THE UNIVERSITY OF MICHIGAN
COLLEGE OF ENGINEERING

Department of Electrical Engineering
Information Systems Laboratory

Technical Note

A MULTI-LAYER ITEﬁATIVE CIRCUIT COMPUTER

Rodolfo Gonzélez

ORA Project OLTO4

under contract with:
UNITED STATES AIR FORCE
AERONAUTICAL, SYSTEMS DIVISION

CONTRACT NO. AF 33%(657)-7391
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1962

Enggn)
UM e
1692

TABLE OF CONTENTS

Page

SUMMARY v
1. INTRODUCTION 1

2. DESCRIPTION OF THE COMPUTER 6

3. DESCRIPTION OF THE PLANES 8

L. DESCRIPTION OF THE MODULES 9

5. WORD FORMAT 11

6. PATH-BUILDING PROCEDURE 12

7. LIST OF INSTRUCTIONS 17

8. OPERATION OF THE COMPUTER 19

9. GEOMETRICAIL OPERATTONS 30

10. CONCLUSIONS 31

REFERENCES 3L

iii

SUMMARY

A multi-layer iterative circuit computer is described which is capable
of dealing with problems involving spatial felationships between the variables,
in addition to the inherent multiprogramming capabilities of this type of ma-
chine organization.

Some of the novel features presented are:

| (1) A path-building method which retains the short time access charac-
teristic of the common bus system, while still permitting the simultaneous
operation of several paths in the network without mutual interference. Fur-
thermore, the connecting method allows communication between the modules in
a one-to-one, one-to-many or many-to-many way.

(2) A specislization in the funétions of the individual layers, sepa-
rating the flow of control signals from the flow of information. This step-
by-step treatment of the instructions makes it possible to pre-interpret them
before the actual execution, thus permitting the inclusion of instructions act-
ing from many-to-many operands.

(3) Three-phase operation, with each phase active simultaneously in each
layer, and operating on different instructions. Due to the overlapping of
the phases in time, the total effective time per instructions remains the same.
Once an instruction has been executed, the partially processed results are
transferred to the next layer, and the now vacant layer starts the processing

of the next instruction.

The notable properties of the iterative structure are thus agumefited by
the inclusion of these features, resulting in a machine with iterative compu-

tational structure that includes a form of control or interpretation unit.

vi

1. INTRODUCTION

A study of the organization of the‘latest large scale computers shows a
trend to an ever increasing complexity from the system design point of view.
This evolution towards complex systems has been dictated by the desire to
increase the power of the computers, sometimes in the productivity aspect,
and in a few other cases in the computational capability aspect.

Most machine designs have had as a goal the maximization of the use fac-
tor of the computer, or at least of the most expensive units, generally the
fast memory. This has been achieved by resorting to input-output buffering,
by incorporating multiprogramming facilities reducible in the last analysis
to time sharimg procedures, by the inclusion of partial multiprocessing capa-
bilities, and in someicases by creating a programmable structure organization
as in the polymorphic machine. | |

It must, however, be recognized that most of the available commercial
machines tend to maximize the productivity, that is, they try to minimize
the cost per instruction, which is proportional to the ratio of speed to
cost per operation.

On the other hand, very little has been achieved with respect to in-
creasing the bounds of practical computability. Thus the problems encountered
in the fields of pattern recognition, gemes, simulation and adaptation still
need a computer capable of handling them in an efficlent manner.

The iterative circuit computer has been considered as the most suitable
soJution for these types of problems which have in common the characteristic

1

that the spatial distribution of the modules is an homomorphic image of the
relations governing the interaction of the variables. The undisputed suita-
bility of this class of computers for these problems has relegated to a sec-
ond place some other properties of the\itgrative structure thet are not exclu-
sive of this organization, but which are much more easily implemented in 1t
than in a system with specialized units. The iterative circuit computer pros
vides the possibiliﬁy of true simultaneous multiprogramming, plus the power-
ful resource of infinite interaction between the programs. Neither of these
characteristics is present in any of the more sophisticated systems now avail-
able,

Furfhérmore, an individual module can function at various times as an
accumulator, register, memory cell or simply as a connecting link, and can
be activated invany of these functions at any time during the execution of
the program. Therefore, we are in the presence of an organization even more
flexible than that of a polymorphic machine,12 Although it would seem inap-
propriate to apply this term when there exists a lack of specialized units,
it must be remembered that the modules are structurally alike, but their in-
stantaneous functional behavior is different and is defined by the current
' instruction.

