Intergraphic a microprogrammed, graphical-interface
computer

Author:
Rose, Gordon A.

Publication Date:
1969

DOI:
https://doi.org/10.26190/unsworks/14141

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/69611 in https://
unsworks.unsw.edu.au on 2024-05-07

http://dx.doi.org/https://doi.org/10.26190/unsworks/14141
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/69611
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

INTERGRAPHIC - A MICROPROGRAMMED,

GRAPHICAL-INTERFACE COMPUTER

GORDON A. ROSE

Being a thesis
submitted as part of the requirements
for the degree of Ph.D.

| certify that the work described in this thesis
has not previously been submitted in whole or in part

Towards any university degree.

G.A. Rose
Ist November, 1969

)

UNIVERSITY OF H.S W,

150CT 1987
LIBRARY

ABSTRACT

The thesis describes an economical graphical-communication
system which will link a number of graphical terminals to a cenfral

processor.

The thesis concentrates on the system's shared graphical-
interface computer, Intergraphic, which is complete and operational.
Intergraphic will be an intermediary between the fterminals and the
central processor. Being microprogrammed, the interface is extremely
flexible. Also, the interface is fast (3-5 ns logic, 50 ns access-time
ROM), and the combination of flexibility and speed has enabled the

centralization of vector generation, symbol generation, and many other

tasks required by the system. Centralization has led to low per-terminal

costs (less than $2000 for component costs only). Incremental plotting
rates of 10 MHz have been digitally-generated and applied to an
electrostatical ly-deflected central CRT which displays arbitrary
graphics, prior to distribution, from a repertoire of vector types,

symbols and circular arcs.

The thesis outlines the conversion of centrally-generated
Images to television format, the storage of TV images on a multi-track
video disc, and the economical distribution of images to TV fterminals

using commercial ly-available units.

A survey of some early computer-graphics systems is followed
by a discussion of the advances in computer-graphics schemes,
particularly those which have reduced per-terminal costs. To justify

the design of Intergraphic, the salient features of the scheme are

(i)

compared with those of five alternative schemes. The detailed logical
description of the interface and the related microcode then follows

with emphasis on the integration of vector and symbol generation

within the microcode. This integration has been achieved with only
minor extensions fo an otherwise relatively conventional microprogrammed
structure, and has led to high component utilization which is essential
for a low-cost system. Moreover, vector and symbol generation has

been achieved using the standard digital techniques adopted within the
interface. The chosen vector and symbol generation techniques are
compared with a number of alternatives and the general question of

description and display of arbitrary graphics is discussed.

A simple algorithm is described which enables breakpoints to
be inserted in input graphics as they are accepted in real-time from
users' light-pens. The problem of providing graphical feedback to

users is outlined.

The thesis concludes that low-cost computer—-graphics
terminals are possible using state-of-the-art devices and that
current planning of computer utilities should include extensive
computer-graphics networks which link a variety of fterminal types

via microprogrammed interfaces.

(iti)

ACKNOWLEDGEMENTS

The author wishes to thank Professor M.W. Allen, Head of
the Department of Computation, University of New South Wales, for
his constant support throughout the thesis project. Many of the
concepts of Intergraphic stemmed from the author's earlier
association with the CIRRUS project. During that project,

Mr. T. Pearcey introduced the author to microprogramminé and
read-only stores and Professor Allen introduced the author fo

computer engineering.

The author wishes to thank C.J. Barter, G.P. Bowen,

M. Macaulay, R.B. Stanton and A.A. Thompson for.their numerous

discussions and helpful criticism on various aspects of Intergraphic.

Also, without the laboratory and ftechnical support of Mr. R. Chorley
amd Mr. K. Titmuss and the staff of the University's workshop, the

construction of Intergraphic would not have been possible. The

author wishes to thank Miss P, Rooney and Mrs. J. Greenhill for typing

the thesis.

