
Interactive Reaction-Diffusion on Surface Tiles

Kui-Yip Lo
The Hong Kong University
of Science and Technology

csfelix@cse.ust.hk

Hongwei Li
The Hong Kong University
of Science and Technology

lihw@cse.ust.hk

Chi-Wing Fu
The Hong Kong University
of Science and Technology

cwfu@cse.ust.hk

Tien-Tsin Wong
The Chinese University of Hong Kong

ttwong@cse.cuhk.edu.hk

Abstract

This paper proposes to perform reaction-diffusion on
surface tiles. The square tiles fit nicely and cost-effectively
in GPU memory, whereas we also apply distortion mini-
mization on tiles so as to precisely reduce the unbalanced
scale and resolution problem of chemicals in the reaction-
diffusion. The interconnection nature of tiles accounts for
the surface topology, and thus allows the chemicals to
flow naturally over surfaces of arbitrary genus. Further-
more, by taking advantage of the tile structure, we can
efficiently perform localized reaction-diffusion, and adjust
the pattern formulation in an interactive manner on the
GPU. To demonstrate its performance, we develop an in-
teractive system that allows texture designers to fine-tune
and alter the reaction-diffusion process by directly paint-
ing chemicals onto the object surface. Finally, we also de-
velop several non-trivial applications of reaction-diffusion,
including the geometry-dependent reaction-diffusion and
deformation-aware reaction-diffusion.

1. Introduction

Reaction-diffusion is a mathematical model proposed by
Turing [21] to describe the formation of natural patterns.
Graphics researchers [7, 9, 22, 23] realized it using comput-
ers in 1990’s.

A rectangular map is a more convenient domain for
performing the grid-structured reaction-diffusion. How-
ever, natural patterns are normally formed on irregularly-
shaped animal surfaces rather than on a flattened plane.
One can map the whole object surface to a single tex-
ture map, but if the mapping is not area-preserving, this
leads to scale and resolution problems during the simu-
lation of reaction-diffusion. Unless the diffusion rate is

anisotropically weighted accordingly, the resultant reaction-
diffusion pattern will be overly enlarged or compressed
when mapped onto the objects. Existing methods perform
reaction-diffusion directly on triangular meshes. Each trian-
gle has to be laid on the texture in an area-preserved fashion.
The problem is worsen when the object is not genus-zero in
topology as the object may have to be divided. The connec-
tivity at the boundaries of separated parts has to be properly
handled as chemicals could flow across the boundaries dur-
ing the simulation.

In this paper, we propose to perform reaction-diffusion
on surface tiles in order to solve the topology issue. Each
tile is in a square shape that fits nicely in the GPU memory.
They can be connected in arbitrary topology, see the surface
tiles on a genus-three model in Figure 1. Therefore, the te-
dious topology issue can be solved naturally. The connec-
tivity among tiles can be easily handled by looking up the
indirect addresses when retrieving the neighboring chemi-
cal values. The distortion-minimized tiles are obtained by
parameterizing the object mesh using existing quad-mesh
parameterization methods [3, 5, 8, 11, 16, 20].

Another well-known problem of reaction-diffusion is
heavy computation cost. This hinders its application to tex-
ture design. Without interactive response, texture design-
ers are hard to fine-tune the patterns in order to mimic the
real-world counterparts. To make the design of reaction-
diffusion textures practical, we developed an interactive
system that allows the designers to fine-tune and alter the
reaction-diffusion process, hence the pattern, by directly
“painting” chemicals (parameters) onto the object sur-
faces. With the GPU-friendly tile structure, we can achieve
high response rate with tailor-made shaders. As reaction-
diffusion pattern in equilibrium state is constant, partial
modification by designers can be interactively achieved by
performing reaction-diffusion locally on the affected tiles.
This property further speeds up the system response.