The polymorphic system is a programmable structure machine, but the
changes in structure are performed on the interconnections between modules
and not on the internal organization of the computer modules. Therefore,
the full advantage of a changing structure is not realilzed, glthough a

great increase in the use factor of the system is obtained. There are two

factors affecting the effectiveness of the system.

The first is due to the specialization and non-convertibility of the
units, that is, there is a fixed number of components of each type avail-
able resulting in a limited number of combinations that can cover only a
limited class of problems. Many problems cannot be handled efficiently be-
cause of the lack of more units of a certain type, while at the same time
there may be a certain number of idle units that cannot be put into serv-
ice because they perform different functions.

The second factor is closely related to the first, and is connected with
the problem of priority assigmment. It has been shownl5 that an attempt to
obtain a high utilization factor for the computing modules increases the mean
queue length. If there exists a number of programs with low priorities, then
a high use factor can be obtained, but usually a compromise must be reached
between efficient utilization of equipment and length of waiting lines.

In an I.C.C., however, any number of modules can be performing any one
of the possible functions in one step of the program, and entirely different
ones in the following operations. Also, the polymorphism of the machine is
a function of the current instruction, not of the maximum requirements of
£he program.

The available literature on I.C.C.'s is surprisingly scant. References
1,2,% cover the design considerations, both for uni-dimensional and two-di-
mensional networks. Reference 3 includes also the treatment of the problems
of .etability and equivalence of iterative networks. References 4,5,6 cover

the specific problem of embedding‘a computer in the logical iterative net-

work. These are practically the only proposals for a computer based on this
type of networks. Unfortunately, reference L covers only a special-purpose
computer intended for pattern recognition and allied spatial problems. The
paper by Holland5 has been the starting point for a number of projects, but
its title has mislead many into believing this was a proposal for a practi-
cal machine. While most of the ideas are worthwhile, tﬁey'are by no means
unique or optimum, as S. Amarel has clearly pointed out in his review,8
Holland only describes a mathematical model of a space in which a simulation
of the physical lawslgoverning the interaction of a system with the environ-
ment can be set up. As such, the model possesses all the uniform properties
and generality necessary for its use as a simulator in which the process of
adaptation can be studied. While it still retains the power of an ordinary
computer, its use as such would imply a wasteful employment of its potential
capabilities while its performan;e would be hindered by an excess of non-
essential features for this particular role.

Especially criticizable are the following features which affect charac-
teristics that are fundamenial in any I.C.C.:

The scheme used for selecting operands suffers as a consequence of both
the method used for addressing and the path-building procedure necessary to
reach them. The addressing method employs‘a "floating" reference, that is,
all the addresses are relative to the address of the module active at that

moment, and therefore an operand address assumes a different representation

in every instruction that refers to it.

The path-building procedure has the disadvantage of being essentially
sequential, resulting in a long effective access time, and thérefore assign-
ing great importance to the problem of data allocation.

These difficulties éan very well be attributed to the lack of organs of
command and to the circumstance that both control and information channels
flow through the same network.

In Newell's pa,per,7 however, we find the first reference to a multi-lay-
er ilterative structure, and furthermore, he suggests solutions to the prob-
lems of grouping modules to function as single entities and for the simul-
taneous selection of operands. It seems therefore logical to try to specify
the organization of a multi-layer machine having each of the layers fulfill-
ingvsome specialized function, yet being in itself a complete iterative
structure.

The purpose of this paper is to present one possible example of such an
organization, in which the following new characteristics are incorporated:

(a) A path-building procedure having the short-time access advantage of

the common-bus system, but which also allows simultaneous multiple
path building with no mutual interference.

(b) Three-phase operation, with specialized nétworks operating simul-

taneously in different phases on three consecutive instructions.

(¢) A specialization in the functions performed by the stacked networks.

(d) Inclusion of geometrical operations in addition to the arithmetic

and logical ones.