(iv)

CONTENTS

CHAPTER 1t - INTRODUCT ION

1.1 MOTIVATION

1.2 THREE EARLY COMPUTER-GRAPHICS SYSTEMS

1.3 THE PROHIBITIVE COST OF ONE-DISPLAY SYSTEMS

1.4 IMPROVED VECTOR AND SYMBOL GENERATORS

1.5 TERMINALS FOR MULTI-ACCESS COMPUTING

1.6 LOCAL DISPLAY PROCESSORS

1.7 GROWTH OF APPLICATIONS

1.8 BEGINNING OF THE THESIS STUDY

1.9 SCOPE AND ORGANISATION OF THE CONTENTS OF THE THESIS
1.10 OUTLINE OF THE INTERGRAPHIC SYSTEM ‘

1.1

1.10.1 The Overall System Configuration
1.10.2 Outline of the Operating System
1.10.3 Salient Features of Intergraphic

(1) Independence of Image Generation and
Image Distribution

(2) Low-Cost Television Storage and
Distribution

(3) Shared Versatile Interface
JUSTIFICATION OF INTERGRAPHIC
1.11.1 Requirements 1

(1) Adequate Display Quality

(2) Arbitrary Graphics

(3) Fast Response

(4) Graphical and Symbol Input

(5) A Flexible and Versatile System

1.11.2 Comparison with Alternative Schemes

1.1
1.1
1.2
1.4
1.5
1.6
1.7
1.8
1.9
1.1
1.1
1.14
1.15

1.17
1.18
1.18
1.18
1.19
1.19
1.19
1.19
1.20

(v)

CHAPTER 2

2.1
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

2.2
(1)
(2)
(3)
(4)

2.3
(1)
(2)
(3)
(4)
(5)
(6)

CHAPTER 3

3.1

3.2

3.3

3.4

3.5

3.6

- LOGICAL STRUCTURE OF THE INTERFACE

DETAILED DESCRIPTION OF GENERAL-PURPOSE PROCESSING

SECTION
A Conventional Core-Store
A Set of General-Purpose Registers
A Pair of Register Selection Gates
A Pair of Logical-Negate Selection Circuits

A Pair of Identical Byte-Length Arithmetic
Units

Circulate, Shift and Transpose Gates
A Machine Distribution Bus

Input and Output Registers

DETAILED DESCRIPTION OF THE MICROPROGRAM CONTROL

SECTION
A Read-Only Memory
A Microroutine Stack
A Counter

A Bitwise Programmable Register

DETAILED DESCRIPTION OF THE SPECIAL-PURPOSE SECTION

The Display Co-ordinate Counters
The Registers

The Coordinate-Matching Registers
A Pair of 10-bit D/A Converters
An Arc Length Counter

Stroke Generation Logic

- DEFINITION OF THE MICROCODE

OUTLINE OF THE MICROCODE

DEFINITION OF A-ORDERS

DEFINITION OF THE D-ORDERS

DEFINITION OF TRF (TRANSFER)

DEFINITION OF FBC (F REGISTER BITWISE CONTROL)
FS-ORDERS

- 2.2

2.2
2.2
2.2
2.2

2.2

2.5
2.6
2.7

2.8

2.8

2.8

2.10
2.10
2.10
2.10
2.11
2.1
2.1
2.11
2.12

3.1
3.3

3.12
3.14
3.15
3.15

(vi)

CHAPTER 4 - VECTOR GENERATION

4.1
4.2

4.3
4.4
4.5
4.6

THE NEED FOR EFFICIENT VECTOR CODES AND GENERATORS
VECTOR TYPES AND FORMATS USED IN INTERGRAPHIC

4.2.1 Basic Vector Types

4.2.2 Special Vector Types

THE CHOSEN VECTOR GENERATION ALGORITHM

AN ALTERNATIVE VECTOR GENERATION ALGORITHM

BINARY RATE MULTIPLIER TECHNIQUES FOR VECTOR GENERATION
ANALOGUE GENERATION TECHNIQUES

CHAPTER 5 - SYMBOL GENERATION

5.1
5.2

5.3

GENERAL CONSIDERATIONS
SYMBOL GENERATION WITHIN INTERGRAPHIC
COMPARISON WITH DOT MATRIX AND INCREMENTAL CODES

CHAPTER 6 - GRAPHICAL INPUT

6.1 THE "POINTING" OPERATION WITHIN INTERGRAPHIC
6.2 THE "TRACKING" OPERATION WITHIN INTERGRAPHIC
6.2.1 Introduction
6.2.2 The Dynamic Breakpoint-Insertion Algorithm
CHAPTER 7 - CONCLUSIONS

B1BLIOGRAPHY

4.1
4.2
4.3
4.10
4.15
4.19
4.21
4.25

5.1
5.3
5.7

6.2
6.4
6.4
6.6

7.1

B1

(vii)

APPENDICES

Al
A2
A3
A4
A5

CORE STORE - CONVENTIONAL MODES

CORE STORE SIMULATION OF ROM

DETAILED DOCUMENTATlON OF MICROPROGRAMS
DETAILED COMPOSITION OF 88 GRAPHICAL SYMBOLS
REPRINTS OF AUTHOR'S PAPERS RELEVANT TO THESIS

Al.
A2,
.
A4.
A5.