The organization of this paper is as follows: Section 2
describes the related work in reaction-diffusion. Section 3
presents our surface tile structure for modeling reaction-
diffusion, whereas Section 4 explores the use of this tile
structure to develop localized reaction-diffusion on object
surfaces. Finally, Section 5 presents various interactive
reaction-diffusion examples and some non-trivial applica-
tions of the system. Section 6 draws the final conclusion.

2. Related Work

Reaction-diffusion was first proposed by Turing [21] in
his paper “The Chemical Basis of Morphogenesis.” He de-
scribed a system of two or more chemical substances dif-
fusing and reacting together through a tissue to address the
phenomena of morphogenesis. Although the initial state of
the chemicals is homogeneous, the chemicals may finally
reach a dynamic equilibrium state, where an organic pat-
tern or structure can be developed as a result. The model of
diffuse and react was formulated as a set of partial differen-
tial equations governing how the concentration of chemicals
evolves over space and time. These “Turing Patterns” were
also proved to be able to produce a wide variety of patterns
existing in the nature, including the zebra stripes, leopard
spots, and web-like patterns on giraffes, etc., referring to the
development of several different reaction-diffusion models
such as [2, 13, 14]. An overview of reaction-diffusion can
be found in [6].

Graphics research pioneers, including Turk [22], Witkin
and Kass [23], started to put reaction-diffusion into prac-
tice using computers in the early 90’s. Later, Fowler et
al. [9] applied reaction-diffusion to simulate pigmentation
on sea shell models. Fleischer et al. [7] employed the
reaction-diffusion to produce cell attributes, and hence, ef-
ficiently determined the bump and thorn patterns on various
geometry surfaces. Chambers and Rockwood [4] general-
ized the reaction-diffusion system to be three-dimensional
so as to generate solid textures. Stam and Fiume [19] em-
ployed reaction-diffusion to model fire and other gaseous
phenomena such as wispy smoke and steam, while Phan and
Grimm [15] proposed an interactive interface for sketching
reaction-diffusion textures using machine learning.

In recent years, there are two major research directions
related to reaction-diffusion. One of them is to employ
reaction-diffusion as a visualization tool. Kindlmann et
al. [12] employed anisotropic reaction-diffusion to illus-
trate the structure in volumetric diffusion data. Sander-
son et al. [17] further applied reaction-diffusion to generate
texture patterns with variable shape, size, and orientation
based on the uncertainty in the data domain. The other re-
search direction focuses on applying the GPU to accelerate
the reaction-diffusion computation. This includes the work
of Harris et al. [10], who employed the coupled map lattice

(CML) to build a framework to perform various simulations
including reaction-diffusion on graphics hardware, and the
work of Sanderson et al. [1], who developed a GPU im-
plementation of an extended reaction-diffusion model that
allows users to explore the pattern generation. While these
are indeed exciting research work in recent years, it is worth
to note that a mapping from 3D surface to a 2D map is still
required in order to make reaction-diffusion computable on
the GPU.

3 Reaction-Diffusion on Surface Tiles

Fundamentally, Turing’s reaction-diffusion model con-
siders two chemicals diffusing and reacting through a tissue
to account for the phenomena of morphogenesis. The con-
centration of the two chemicals are given by a and b, and are
continuously regulated over the space and time according to
the following partial differential equations:

∂a

∂t
= F (a, b) + αa∇

2a

∂b

∂t
= G(a, b) + αb∇

2b ,

where F and G are functions controlling the production (or
the reaction) of a and b, respectively, αa and αb are the
diffusion rate of a and b, respectively (assuming isotropic
diffusion), and ∇2a and ∇2b are the Laplacians of a and
b over the spatial domain, respectively. Even though the
initial concentrations of a and b could be the same over the
whole tissue, equilibrium state may finally be reached and
a stable organic pattern could be produced at the end.