2. DESCRIPTION OF THE COMPUTER

The computer is composed of’three stacked layers each consisting of an -
iterative network of m x n modules. The three layers are exactly alike in
size, shape and type of modules used,\

One layer is called the "program plane." This contains at the start the
original program or programs, and later the modified programs resulting from
the interaction of the original ones. Fig. 1.

The intermediate layer is called the "control plane" and its function is
to interpret the instruction following the one being executed at the moment,
determining the operand(s) and storing in 'them the full instruction. These
"image operand(s)" in the control plane will in turn generate activation sig-
nals which will be transmitted on the wires connecting correlative modules
and will determine which modules in the third plane will act as operand(s) II
in the next phase.

The third layer is the "computing planeﬁ where the actual arithmetic,
logical and geometrical operations are performed.

The number and distribution of the modules active at any time is deter-
mined by the signals transmitted from the "control plane" in response to an
"operation complete" pulse from the computing plane.

Communication bétween the three layers is provided by the following sets
of connections. Fig. 1:

(a) A set of connections from every module in the program plane to eyery

correlative module in the control plane.

CONTROL PLANE

COMPUTING

PLANE

A
AT

NI WY

AT

NSRS IR,
\)
A

N,V

(b) A similar network of comnections from the modules in the control
plane to those in the computing plane.

(¢) A similar set of connections from the modules in the program plane
to those in the computing plane.

(d) A common bus line connecting all the modules in the computing plane,
and transmitting the "operation complete" pulse to all the modules
in both the program and control planes. Fig. 2.

The connection lines described in (a), (b), and (c) are called activation

lines.

3. DESCRIPTION OF THE PLANES

Each plane consists of a network of m X n modules, the modules being con-
nected by a line called the information line running in each row and column
through the normally conducting gates in each module. Fig. L.

Besides these inter-modular connéctions, there exists an end-around con-
nection between the first and last module of each row and similarly for the
terminal modules of the columns. Therefore, there is a separate information
line for each column and row, which is closed on itself by the end-around con-
nection. These end-around connections provide the sﬁatial continuity of the
structure, transforming the planar distribution into one where a uniform
neighborhood relation holds for all the modules, with no constraints due to
phy;ical boundaries. The resulting continuity provides the same behavior as

that of a network spread over the surface of a torus.

., DESCRIPTION OF THE MODULES

A1l the modules in the three planes are exactly alike. They communicate
with each other in the same plane by megns of the column and information lines
running through them, and with the ¢orrela£ive modules in the other layers by
means of connections called activation lines.

The internal structure of the modules includes an accumulator, a regis-
ter, a decoder and several switching matrices to connect thé former to the
information lines. These units can be described as follows:

(a) An accumulator capable of performing addition, whose input is sup-
plied from the output of a switchiﬁg matrix éonnected to the four
possible inputs fo the module. The accumulator is connected through
parallel gates with a register .of the same length, which is described
in (b).

(b) A register of the same length as the accumulator, and which is con-
nected with it through parallel gates. This register simply copies
the contents of the accumulator every time a load-type operation is
completed. At the same time, it supplies the only output lead over
which the contents of the accumulator can be read out. This means
that every time some instruction requires the transmission of the
contents of the accumulator, the information is actually taken from
the corresponding register. The output can be directed to any of the
module's four terminals by the switching matrix (d).

(¢) A switching matrix with inputé from the module's four input termindls,
and whose output is connected to the input of the accumulator. The

9

PROGRAM PLANE

COMPUTING

PLANE

)\ LTSS
j/w// SV VA VA WA

e AR

AT /
\ N\ Ty \
VARARARAR

ANAAAANAANTA

\ LN NN N N S »/\
[f X L Y& Y\

Three-plane structure and common buses.

Fig. 2.

10

setting signals for the matrix are supplied by a decoder, described
in (g).

(d) A similar switching matrix,‘whose»input is the output of the register,
and whose output feeds any of the»four terminals.

(e) A pair of gates, normally conducting, that connect the terminals be-
longing to opposite sides of the module, thereby maintaining the con-
tinuity of the vertical and horizontal ihformation lines across the
module, with no connection between them.

(f) A switching matrix that can connect any input terminal to its imme-
diate neighbor. In this way, a corner in the transmission path can
be formed.