A3

(viii)

CHAPTER 1

INTRODUCT ION

1.1 MOTIVATION

The need for low-cost, general-purpose, graphical terminals
for a multi-access computer system motivated the work described in
the thesis. By late 1965, when this work began, many applications
had shown that graphical terminals were desirable and early multi-
access systems had established an operational mode which, potentially,
could service hundreds of terminals. Although there had been advances
in reducing per ferminal costs of computer-graphics systems, an order
of magnitude improvement was needed before graphical terminals could

be multiplexed in quantity.

1.2 THREE EARLY COMPUTER-GRAPHICS SYSTEMS

By 1964, a number of computer-graphics systems had estab-
lished that computer-driven cathode ray tube (CRT) displays with input
pens and keyboards were extremely useful and versatile terminals.
Three notable examples were, Culler and Fried's "On-Line Computing
Centre for Scientific Problems" (l, 1963), Sutherland's "Sketchpad"
(2, 1963) and the "Design Augmented by Computers (DAC) System" of
General Motors Research Laboratories (3, 1964). These systems stemmed
from earlier computer-display equipment, particularly equipment in com-
mand and control centres of defence systems, e.g. DODDAC (Department
of Defense Damage Assessment Centre) (4, 1961). The. three systems
cited stressed different aspects of graphical-communication and have

been frequently referred to in the assessment of later systems.

The user of Culler and Fried's system could define arbitrary

functions by specifying lists of ordinates (typically at 100 abscissae),
operate on these functions by keyboard commands and see the results of
his commands almost immediately. Also, the user could define new key
labels, and build subroutines through a facility which monitored and
stored the sequence in which he operated keys. Keyboard overlays con-
veniently grouped the large number of function keys which were possible.
The system coupled the user to the computer very closely so that he
could experiment freely with parameters or transformations and so

quickly gain insight info his problem.

"Sketchpad" enabled a user to construct and modify arbitrary
line drawings with light-pen and function keys. Software interpolated
the plotting details for straight-line segments and circular arcs from
parameters entered by the user., Sub-pictures could be named, recalled,
transformed (scaled, rotated, reflected, etc.) and connected to form
further line drawings. Also, by time-sequencing some parameters, draw-
ings could be set in motion, e.g., a four-bar linkage mechanism.
Topological relations were coded in a ring structure, so that modifica-

tions to one element could be linked to related elements.

The DAC-1 system required precision generation and scanning of
arbitrary line-drawings for automobile design. High-precision displays
and photo-recording and tracing devices were developed. A '"sketchpad"-
like system, using an analogue input pen (position-indicating pencil)
was used for dynamic communication. The position-indicating pencil
simplified pen tracking: it eliminated the time-consuming routines
which detected pen movement by probing, at many poihTs, the receptive

field of the photo-detector of a conventional |ight-pen.

1.3 THE PROHIBITIVE COST OF ONE-DISPLAY SYSTEMS

The three systems cited above and other early systems, however,

were devised to meet a particular need or to demonstrate the potential

1.2

of computer-graphics; system or hardware efficiency was not of first
consideration and, typically, single displays were connected directly
to a central computer. The cost per display of a dedicated one-display
system was virtually the cost of the entire system; this high per-
terminal cost severely restricted the installation of graphical

terminals.

Fig. 1.1 shows a typical one-display system comprising a
central processing‘unif (CPU); a short-persistence CRT with digital X,
Y co-ordinate registers and digital-to-analogue (D/A) converters; a
photo-sensor light pen; and a keyboard, possibly with several overlays.
The CPU held the application program, display file and routines for

vector and symbol generation and pen tracking.