To practically compute this reaction-diffusion model,
Turing further defined a two-dimensional discrete grid
structure, as the spatial domain, to quantitatively store the
concentration of the chemicals (per square grid cell). Fur-
thermore, by rewriting the partial differential equations in
discrete form, we can numerically compute the PDE over
the grid cells, and thus can iteratively compute reaction-
diffusion directly using computers. Other than using 2D
grid structure, Turk [22] proposed to directly compute
reaction-diffusion on 3D object surfaces by constructing
highly uniform meshes on the object surfaces. Using this
design, reaction-diffusion can be extended to work on sur-
faces of arbitrary shapes, and organic texture patterns can
be iteratively generated on the mesh structure.

With the advances in programmable graphics hardware,
graphics researchers started to employ the GPU to speed up
the computation of reaction-diffusion [1, 10]. However, in
order to perform computation on the GPU, the data has to
be packed in a rectangular structure, so that the data can be
stored (read and write through the shaders) and computed in
the GPU textures. Hence, Turk’s mesh-based computation
model cannot be directly adopted on the GPU.

2



Figure 1. Tile-based reaction-diffusion on HOLES3 model: 1) Laying tiles on its surface parameteriza-
tion, 2) Packing tiles into a 2D tile atlas, and 3) Computing reaction-diffusion on the tile atlas.

To efficiently compute reaction-diffusion on surface
of 3D objects, while taking the advantage of the GPU
to accelerate the computation, we introduce a tile-based
computation model for performing reaction-diffusion on
3D objects. First, we employ surface parameterization
models and arrange surface tiles on parameterized surfaces.
Surface parameterization re-parameterizes object surfaces
using quad structure. With this new parameterization, we
can efficiently apply texture mapping onto the surface as
well as perform a wide range of surface modeling tasks.
Several ingenious methods [3, 5, 8, 11, 16, 20] were recently
proposed to create surface parameterization.

Surface Tiles Based upon these methods, the very first
step in our approach is to take a surface parameterization as
the input, and lay a set of interconnected surface tiles over
the parameterized surface. Note that each surface tile is a
square tile containing n×n texels on the object surface. By
this means, we gain the following advantages over previous
reaction-diffusion models:

• First, we can nicely pack the square tiles into a rectan-
gular domain, known as the tile atlas, and store them
in the texture memory. Thus, we can take advantage
of the GPU to compute reaction-diffusion on this tile-
atlas domain, see Figure 1 for the illustration.

• At the same time, since the interconnected tile struc-
ture allows us to cover object surfaces of arbitrary
genus, this tile-based computation model can be nicely
performed on object surface of arbitrary genus.

• Besides, tiles can naturally divide the surface into dis-
joint areas, where we can selectively perform localized
reaction-diffusion for speed-up. This is especially use-
ful and practical when texture designers modify only
part of the texture in equilibrium state, see Section 4.

In our particular implementation, we use 3D models
from the following two surface parameterization meth-

ods: Periodic global parameterization [16] and PolyCube-
Maps [20]. Nevertheless, any low-distortion and quad-
based parameterization can be adopted in our application.

Reaction-Diffusion on Surface Tiles Before comput-
ing reaction-diffusion on surface tiles, we first have to pre-
pare a texel connectivity map to store the connectivity be-
tween neighboring texels in the tile-atlas domain. This is an
essential step in our surface-tile model because our model
has to handle object surfaces of arbitrary genus. In details,
this texel connectivity map is defined in the tile-atlas do-
main, and each texel in this map holds the texture coordi-
nates (in the tile-atlas domain) of its four direct texel neigh-
bors on the object surface. Hence, to perform reaction-
diffusion on the GPU, we can apply indirect addressing to
locate the neighbors of any texel on the tile atlas, see Sec-
tion 5 for the details of the implementation.

Figure 2 depicts an example reaction-diffusion sequence
on a genus-three model: the HOLES. Starting from a homo-
geneous chemical concentration over the entire object sur-
face, we can iteratively compute reaction-diffusion in paral-
lel over all texels on the object surface, and gradually reach
the equilibrium state in around three to four seconds.

Distortion Minimization Furthermore, to minimize
the distortion on the reaction-diffusion computation caused
by the non-uniformity in the surface parameterization, we
adapt the method developed by Witkin and Kass [23]; given
x(u, v) as the mapping from local uv-parametric space to
the object space, we first compute the Jacobian of x, say J ,
locally over the object surface. Then, we can compute the
metric tensor as a two-by-two matrix:

M = JT J .