(g) A decoder, which receives the complete instruction on the normally
continuous information line, and which compares the address in the
instruction with its own address, producing output signals that gov-
ern the setting of (c¢), (d), (e), and (f).

(h) A similar decoder for the other information line.

(i) A gate connecting the output of the register with the activation line

going to the input of the correlative module in the computing plane.

5. WORD FORMAT

A word is composed of four fields: the operand I field, the code field,
the operand IT field, and the successor field.
The operand I field contains two pairs of symbols; the first pair indicates

the rows to which the first and last modules in the pattern or group of modules

11

belong; that is, it gives an indication of the extension of the pattern of
operands I. The second pair does the same with respéct to the initial and

final column coordinates.

Example:

Operand I Code Operand II Successor
field field field field

(36522) Ioad (22;33) (3377)

Since we are dealing with linear patterns, that is modules that are all in
one column or row, at least one of the pairs in the operand I or operand IT
fields must contain a repeated number to indicate that only one column or row
is involved. Example: (3%6;22) indicates the pattern extending from row 3
through row 6 and belonging to column 2. Therefore, the operand I field indi-
cates which modules will be operands I when the instruction is executed. Sim-
ilarly, the operand II field gives the address of the group of modules which
will become operands II.

The successor field specifies the address of the location of the next in-
struction, and therefore is always of the form (XX;YY) since it must necessari-

ly refer to a single module.

6. PATH-BUILDING PROCEDURE

The method used for communicating between modules in an iterative circuit
-computer is one of the key factors that determine the efficiency of the machine.

The method described here is not strictly a path-building procedure since the

12

connections are permanently established as row and column information lines.
The procedure only determines the operator and operand locations, and sec-
tionalizes the corresponding row and column information lines into segments
that are connected together at the cross-qﬁer point.

The general structure of the switching arrangement within each module is
shown in Fig. 3. The gates are shown as bi-directional to simplify the dia-
grams. The row and column informatiOq“lines run through all the modules in
the corresponding row or column forming a closed lgop since all the switches
in the path are normally closed. Fig. L.

The sequence of operations is as follows: The current instruction is
stored in the cgétive module, in this cas; the module at the upper left cor-
ner of Fig. 5. The instruction word is transmitted over one of the two infpr-
mation lines, the choice depending on the shape of the pattern of operand I.
If the operands I are all in one column, then the information is transmitted
on the row information line and vice-versa. Since we deal with linear pat-
terns, one of the pairs of cooré;nates in the operand I field will always be
of the form XX; the repeated number indicating that the pattern extends lin-
early over the X column or row. The>instruction transmittéd on the informa-
| tion line that spans the whole row or column whefe the operand I is located
is received by the decoders in all the modules in that row or column. Each
decoder checks for coincidences between the operand I and II addresses con-
tained in the instruction and the corresponding addresses of its own module.

. This inecludes thé module originating the information.
In Fig. 5, the opefand I has the address (35;22) and the operand (55;66).

When the decoders in the modules of the first column compare these addresses

13

D d bi-directional gate,
normally non-conducting

bi-directional gate,
’ ‘ normally conducting

Fig. 3. Information-line switching in a module.

(ISR B LGB MR aND S

>

\
%

d
/}”X ulzgld

_

A\

4/‘}’\

\

Fig. 4. Column and row information lines.

1k

C
02 03 - - -~ - 06

R
o |

: |

' |

1 |

i |

. |

v !

1 6\\

O &

S I N B O . 0~

Fig. 5. Path connection for the instruction: (33;22)(store)(55;66).

15

with their own, two types of coincidence may arise:

(a) Double coincidence between the row and column coordinates belonging
to one of the operand fields in the instruction, and the corresponding ones
in the module address.

(b) Double coincidence between one row address in one field, one column
in the other field and the corresponding ones in the module address.

Tt is evident that case (a) occ¢urs only when checking the addresses of
either the operand I or the operand II. In the first instance, the addresses
in the operand I field will coincide with the addresses in the corresponding
field in the module address. When the operand II is checked, the operand II
field addresses will coincide.

The second caée will occur at the module situated in the intersection of
the column and row to which the operand I and operand II belong. In Fig. 5,
the following situation will arise:

Instruction: (33%;22) Store (55;66)

Intersection
address: (55522)

The double coincidence is between row and column‘addresses belonging to dif-
. ferent fields in the instruction word.