"Sketchpad" was implemented on the TX-2 computer in this

general way.

r—— === === == 1
! |
| APPLICATION VEti.Ton |
| PROGRAM syYMBoL
GENERATION |
! ! I |
. |
TRACKING
| PROGRAM DISPLAY |
g ! FILE |
! | inTERRUPT |
' ! f cPU |
—_—— e — I___ _CePv L _ .
-
: DISPLAY
1 REGISTERS
&
: Ib/A CONVERTERS]
[}

LIGHT
PEN

b e - —— - ———

KEYBOARD

F1G. 1.1. DIRECTLY COUPLED DISPLAY

1.3

Most of the system functions were programmed and specialized

hardware was minimal; thus, the medium was flexible for experimenta-
tion, but imposed restrictions on display complexity for a given
flicker rate. Display regeneration alone could almost fully extend
the computer so that application programs were limited and time-
sharing was impossible. However, the direct connection gave rapid
access.to the application program. Also, the CRT was closely |inked
to the CPU so that, within the restrictions of vector and'symbol gen-

eration, a rapid new image rate or dynamic display was possible.
The principal inefficiencies were:-

1. Regeneration of the display for persistence of vision from

the machine core.
2. Software generation of vectors and symbols.

3. Software pen-tracing which required multiple probing of the

pen field for each incremental movement of the pen.

Experience with these systems pointed out the many func-
tional requirements of graphical communication, the importance of
structuring both application and display programs, and those areas

where specialised hardware would be advantageous.

1.4 IMPROVED VECTOR AND SYMBOL GENERATORS

Parallel developments in vector and symbol generation hard-
ware greatly increased plotting rates and so more complex displays
could be presented within a persistence of vision period. Also, these
devices conserved core storage by eliminating the need for vector and
symbol generation programs and tables. The introduction of separate
display core-buffers, which held the display file for image regenera-

tion, reduced interrupts on the CPU and freed it for more extensive

1.4

application programs or other work. Typically, a display console
would comprise a magnetically-deflected large CRT, a symbol generator
and a vector generator. The CRT would have deflection resolutions of
1in 1024, a random position settling time of 30us, and an incremental
plotting rate of 1.5us per visible point or 300ns per blanked point.
Average plotting time for the symbol and vector generator would be
20us per symbol and 150us/in respecfively‘. Plotting rates an order
faster (2.5us per random point or symbol; 4ps/in vector rate) were
developed using electrostatically-deflected CRT's with vector and
symbol -generators which were part analoguez. These rates allowed even

more complex diagrams to be regenerated without apparent flicker.

1.5 TERMINALS FOR MULTI-ACCESS COMPUTING

Multi-access computing as a mode of computer operation was
being developed in parallel with the graphical systems and devices
above; emphasis was on the operational mode rather than advanced
terminal development. By 1964, a multi-access system for about 30
simultaneous users was being realised at Project MAC [5); terminals
were electromechanical teletypes. Almost two years later, Corbato and
Vyssotsky (6, 1965), In describing the "MULTICS" operating system for
project MAC, considered general-purpose graphical terminals highly
desirable, but still too costly and too demanding to be multiplexed,
particularly in the tens and hundreds implied for multi-access systems.
(Costs of single display consoles, either electromagnetically or
electrostatically deflected, with vector, symbol and regeneration
devices were high - typically in excess of $50,000; in contrast, one
would expect per-terminal costs to be less than $5,000 before large

rnumbers of temminals could be multiplexed.)

DEC Type 338 Display, Digital Equipment Corp., Maynard, Mass., and
Elliott Type 4100 Display, Elliott-Automation Computers Ltd.,
Borehamwood, Herts, England, are representative.

CDC Type 250 Display, Control Data Corp., Minneapolis, Minn.

1

.5

1.6 LOCAL DISPLAY PROCESSORS

There had been, however, a number of advances which reduced
the overall cost of computer-graphics systems, mostly by removing some
of the trivial,but frequent and therefore time-consuming, tasks from
the central processor. Projects MAGIC (7, 1965), GRAPHIC-I (8, 1965)
and portion of an experimental system at the University of
California, Berkeley (9, 1965] showed that local processors which con-
trolled symbol and vector generation, regenerated the display,
determined pen co-ordinates, etc., greatly reduced demands on the
central computer. Supporting hardware in each of these projects, how-
ever, was for one display only; thus, although central computer time
was saved and the display with its local support could be moved to a
remote location, the hardware cost per display was still high. In
late 1966, Kennedy (10) described an operating system for a set of
three displays. Relatively static displays were refreshed from a
drum and, where necessary, highly dynamic displays could be driven
directly from the central computer. Again, each display had consider-
able supporting hardware and there was no significant reduction in
per-terminal cost. Fig. 1.2 shows a typical buffered display with
local processor. The local buffer might comprise two independent
stores (one for the processor, the other for the display logic) or, as
in Schooler (11, 1966], might be a single shared store with the dis-
play logic having priority during regeneration (cycle-stealing).