Finally, by locally adjusting the diffusion rate (diffusion
matrix) accordingly, we can minimize the distortion caused
by the surface parameterization. Figure 3 demonstrates the

3



Figure 2. Computing reaction-diffusion globally over all tiles on the HOLES model (genus-three); It
takes around 3-4 seconds to go from an initial homogeneous state to a final equilibrium state.

Figure 3. Results of distortion minimization: KITTEN (left) and BUNNY (right).

related results; by defining a map of diffusion rate in the
tile-atlas domain and by locally adjusting the diffusion rate,
we can normalize the pattern scale and compensate the sur-
face distortion. In the figure, two surface parameterization
models are employed in our experiment: the KITTEN model
from Periodic global parameterization [16] and the BUNNY
model from PolyCube-Map [20]. Note that in the surface
parameterization of the KITTEN model, the surface texels
on its body are larger than those on its head, while in the
BUNNY model, the surface texels around its eyes are rela-
tively smaller. Without distortion minimization, we can see
from the figure that Turing’s spot pattern has a wide range
of sizes on the object surface due to the non-uniformity in
the surface parameterization. With distortion minimization,
the spot pattern becomes more uniform. Note that a similar
method (surface metric) to account for the effect of surface
distortion can be found in [18].

4 Localized Reaction-Diffusion

As mentioned in Section 3, the interconnected tile struc-
ture can also be served as a spatial data structure on the
object surface to allow us to explore the locality in the
reaction-diffusion computation.

Our observation with interactive control on reaction-
diffusion is as follows. Once the reaction-diffusion pro-
cess reaches an equilibrium state, the chemical concentra-
tion over the entire spatial domain becomes stable. If we
modify the chemical concentration only on part of the object
surface, for example, by distorting or painting chemicals on
certain surface regions, or by deforming certain part of the
object, most regions are not affected by the action, while the
effect of the action will only be gradually propagated out-
ward from the affected surface area. Hence, by having an
interconnected tile structure over the object surface:

• First, we can precisely identify the surface regions af-
fected by user’s action as a set of surface tiles covering
(or neighboring to) the related surface area.

• Hence, we can quickly determine an active set of tiles,
known as the active tile set, so that we can compute
reaction-diffusion locally on this tile set. As the effect
of the user action propagates outward, we can progres-
sively expand this tile set.

Tile Neighbors Given a set of n interconnected surface
tiles, say T , fully covering the surface parameterization:

T = { T1 , T2 , ... , Tn } ,

4



Figure 4. Distorting the equilibrium pattern on the BUSTE model; Reaction-diffusion patterns can be
evolved at interactive speed by using localized reaction-diffusion computation on the active tile set.

where Ti is the ith surface tile in the set. We define the set
of neighboring tiles of Ti, say N (Ti), as

N (Ti) = { Tj | Ti ∩ Tj 6= ∅ and i 6= j } .

Note that if two distinct tiles shares a vertex on the object
surface, they are said to be neighbor of each other. Further
than that, we can also define the neighboring function N on
a set of tiles. Given S ⊆ T , we can define

N (S) = { Tj | Tj ∈ S or ∃ Ti ∈ S s.t. Tj ∈ N (Ti) } .

Local computation The localized reaction-diffusion al-
gorithm can be described as the following three steps: 1)
initializing the active tile set, 2) expanding the active tile
set, and 3) transiting from local computation using the ac-
tive tile set to global computation over all tiles:

• After the user takes an action, say painting chemicals
onto the object surface, we first identify a set of surface
tiles on the object, say A0, that can completely cover
the entire affected surface region.

• Then, we compute the initial active tile set:

A1 = N (A0) ,

and compute reaction-diffusion locally on tiles in A1.