The different results of the coincidence checking procedure are used to
trigger two different sequences of events:

(A) If case (a) occurs, then eitler an operand I or II location has heen
reached, and the decoder activates one unit (e) and either (c) or (d), as des-
é?ibed in Chapter 4. As a consequence, the following operations take place:

(i) The switch in the information line is opened, isolating the rest of the line.

16

(i1) Either the input or the output of the accumulator is connected to the in-
formation line. The operand I ig always the source of information and there -
fore the transmission is from the operand I location to that of operand II.

(B) If case (b) occurs, then a corner in the path has been reached, and
the decoder activates both (e) units and the (f) unit. As a consequence, the
following operations take place: (1) Both switches in the row and column in-
formation lines are opened, completing the isolation of a piece of line from
the terminal module to the corner in each information line. (ii) One of the
switches connecting adjacent sides is closed, connecting the two isolated
pieces of line and forming a continuous path from operand I to operand II.

The above procedure takes only two pulse times because all the decoding
takes place simultaneously in all the modules in a row or column. Further-
more, it doesn't depend on the relative position of the modules to be con-
nected, but only on the addresses of the operands.

In the case of instructions with multiple operands I and/or multiple
operands II, it is possible to conneect them in a one~to-one, one-to-many,

or many-to-many way.

7. LIST OF INSTRUCTIONS

It is very common to speak of the operand I and the operand II when re-
ferring to an instruction, and usually no further distinetiong are needed be-
cause there is only one accumulator. However in the case of the iterative
circuit computer, where both operands are stored in modules that have the
same capabilitiés, the distinetion 1s no longer adequate. It then becomes

17

necessary to specify the direction in which information must flow since both
modules can process the instruction and store the result.

Actually, any of the two modules could perform the role of accumulator
and then we would have a left and a right instruction of each type, depend-
ing on which module executes the instruction and stores the result. In order
to simplify the list of instructions, it is arbitrarily agreed that the op-
erand II will always be the accumulator. Following this convention, the
list of instructions for elementary arithmetic and logical operations is re-
duced to the following:

LOAD: Loads the contents of the location specified by the operand I
into the location specified by operand II. The result appears
in the location of operand II..

ADD: -Adds the contents of operand I to the contents of operand II.
The result remains in operand II.

COMPLEMENT: - . The contents of operand I is complemented.

TRANSFER ON
NON-ZERO: If the contents of operand I is different from zero, control

is transferred to the instruction located in the module speci-
fied by operand II. If the contents is equal to zero, the nor-
mal sequence of instructions is followed, that is, the next in-

struction executed will be the one specified by the successor

field.

18

8. OPERATION OF THE COMPUTER

The execution of an instruction takes place in three phases, anq each
phase is performed in a different layer. Once a plane has executed its phase
on an instruction, it waits until the nextroperation complete pulse from the
computing plane causes the transfer of a new instruction to be operated on.
Thus, the execution of the three phases proceeds simultaneously in the three
layers, but with a different instruction in each layer. As a result, the ef-
fective operation time is one instruction per phase; the duration of the
phases being determined by the computing phase being executed at the moment.

Fig. 6 shows the sequence of phases and‘the transfer of each instruction
from plane to plane after the execution of each phase. The roman numerals in-
dicate the phase, and the subscript the particular instruction being operated
on. Thus,‘IIIZ‘indicates that the secondbinstruction is undergoing phase III.
Phase III is the one that takes the longest time to perform and therefore is
the one that generates the operation complete pulse that triggers the initia-
tion of all phases in the three layers.

The sequence of operations that an instruction undergoes during the three
phases is as follows:

PHASE I: The initiation of this phase is triggered either by an operation
complete pulse or a start pulse. During this phase, the instruction following
the one already in the control plane is made ready to be copied from the pro-
gr§m plane onto the control plane in the same relative position. The net ef-

fect is to choose the successor to the current instruction already in phase

19

Iy I I
PROGRAM b 6
CONTROL 115 I, 15
PLANE
COMPUTTNG IIIg ' III3 IIIh
PLANE
Operation complete — e
pulse

Fig. 6. Overlapping of phases.