To/FROM
cPu

TRANSMISSION
MATCHING

LOCAL

BUFFER VECTOR/sYMmBOL|
GENERATOR

! !

DISPLAY LOGIC,
REGISTERS

LOCAL

FIG. 1.2. BUFFERED DISPLAY

PROCESSOR &

D/A CONVERTERS| . WITH
|

LOCAL PROCESSOR

LIGHT
PEN

KEYBOARD

1.6

The possibility of remote installation of these buffered dis-
plays introduced two new design parameters (bandwidth and reliability
of the CPU-terminal link) and raised the question of which tasks
should be done locally. Clearly, fransmission characteristics, task
division between the central and local processors, and local process-
ing ability are interrelated. Relatively low rate dataphone links en-
able remote stations to be installed at almost any location, but limit
the rate of information exchange and require compact transmission
codes. Also, the speed mismatch between the CPU and dataphone |ine
commits the CPU either to handle repetitive interrupts or to provide
additional buffering. Detailed tasks which occur frequently in most
application programs, e.g., vector plotting, symbol plotting and pen
tracking, should be performed locally; unfortunately, many tasks are -
not so readily classified. Although buffered displays with extensive
Ibcal ability reduced overall system costs, they were ftoo expensive
for the terminals of an economical graphical-communication system.
Their main inefficiency was that expensive hardware was not shared and
was used merely to regenerate static images during delays from the

operator or the CPU.

1.7 GROWTH OF APPLICATIONS

Applications of computer graphics grew rapidly. By 1966,
cbmpufer-aided design (12) had begun in the automobile (3,13), aero-
space (62) and many other industries, e.g., the printing industry
'(14). Prince (15) has reviewed a number of applications which appeared
before or during 1966. These applications, alone, covered a wide field
and gave ample motivation fo the work described in the thesis. Many
more applications have been reported since 1966; examples are, textile
pattern input and manipulation for subsequent computer generation of
control information for textile machinery [16), generation and display
of motion pictures for space research (17), generation of half-tone

perspective drawings (18,19), computer aided instruction systems with

graphical fterminals (20,21), computer generated shading patterns for 3-

1

i

dimensional objects (22,23), generation of orthographic views of combin-
ations of plane and quadric surfaces (24), and an interactive graphics

system for pattern recognition (25).

Many of these applications demand considerable processor time,
and could not be carried out concurrently on the terminals of one
system; other applications demand only low information exchange rates.
The graphical-communication interface described in the thesis is cap-
able of a high total information exchange rate; within this total
capacity, however, there is considerable flexibility, 1i.e., the inter-
face can service many low information rate terminals, a few high inform-

ation rate terminals or a mixed set of applications.

1.8 BEGINNING OF THE THESIS STUDY

In 1966, the author discussed (26, reprint enclosed) some
inefficiencies in the encoding, displaying and inputting of arbitfrary
graphics. The paper stressed the need for an interface computer shared
between graphical terminals which removed the tasks of detailed genera-
tion, simple graphical manipulation and pen tracking from the central
computer, and proposed a flexible microprogrammed interface computer,
"Intergraphic". There have been changes in design philosophy within
Intergraphic since that outline; e.g., the incremental generation of
sine and cosine (used for‘pIoTTing polar vectors) in the "circular mode"
described has been replaced by faster, more direct methods and the pot-
entiometer pens for graphical input, proposed from earlier work (27,
1955, reprint enclosed], have been replaced by conventional photo- diode
light-pens. However, the main broposal has remained unchanged, viz., a
shared, microprogrammed interface with some special micro-orders or

modes for central image generation and display servicing.

1.8

1.9 SCOPE AND ORGANISATION OF THE CONTENTS OF THE THESIS

The thesis concentrates on the graphical-interface computer
which is capable of generating up to 100 independent images ner second
for distribution to a large number (more than 50) of terminals. Low
per-terminal cost will be achieved through video storage and video
distribution of images to low-cost television (TV) terminals. The
video system is still experimental, and some problems remain in scan-
conversion to interlaced TV at the writing speeds and timing intervals

proposed.