• Furthermore, for any tile, say Ti ∈ T , by pre-
simulation using the map of diffusion rate, we can pre-
compute the number of iterations it could possibly take

to spread the reaction-diffusion effect to its first neigh-
bor set N (Ti), to its second neighbor set N (N (Ti)),
and so on. Hence, we can determine the number of
iterations that could possibly be taken for the reaction-
diffusion effect to go beyond A1; by this means, we
can iteratively expand the active tile set:

Ai+1 = N (Ai) , i ≥ 1 .

• Finally, when the number of tiles inside the active tile
set goes beyond a certain threshold, we can clear the
active tile set, and revert to global computation mode
over all tiles on the tile atlas.

Figure 4 presents an example of interactive reaction-
diffusion; here we distort the chemicals on the surface of the
BUSTE model (from Periodic global parameterization [16])
and watch it going back to equilibrium. The upper row in
the figure shows an image sequence of evolving patterns
rendered with bump mapping, while the bottom row reveals
the corresponding active tile set; the tiles that are initially
marked down by users’ action (A0) are labelled in green,
whereas the active tile set at any moment include the green
tiles as well as the red tiles. Note also the time taken to
reach each state (marked on the bottom of each column);
in the last column, since the active tile set reaches the pre-
defined threshold, we clear the active tile set and revert to
global computation mode from there.

5



Figure 5. Geometry-Dependent Reaction-Diffusion: HOLES3 model (top) and KITTEN model (bottom).

5 Implementation and Results

5.1 Implementation details

In the implementation of the tile-based reaction-
diffusion system, we employ the following hardware con-
figuration in our experiment:

• An HP xw4400 workstation with Intel Core(TM)2
CPU 6400 at 2.13GHz and 1GB Memory

• Two NVidia Geforce 8800 GTX graphics boards (each
with 768MB memory) running in SLI mode

For the software part, we employed OpenGL and Cg
2.0. Several texture maps defined on the tile-atlas do-
main are employed: two RGBA float textures for storing
the concentration of chemicals (in case we use Turing’s
system with double buffering), one RGBA unsigned inte-
ger (GL RGBA32UI EXT) texture for the texel connectivity
map, and one RGBA float texture for the map of diffusion
rate. Note that we can compactly pack each uv-texture co-
ordinate as a single 32-bit unsigned integer for efficient tex-
ture fetch. Hence, we can store four uv-texture coordinates
(four neighbors) as an RGBA tuple per texel on the object
surface. Using this scheme, we can efficiently unpack them
using the fragment program code below:
// Unpack uv-coord. of texCoord0’s four neighbors
uvec4 addr = texRECT(conn_map, texCoord0);
uvec4 addr_left_right = addr >> 16;
uvec4 addr_up_down = addr & 0x0000FFFFU;

Furthermore, we compute the reaction-diffusion in
an offscreen manner using the OpenGL extension

GL EXT framebuffer object. The resolution of the
framebuffer object equals the resolution of the tile atlas, and
all tile-atlas-based textures mentioned above are attached
to this framebuffer object for efficient data lookup. Hence,
fragment programs can be used to perform the computation
iteratively.

In case of global computation over the entire tile atlas,
we render only a single rectangle to cover the entire view-
port in the framebuffer object, so that we can trigger frag-
ment programs to compute reaction-diffusion for all surface
texels. In case of localized reaction-diffusion, within a sin-
gle iteration cycle, we render only the tiles (in a tile by tile
manner on the tile atlas) in the active tile set. Hence, we can
minimize the number of surface texels to be triggered, and
hence significantly reduce the amount of fragment process-
ing in each iteration cycle.

5.2 Geometry-dependent
Reaction-Diffusion

By adjusting the diffusion rate locally according to the
metric tensor of the surface parameterization, we can regu-
late the pattern scale on 3D models. Further than that, we
can also control the pattern scale locally on the 3D models
by adjusting the pattern scale based on some kinds of local
geometry property, for example, the mean curvature.