20

II. The successor is specified by the address in the successor field and can
be any location in the plane. In other words, it is not required that it De
a contiguous neighbor.

PHASE II: The instruction activated in the program plane is copied in
the same position in the control plane. In this plane, the operand IIfield
of the instruction is interpreted to determine which modules are to bé ac-
tive (operandsII) during the computing phase. Once the positions of the
future operandsIl are determined, the whole instruction is transmitted and
copied in these "image" positions in the control plane. The “location of the
"image" operators is found following a path-building procedure, as described
in Section 6. Furthermore, the necessary data are copied from the correla-
tive modules in the program plane. In this way, each future operand II po-
sition is now loaded with the instruction énd the operandIl itself.

PHASE ITI: The next operation complete pulse from the computing plane
bus line initiates the third phase, The instruction and data now stored in
the module or modules in the control plane are now transferred to the correla-
tive modules in the computing plane, and each of these modules initiates a
path~building procedure to connecf itself to its operand or operands I,

At the end of this process, the modules containing the instruction are
connected to their respective operands I. This connection can be from one
module to another, from one to many, or from many to many, depending on the
operation specified by the current instruction contained in the operands II,
The locations thus selected receive the necessary data from the correlative

positions in the program plane.

2l

Once the connections have been established, the instruction is executed
with information flowing in the correct direction. Operand I is always the
source of information and therefore the output of its register has been con-
nected to the information line. Similarly, operand II acts as the accumula-
tor and the information line is connected to the input of its accumulator.
The result is then transmitted to the correlative module in the program
plane, where it is stored. Simultaneously with this activity in the computing
plane, the control plane is now executing phase II on the next instruection,
since it remsins free once the "image" operators have been transferred to the
computing plane. The completion of the exécution phase is signalled by an
"operation complete" pulse which is transmitted over the common bus from the
computing plane to the similar buses in the program and control planes. This
pulse initiates phase II in the control plane and phase I in the program
plane .

This sequence of operations can be visualized following the transfer of
instructions between the layers, in Figs. 7 through 10, while the computer ex-
ecutes the following sequence of instructions, supposedly part of a program:

1. (77588) Load (4k;55) (33;4k)
2. (5T:77) Add (57333) (33;55)
3. (56;57T) Load (66;23) (33;66)
b, (33;24) Load (66;22) (33;77)
5. (00;00) Clear(56;33) (22;77)
6. (55366) T.¢ (333;99) (22;88) (Transfer on non-zero)

7. (00;00) No op(00;00) (22;99) (No operation)

22

Figure 7 shows the computer at the moment the first instruction is under-
going phase III. The state of the machine can be indicated by: IIIl; II2; Is'
The program plane is executing phase I on instruction 3, that is, it activates
instruction 3 as the successor of instruction 2. In the control plane, both
instruction 2 and the data corresponding to the operands IT are being loaded
into the locations asignated to the operands II. In the computing plane, in-
struction number 1 is being executed, with the contents of module (77;88) go-
ing into module (LL4;55).

Figure 8 shows the machine in the state III4; IIs; 12. The control plane
is interpreting instruction 3, locating thg positions of the image operands
II, in this case the modules in row 6 and columns 2 and 3. Both instruction
number 3 and the contents of modules (66;23) in the program plane are now
copied into the correlative positions just determined in the control plane.
The computing plane is executing instruction number 2, in this case, adding
the contents of (57;77) into (57;33).

In a similar way, Figs. 9 and 10 show the execution phases of instruction
numbers % and L.

A1l instructions except the Transfer on Non-Zero instruction are treated
in a similar way. The execution of instruction nﬁmber 6, which is a Transfer
on Non-Zero, gives an opportunity to explain in more detail the sequence of
operations for this type of instruction.

When instruction number L4 is executed, an Operation Complete pulse is
sent back to the program plane, and instruction number 6 is activated. It

has to be remembered that instruction number 5 is already in the control plane.

23

AN

AN

/4 T

//// S ANANANAN
A\ /////

OSSN

///////////

A/>m\

A/////////

/,-wﬂﬁﬁ/
47//4yy/////

g0
///k/)/)///

AN NN
AAMN VNNV NN NV

Execution phase of instruction 1:

1.

Fig.