The video system and the operating system are the responsibil-
itTies of co-workers, and therefore a detailed description of these
systems is outside of the scope of this thesis. However, it will be
necessary to describe these systems generally for background. Also
beyond the scope of the thesis are, a comparison of various compound
data structures (28 - 38) for applications of computer graphics and
specific proposals for structuring graphics within Intergraphic. The
interface, however, is flexible and well-suited to experimentation in
these areas; +there is some space in the microcode for adding special
micro-order types and considerable space in the read-only memory which
contains microprograms. Generally, sequences coded at microprogram
level can be extremely efficient and fast (as illustrated by the micro-
programs documented in APPENDIX 3); +thus, a microprogrammed interface
can be adapted to new tasks through "firmware'" modifications with a

performance often approaching that of special-purpose hardware.

The remainder of this chapter outlines the Intergraphic
system and justifies it by comparison with five alternative schemes;
Three of the alternatives have been developed in parallel by other
workers; they are, the Advanced Remote Display Station |1 (ARDS-11)
project [39) developed at MIT, the IBM 1500 Instructional Display Sub-
System [21,40) and the GLANCE terminal system (31,41) developed at

Bell Telephone Laboratories. Chapters 2-7 are organised as follows;

1.9

Chapter 2 (LOGICAL STRUCTURE OF THE INTERFACE) describes in detail the
three main sections of the interface computer; viz., the
general-purpose processing section, the microprogram control

section, and the special-purpose display section.

Chapter 3 (DEFINITION OF THE MICROCODE) defines the micro-order types
and options within these types, details the mirco-order
formats, and illustrates some of the special microcode
features such as conditional control, repeated execution,

* automatic mircoroutine linkage, and vector plotting.

Chapter 4 (VECTOR GENERATION) specifies the basic and special vector
types developed within Intergraphic, compares the chosen
vector generation algorithm with an alternative algorithm, and
reviews alternative techniques (BRM and analogue) for vector

and curve generation.

Chapter 5 (SYMBOL GENERATION) describes the symbol generation scheme
adopted within Intergraphic and compares the scheme, which
interprets basic stroke and increment chains encoded in the

read-only memory, with dot matrix and other techniques.

Chapter 6 (GRAPHICAL INPUT) describes the co-ordinate matching method
for identifying points or sub-pictures of a display and out-
lines a breakpoint insertion algorithm for encoding freehand

Input curves.

Chapter 7 (CONCLUSIONS) summarizes what has been shown by the thesis
and the significance of the results. It states the limita-
tions and advantages of the system, and contains recommenda-

tions for further work.
The BIBLIOGRAPHY is compiled in order of citation.

The APPENDIX contains deTails.of both the conventional mode of operation

of the core store and a mode which enables microcode to be run from core

1.10

store for preliminary testing of microprograms; documentation of
completed microprograms in detail so that the performance and flexibility
of Intergraphic can be assessed accurately; and an illustration of the
detailed composition of 88 graphical symbols. Detailed logical and
electronic design of gates, the arithmetic units, Timing and contfrol
circuitry, the read-only memory and the digital-to-analogue converters are
not shown because the thesis emphasises the achievement of a high-speed
graphics interface by microprogramming assisted by several key

micro-orders.

1.10 OQUTLINE OF THE INTERGRAPHIC SYSTEM

This section outlines the connection of TV terminals to the
interface via a video storage disc and the linkage of the interface to
the central processor via a large core store. The operating system is
summarized for background, and the salient features of the Intergraphic

system are |isted.

1.10.1 The Overall System Confiquration

Fig. 1.3 shows the proposed system which was first described
by the author in December, 1967 (42, reprint enclosed].

— — ——
FURTHER GROUPS

—_——— e

INTERGRAPHIC

I1BM SCAN CONVERSION
LARGE / 3
CAPACITY 0 VIDEO
STORE DISK
TV -
SELECTION & TIMING
I 1BM[1G
INTERFACE L |
RECEIVING
1BM 360[50 = ===
, FURTHER GROUPS
fe — — — — SINGLE 1
COAXIAL CABLE —1

5EE

TV TERMINALS

FIG. 1.3. PROPOSED GRAPHICAL-COMMUNICATION SYSTEM 1.1

Initially, Intergraphic will link 13 TV terminals to a
central computer (IBM 360/50) via a large capacity core store (LCS).
Intergraphic will generate all user images once only at high speed on
a centrally-located, small, electrostatically~-deflected CRT. This CRT,
shown as the XY section of the scan converter, will be written in
conventional computer-driven display modes, 1i.e., random point,
vector and symbo! plotting modes. Each image will be scan converted to
a standard TV frame (Australian standard 625 lines, 40 ms) by the TV
reading section of the scan-converter (a plumbicén type vidicon) and
stored on a single track of ‘a video disc. Each track will refresh a
corresponding TV receiver at 25 frames/sec. Thus, regeneration for
persistence of vision is regarded as a low-order task and has been

placed external even to the interface computer.