Figure 5 demonstrates the effect of using the mean cur-
vature to adjust pattern scales on two different 3D models.
The last column shows the mean curvature map; red and
blue colors correspond to high and low curvature values, re-
spectively. Models in the first column are rendered in homo-

6



Table 1. Performance Comparison of Global and Localized Reaction-Diffusion.

geneous scale, whereas models in the middle column have
their pattern scales adjusted by the mean curvature; here,
patterns around high-curvature regions are adjusted to be
smaller in size. This allows us to generate fine details on
smaller geometric features, usually with high curvature.

5.3 Localized Reaction-Diffusion

To demonstrate the efficiency of localized reaction-
diffusion, we experiment localized reaction-diffusion and
global reaction-diffusion (over the whole tile atlas) on five
different 3D models, each with two different resolutions of
surface parameterization. Table 1 presents the results; the
2nd to 4th columns describe the 3D model property, in-
cluding the total number of surface tiles on it, the resolu-
tion (number of texels) of a tile, and the resolution of the
tile atlas; the 5th to 6th columns describe the performance
of global reaction-diffusion, including the number of iter-
ations per second and the average time taken to reach an
equilibrium state for a particular painting action; the rest of
the columns describe the performance of localized reaction-
diffusion: the last column shows the average time taken to
reach the equilibrium state for the same action taken in the
case of global computation, whereas the other six columns
are divided into three parts. Each part corresponds to a par-
ticular phase corresponding to the expansion of the active
tile set: from A1, to A2, and then to A3. Here, each part
contains two columns, including the number of iterations
per second we can achieve in that phase as well as the num-
ber of tiles in the active tile set.

From the table, we can see that localized reaction-
diffusion can always outperform global reaction-diffusion
because we can always perform more reaction-diffusion it-
erations using the same amount of computation time; hence,
equilibrium states can be reached more promptly. In addi-
tion, we can also compare the relative performance between
localized reaction-diffusion and global reaction-diffusion;
here, the larger the size of the tile atlas, the more we can
usually gain with localized reaction-diffusion, for example,
note the row for the BUSTE model.

5.4 Interactive Painting Control

In our interactive reaction-diffusion system, we support
the following modes of interactive painting control:

• Locally distorting an existing reaction-diffusion pat-
tern. This action allows users to locally alter an equi-
librium state and randomly reach some other equilib-
rium states, see the image sequence in Figure 4.

• Painting chemicals by adding or removing chemicals
permanently on a particular region on the object sur-
face. This action allows us to put in constraints in the
spatial domain; in practice, these constraints can be
letters or symbols hidden in the reaction-diffusion pat-
terns, see the left two LAURANA renderings in Fig-
ure 6; two hidden letters PG are painted onto the strip
pattern by removing some chemicals locally.

• Controlling the pattern scale by painting. Further-
more, the painting action can also be used to adjust the
diffusion rate locally on object surface; hence, we can
locally adjust the pattern scale, see the ring of smaller-
scaled patterns deliberately put around the neck of
LAURANA in Figure 6 (right).

5.5 Deformation-Aware
Reaction-Diffusion

In addition, we can also interactively perform reaction-
diffusion while locally deforming 3D models. The under-
lying mechanism is basically the same as that of interac-
tive painting; when only a portion of the 3D model is being
deformed, we determine the active tile set for the related
surface region, and locally compute reaction-diffusion on
the active tile set. Figure 7 presents an example sequence.
Here, we first stretch the ear of KITTEN, and wait until the
equilibrium. After around two to three seconds, we reverse
the action and compress the ear. From the figure, we can
see that the reaction-diffusion pattern on the ear can lively
(and “organically”) adapt to the deformation. Note that we

7



Figure 6. Interactive Painting Controls: Writing some hidden letters in the strip pattern (left) and
locally controlling the pattern scale (right) on LAURANA model.

Figure 7. Interactive Deformation of KITTEN’s ear: Reaction-Diffusion can be performed lively with
the deformation action and equilibrium state can be reached within a few seconds.

have to recompute the Jacobian (and metric tensor) locally
over the deformed area on the surface.