(77588) Load (Lh;55) (33;Lk).

2k

S S SN
NN AN AN

nﬂn/// AN
///////////// NV

. NANA
////4 INANANA WA

ANANANAN //

/../////////
‘55/////
\NANANAN
@a////

NN //./\./ \ /;/
A AN NN N
AV VNV VNV VNN

Execution phase of instruction 2:

Fig. 8.

(57;77) Add (57533) (33;55).

25

NAVAVANANANA VA
‘/%/////////

NN R NN SRR
NAVA\ VAN AR VA WA A WA

NERTRRREE
ATTRLTCL S N

TR NERRR R
ST Y COTTTLOTE

//..// ///////

/V/5Mm NN
NAVM A
NN

o \ y, NN / NN

///////////

Execution phase of instruction 3:
(56;77) Load (66;23) (3%;66).

Fig. 9.

26

A A AN N

N AN N

A N NN
AAA%VV////////
NANANANANANAN

\///////
2 DAV
NN\ AN A\

41@7/44//// NEAVMAANAN
EWMAREN HV/ AT S N N N

///;/;/////
AN
NN

Execution phase of instruction L:

(33;2L) Load (66;22) (33;77).

Fig. 10.

27

The situation is that illustrated in Fig. 10, and again in Fig. 11, but this
time in a lateral view.

The operation complete pulse changes the situation to that illustrated
in Fig. 12. Instruction‘number 6 is transferred to the control plane, and
a path is built there connecting the module containing the instruction with
the operand II, in this case module (33%;99). The instruction is then stored
in this module which receives the alternate address from the correlative mod-
ule in the program plane.

The ngxt pperation complete pulse, signalling the termination of in-
struction number 5, produces a copy of module (33;99) in the computing plane.
Fig. 13. This module is then connected to the operand I module, in this case
(55;66)« The operand I module contains the word of data on which the result
of the transfer instruction depends.

The active module (33;99) then determines if the number in (55;66) is
equal to zero or not. If the number is equal to zero, an operation complete
pulse is emitted and the normal sequence of operations is resumed. If the
number is not equal to zerd, the active module (3%;99) sends an activation
signal to the correlative module in the program plane, activating it as the

‘immediate successor and overriding the active stafus already obtained by in-
struction number 8. After a suitable delay, an operation complete pulse is
emitted, and the normal sequence of operations is resumed. The delay is nec-
essary in order to allow the newly designated successor to activate its own
successor, which may be any position in the plane, not necessarily a contigu-

ous neighbor. Fig. 1h.

28

(55;66)

z
9«8
Fig. 13

29

5 =
(33;99)
~w--]0 -
§|--=-|7 ——d
Fig. 12
peLAYED 07.C.PuLsE
— ey
6
]
L}
.
|
! 7| —-—r
|
|
|
- - - [7] =~
- Fig. 14

Therefore, the sequence of instructions resulting from the transfer in-

struction is: 6, 7, 11, 12 ... instead of the normal sequence: 6, 7, 8, 9 ...

9. GEOMETRICAL OPERATIONS

When an attempt is made to process geometrical patterns in a computer
in which the instructions refer to only two operands, it is neceséary to di-
vide the pattern into individual elements and operate on them one at a time,
In the machine described here, the availability of multiple operand instruc-
tions reduces most of the geometrical operations to one of the arithmetic or
logical ones.

In order to simplify the operation code, it is convenient to establish
the relationship between the geometrical and arithmetic operations since
~most of the former can be interpreted as a particular case of multiple op-
erand T and/or multiple operand II arithmetic operations. Thus, a Store opera-
tion can refer to a One-to-One (OTO), One-to-Many (OIM) or to a Many-to-Many
(MIM) operation.

The OTO Store operation is the normal one, and in the geometrical inter-
pretation would be called a COPY instruction.

The OTM Store instruction has two versions in the geometrical case: (1)
The pattern of one module is to be repeated contiguously and linearly. Fig.
15. The corresponding geometrical operation is called EXTEND. (ii) The mod-
ule has to be copied in repeated positions, all consecutive, but not contig-
u&ﬁs to the original one. fig. 16. The corresponding geometrical oper;tion

is ealled REPRODUCE .

30

The MIM Store operation repeats the pattern in a position parallel to

the original one. Fig. 17.