Macaulay (43) has described a single coaxial cable circuit
for linking 13 TV receivers to their disc tracks. Each receiver is tuned
to a standard TV channel frequency. He has also described (op.cit.)
simple digital circuits attached to each Termfnal which determine light-
pen "raster co-ordinates" and return these co-ordinates to Intergraphic
on the same cable once in every TV frame period. Briefly, a pair of
simple counters, running synchronously with the TV raster, determine
the horizontal scan line number and position within the line of a
"strike" from a simple photo-sensor light pen ("raster-pen") (44). The
strike pulse freezes the state of the counters and simultaneously
brightens the CRT beam; +this spot, a few mm from the pen aperture, pro-
vides true raster co-ordinate feedback as it eliminates errors due to

delays in the pen photo-sensor response.

The main frame of Intergraphic and the central CRT are opera-
tional, and microprograms for plotting lists of Cartesian and polar
vectors, circular arcs, symbols and a number of other graphics
(detailed in Sect. 4.2.2) have been written. The resolution of the
image generated on the central CRT is 1024 x 1024. This resolution is
superior to that of the video storage and distribution system; however,

the author chose a 1024 x 1024 primary. display grid in the hope that

higher frequency video-storage techniques would be developed which
would improve the quality of distribution (e.g., to 800 lines). Tele-
vision displays refreshed at flicke%-free rates have inherently fast
response times, and the continuously running raster allows simple

photo-detector light pens to be used.

The logical structure of Intergraphic is extremely versatile
(being sequenced from microprograms held in a read-only memory, ROM)
and fast (3-5ns integrated circuits and 100ns ROM cycle time). This
enables many functions to be performed within Intergraphic; e.g., the
interpretation and plotting of strings of compactly encoded vectors
from CPU programs. Several micro-orders have been designed to assist
symbol and vector generation; through these orders an incremental
plotting rate of 10 MHz has been achieved. Lists of symbols, vectors
and other graphics are executed (plotted) as normal machine orders;
thus special-purpose vector and symbol generation hardware has been
eliminated. A small amount of additional standard digital logic |
(about 3% of the interface Iogic),is required to éxecuTe the
vector and symbol plotting micro-orders. Apart from the ROM and core
store, Intergraphic is constructed entirely of integrated-circuit OR-
NOR gates, analogue signals first appearing at the outputs of the D/A
converters. As Intergraphic has a powerful machine code (also
interpreted through fast microcode sequences), it can preprocess blocks
of CPU code before plotting; e.g., scale, shift or reflect a graphic.

Although the overall function of Intergraphic is dedicated
and therefore specialized, the function is complex and will change with
operational experience; hence, the approach has been to specialize a
versatile structure by microprograms which can be changed from time to
time. Compact image encodings will be buffered in Intergraphic core
store at a data rate matching that of the LCS; viz., 1 byte (8 bits)/
us. For example, a page of text of 1000 symbols or a line drawing com-
prising 500 short vectors (short CarTésian vectors have X,Y component
magnitudes less than 64 increments) will occupy 1000 bytes and require

a core-to-core transfer time of 1 ms. The generation time of such dis-

plays will be approximately 5ms; +thus, the elapsed time from LCS to
generation on the central CRT will be only a fraction of a scan con-
version period (40 ms), thereby leaving the interface considerable free
time for other functions. Later, further scan converters will be added.
It will be possible for Intergraphic to generate 100 new frames per
second. However, operational experience with the initial 13 terminals
will be necessary to assess the overall system capability before

deciding on the final number of ferminals.

Highly dynamic displays have a high new image rate; thus,
they require direct coupling to Intergraphic rather than to a video
track. Such displays will be driven identically to, but in place of,

the writing section of a scan converter.

1.10.2 Outline of the Operatina System

As previously stated, the operating system is the responsib-

ility of co-workers; this outline is included as background.

User programs will be expressed in PL/1 with embedded graph-
ical orders. PL/1'orders will be executed in the central processor
(CP); graphical orders, however, will be In*erpre?ed'parfly by CP sub-
routines and parle by Intergraphic (IG). For example, "plot rectangle
a X b, bottom left corner xo,yo" would be expanded into a list
header and four vectors by CP subroutines and the list executed (in this

case, plotted) by IG.

