γ̂i, 1/4, 1/8. Since Γ̂0 = 0 and Γ̂1 = Γ̂n−1 = 1/2,
while Γ̂i = 0 in all other cases, the subdominant eigenvalue
is λ := 1/2 and corresponds to Fourier blocks Â1 and Ân−1.
The left eigenvector of Â1 corresponding to eigenvalue 1/2
is (0, 1, 3, 6). Therefore the characteristic map r (labeled
using the same indexing as c in Figure 8, right) has coeffi-
cients

(r0i, r1i, r2i, r3i) := (0, si, 3si, 6si) , si :=
[

cos( 2πi
n )

sin( 2πi
n )

]
.

The characteristic map is regular for arbitrary valences and
satisfies the injectivity criterion of Theorem 3.5 of [15], so
that the limit surface is C1 as claimed. The subsubdominant
eigenvalue µ := 1/4 = λ2 comes from independent Fourier
blocks, indicating that it has equal algebraic and geometric
multiplicity. Hence by Theorem 3.3 of [13], the surface has
bounded curvature.

By Lemma 1, standard bi-cubic subdivision and pro-
jected bi-cubic subdivision generate the same surface, and
Lemma 2 implies the hoped-for theorem.

Theorem 3. A NURBS patch constructed according to Sec-
tion 4 is C1 and has bounded curvature at the central point.
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Figure 10. Results. From left to right: control mesh, mesh after one subdivision, subdivision limit
surface, highlight lines on subdivision surface, finite NURBS construction, finite NURBS construc-
tion highlight lines. In row two, we zoom in on one of the fingers. Row three illustrates a high-valent
saddle.

Figure 11. Results. From left to right: control mesh, mesh after one subdivision, subdivision limit
surface, polar regions, finite NURBS construction.
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