“The corresponding geometrical operation is called DISPLACE and repro-
duces the pattern in a parallel position. It implies a simultaneous one-to-

one copy operation on many modules.

Therefore, a correspondence between the geometrical and arithmetic op-
erations can be established, in which the first column can roughly be assimi-

lated to a compiler langusge and the second one to a machine language.

COPY - - = - = - - - Store 0TO
EXTEND - - = = = = = = Store OTM
REPRODUCE - - - = = = - = Store OTM
DISPLACE - - - - - = - - Store MIM

10. CONCLUSION

The organization presented here is not intended to be an ultimate de-
sign. Rather it presents one possible way of combining the intrinsic capa-
bilities of the iterative structure with thé advantages of an organization
having some form of specialized control unit.

The principal advantage of the proposed organization resides in the
fact that the multi-layer structure makes it possible to include a control
plane which acts as a look-ahead unit, interpreting the instructions before
the actual execution takes place.

This didposition provides the capability of dealing with instructions

31

Fig. 15. EXTEND operation.

Fig. 16. REPRODUCE operation.

Fig. 17. DISPLACE operation.

32

that operate on any number of modules simultaneously, yet retaining in every
step the possibility of true simultaneous operation of several programs with
an unlimited degree of interasction between them. Moreover, the introduction
of the look-ahead feature doesn't detract from the effective speed of compu-
tation, since the delay introduced by the pre-interpretation phase is com-
pensated for by the overlapping of the sequence of phases which process con-
secutive instruction in different places simultaneously.

Furthermore, the method used for path building provides communication
between the modules in the network with & very short access time,

Therefore, the combination of features given by the pre-interpreta-
tion of instrﬁctions ahd by the overlapping of phases can be regarded as
a net advantage, with no penalty in time or complexity of the individual
modules. The sole and inevitable penalty is the inclusion of two more lay-
ers. While this increases thé number of modules by a factor of three, 1t
must be remembered thet the whole feasibility of this type of machine or-
genization depends on the availability of components whose cost depends
very weakly on the internal structure, and whose easy reproducibility as-

sures a low cost per unit when used in large numbers.

33

10.

11.

12,

13,

REFERENCES

Henie, F. C., "Iterative Arrayc of Logical Circuits," J. Wiley, N.Y.,
1961.

McCluskey, E. J., "Iterative Combinatorial Switching Networks - General
Design Considerations," IRE Trans. on Electronic Computers, Vol. EC-T,
pp. 285-288, Dec., 1958. :

Henie, F. C., "Analysis of Bilateral Iterative Networks," IRE Trans.
on Circuit Theory, Vol. CT-6, p. 35, 1959.

Unger, S. H., "A Computer Oriented Towards Spatial Problems," Proc. of
the IRE, Vol. 46, p. 1749, Oct., 1958.

Holland, J., "A Universal Computer Capable of Executing an Arbitrary
Number of Sub-programs Simultaneously,"” Proc. EJCC, p. 108, Dec., 1959.

Holland, J., "Iterative Circuit Computers,” Proc. WJCC, p. 259, May,

1960.

Newell, A., "On Programming a Highly Parallel Machine to be An Intelli-
gent Technician," Proc. WJCC, p. 267, May, 1960.

Amarel, S., Review of (5) and (6), IRE Trans. on Electronic Computers,
Vol. EC-9, p. 384, Sept., 1960.

Bauer, W., "Horizons in Computer System Design," Proc. WJCC, p. 41, May,
1960. - T

Squire, J. "A Comparative Study of Module Communications,“ Internal
Report, Information Systems Laboratory, Univ. of Mich., 1962.

Carroll, A. B.,and Confort, W. T., "The Logical Design of a Holland Ma-
chine," Internal Report, Dept. of Elect. Eng., Univ. of Mich., 1961.

West, G. P., and Koerner, R. J., "Communications Within a Polymorphic
System," Proc. WJCC, p. 225, Dec., 1960,

Carlsen, R. A., Feingold, M. G., and Fife, D. W., "A Simulation of the

AN/FSQ-27 Data Processing Systgp” RADC-TR-61-254, Dept. of Elect. Eng.,
Univ. of Mich., 1961.

3l

T

127 3090