5.6 Other Applications

Water Flowing on Surface By customizing our
reaction-diffusion model, we can simulate water-drop flow-
ing over object surfaces. In details, we first add an RGB
float texture storing object-space position per texel in the
tile-atlas domain and attach it to the framebuffer object. To
influence water diffusion by gravity, we can compute in the
fragment program the directional vector, say ~vij between
neighboring texels, and then apply ~g · ~vij to adjust the dif-
fusion rate, where ~g is the gravity direction.

Furthermore, to simulate water absorption on object sur-
face, we define a stickiness term to represent the absorption
power of the paper/surface, so that we can produce traces
of water flow on the surface. Finally, environment mapping
(specular reflection) and bump mapping are used to shade

the water drops, see Figure 8 for the simulation of a water
drop flowing on the KITTEN model. By means of localized
diffusion, this animation takes only three seconds.

Water Color Painting on Surface With additional cus-
tomization, our reaction-diffusion system can be further ap-
plied to simulate water color painting on 3D models. First,
to simulate the effect of water color painted on paper sur-
face, the stickiness term we used here is no longer a con-
stant over the entire object surface as in the case of water
flow. Rather, it is a per-texel variable locally represent-
ing the absorption power of the surface. Furthermore, for
efficiency in texture fetch, this per-texel stickiness term is
stored in the w-component of the chemical-concentration
texture. See Figure 9 for some example drawings by the
water color painting tool that built on top of our reaction-
diffusion system.

8



6 Conclusion and Future work

Reaction-diffusion can model a rich class of textures and
phenomena. However, due to the high computational cost,
interactive manipulation of reaction-diffusion textures has
long been a difficult task. The proposed tile-based reaction-
diffusion allows partial update to the reaction-diffusion tex-
tures by computing only those active tiles. Such cost-
effective computation enables the high response rate of the
system. We demonstrated the system efficiency by show-
ing how texture designers can interactively paint the chemi-
cals, deform the geometry, water color on surface, and then
see how the texture patterns react. The computation of tile-
based reaction-diffusion fits nicely on the GPU as its struc-
ture is rectilinear. Even the geometry is not genus-0, the
interconnected tiles can cost-effectively represent the geom-
etry without over-compression or over-stretching during the
mapping.

One possible extension to the current framework is to
support more general computation models to realistically
simulate various types of natural phenomena on surfaces.

Limitations Since we work on surfaces of arbitrary
topology, the input surface parameterization could contain
any type of corner: 3-corner, 5-corner, or even 6-corner
(note: k-corners are vertices in the parameterization shared
by k surface texels). Here, certain irregularity could result
on texels around these corners, note the circular spots on the
HOLES3 model in Figure 5.

Acknowledgments We would like to express our grat-
itude to Ka-Ling Fok, for his initial experimental im-
plementation of the reaction-diffusion system. This re-
search was supported by the Research Grants Council
of the Hong Kong Special Administrative Region, under
RGC Earmarked Grants (Project No. HKUST612706 and
CUHK417107).

References

[1] C. R. J. Allen R Sanderson, Mike Kirby and L. Yang.
Advanced reaction-diffusion models for texture synthesis.
Journal of Graphics Tools, 11(3):47–71, 2006.

[2] J. Bard. A model for generating aspects of zebra and other
mammalian coat patterns. Journal of Theoretical Biology,
93(2):363–385, November 1981.

[3] I. Boier-Martin, H. Rushmeier, and J. Jin. Parameterization
of triangle meshes over quadrilateral domains. In Proceed-
ings of the 2004 Eurographics/ACM SIGGRAPH symposium
on Geometry processing, pages 193–203, 2004.

[4] P. Chambers and A. Rockwood. Visualization of solid
reaction-diffusion systems. IEEE Computer Graphics and
Applications, 15(5):7–11, 1995.

[5] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C.
Hart. Spectral surface quadrangulation. ACM Transactions
on Graphics, 25(3):1057–1066, 2006.

[6] I. Epstein and J. Pojman. An Introduction to Nonlinear
Chemical Dynamics. Oxford Univ. Press, New York, 1998.

[7] K. W. Fleischer, D. H. Laidlaw, B. L. Currin, and A. H. Barr.
Cellular texture generation. In SIGGRAPH ’95: Proceed-
ings of the 22nd annual conference on Computer graphics
and interactive techniques, pages 239–248, 1995.

[8] M. S. Floater and K. Hormann. Surface parameterization: a
tutorial and survey. In N. A. Dodgson, M. S. Floater, and
M. A. Sabin, editors, Advances in Multiresolution for Geo-
metric Modelling, pages 157–186. Springer Verlag, 2005.

[9] D. R. Fowler, H. Meinhardt, and P. Prusinkiewicz. Modeling
seashells. In SIGGRAPH ’92: Proceedings of the 19th an-
nual conference on Computer graphics and interactive tech-
niques, pages 379–387, 1992.

[10] M. J. Harris, G. Coombe, T. Scheuermann, and A. Las-
tra. Physically-based visual simulation on graphics hard-
ware. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pages 109–118. Eurographics Association, 2002.

[11] L. Kharevych, B. Springborn, and P. Schröder. Discrete con-
formal mappings via circle patterns. ACM Transactions on
Graphics, 25(2):412–438, 2006.

[12] G. Kindlmann, D. Weinstein, and D. Hart. Strategies for di-
rect volume rendering of diffusion tensor fields. IEEE Trans-
actions on Visualization and Computer Graphics, 6(2):124–
138, November-December 2000.

[13] H. Meinhardt. Models of Biological Pattern Formation.
Academic Press, London, 1982.

[14] J. Murray. Mathematical Biology. Springer-Verlag, New
York, 1989.

[15] L. Phan and C. Grimm. Sketching Reaction-diffusion tex-
ture. In Eurographics Sketch Based Interfaces and Modeling
workshop. Eurographics, September 2006.

[16] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez. Periodic
global parameterization. ACM Transactions on Graphics,
25(4):1460–1485, 2006.

[17] A. R. Sanderson, C. R. Johnson, and R. M. Kirby. Display of
vector fields using a reaction-diffusion model. Proceedings
of the conference on IEEE Visualization 2004, pages 115–
122, 2004.

[18] J. Stam. Flows on surfaces of arbitrary topology. ACM
Transactions on Graphics, 22(3):724–731, 2003.

[19] J. Stam and E. Fiume. Depicting fire and other gaseous phe-
nomena using diffusion processes. In SIGGRAPH ’95: Pro-
ceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques, pages 129–136, 1995.

[20] M. Tarini, K. Hormann, P. Cignoni, and C. Mon-
tani. PolyCube-Maps. ACM Transactions on Graphics,
23(3):853–860, 2004.

[21] A. Turing. The chemical basis of morphogenesis. Royal
Society of London Philosophical Transactions Series B,
237:37–72, Aug. 1952.

[22] G. Turk. Generating textures on arbitrary surfaces using
reaction-diffusion. In SIGGRAPH ’91: Proceedings of the
18th annual conference on Computer graphics and interac-
tive techniques, pages 289–298, 1991.

[23] A. Witkin and M. Kass. Reaction-diffusion textures. In SIG-
GRAPH ’91: Proceedings of the 18th annual conference on
Computer graphics and interactive techniques, pages 299–
308, 1991.

9



Figure 8. A water drop flowing down on KITTEN. The four snapshots (from left to right) are succes-
sively taken at a time interval of one second.

Figure 9. Water color painting on BUNNY. The four successive images on the right hand side are
captured 0.5 seconds one after another. Here, the two chemicals in the reaction-diffusion system
are used to represent water concentration and pigment concentration; because of the difference
in their diffusion rates and also of the variable stickiness, we can mimic water flow and pigment
flow, and produce the diffusion pattern around the brush stroke. Note that the more water the user
specified in the brush, the more the amount of diffusion could be resulted in the simulation.

10