Communication between the CP and 1G will be buffered by two
queues in LCS: one, the CP/IG queue, will queue tasks to be
executed by 1G (EXIG's); the other, the IG/CP queue, will queue data
resulting from the execution of EXIG's. The CP/IG queue will be built
up by the component of the operafing system resident in the central
processor (0S/CP) and serviced by the component of the operating sysfém

resident in Intergraphic (0S/1G). Examples of EXIG's are "display an

output graphic", "post-process, then display a graphic", and "track an
input graphic and encode as a vector string". The IG/CP queue will be
built up by 0S/IG and serviced by 0OS/CP; examples of data in this
queue are "a string of symbols from a terminal", "a string of vectors
encoding an input graphic", and "an item pointed to by the user". Only
one EXIG will be resident in the Intergraphic core store at any one

time. -

In summary, apart from an initial reduesf for service, all
terminal activity will be initiated by user programs resident in the
central computer; 1i.e., Intergraphic and the terminals are regarded
as a flexible input-output device, the inputs coming from any one user

being in modes prescribed by his program.

1.10.3 Salient Features of Intergraphic

Before reviewing and comparing alternative schemes for low-
cost graphical terminals, the salient features of Intergraphic wil! be

summarized:-

(1) Independence of Image Generation and Image Distribution

Scan conversion isolates image generation from image storage
and distribution. This gives more freedom for developing image genera-
tion techniques and more freedom for designing an economical storage
and distribution system; +thus in Intergraphic, the interface computer
generates display points asynchronously in incremental and random point
modes, whereas the terminals receive display points synchronously in a

regular scanning mode.

(2) Low-CostTelevision Storage and Distribution

The advantages of TV storage and distribution are:

(1)
(1)
1&!3)
(iv)

(v)

(vi)

(vil)

(n

Low per-terminal cost (the cost of a TV display refreshed
from one track of a video disc is approximately $1000).

Flicker-free refresh rates and inherently fast response

times.

Frequency multiplexing on a single cable is possible

through the standard channel selectors of TV receivers.

Some noise tolerance, both in the storage and distribution

of video signals.

Simple on-off intensity (binary-video) or grey level dis-
plays may be selected. (Grey-level storage on a video
disc normally uses frequency modulation recording, whereas
binary-video can be stored directly and gives higher

horizontal resolution.)
Simple raster-pens, sampled in each TV frame, are possible.

Several extensive video co-axial cable and twisted pair
networks have shown the feasibility of large scale video
distribution. Gabriel (45] describes video networks which
serve about 7% of all television homes in Great Britain.
The networks use multipair or multi-coaxial cables rather
than the wide-band, frequency multiplexed cables of commun-

ity antenna television (CATV) systems.

The disadvantages of TV storage and distribution are:

High data rates are necessary. This follows because TV
coding is far less compact than computer display-file cod-
ing for most images; e.g., to send 1000 symbols or 500

vectors requires about 104 bits of compact computer code,

(in)

i

whereas to send a standard TV image with binary intensity

requires about 2 x 105 bits.

The code length of a TV image is constant, regardless of

the complexity of the image.

Low-cost video storage for high resolution TV is not cur-

rently available.

(3) Shared Versatile Interface

(i)

(in

Giii

Civ)

(v)

The advantages of the central interface computer are:

It is well utilised regardless of the activity patterns
at individual terminals (only inexpensive hardware is

idle when a particular terminal is inactive).

Being time-shared, its relative complexity and high per-
formance components have not greatly increased the per-

terminal cost.

It interprets and reassembles (converts) highly compact or

complex display codes from the CPU to forms suitable for the

simple terminals.

It removes many tasks specific to graphical communication
from the central processor by allowing post-processing of
compact central processor codes and pre-processing of

graphical inputs.

It generates vectors and symbols in the same way as it
executes machine-code; +this eliminates special-purpose
vector or symbol generators, not only from each terminal

but also from the interface.

(vi) It has simplified and unified hardware design as It comprises
only OR-NOR gates, a ROM and a core store. Analogue signals
first appear at the D/A converters driving the central dis-
play(s). This fully digital approach fo the generation of
graphics Is in antithesis to the analogue, or part analogue,
generation of specific classes of display curves (cf., Sect,
4.6),

1.11 JUSTIFICATION OF INTERGRAPHIC

_ The chosen scheme will be justified by showing that it sat-
Isfies a number of requirements more economically, or with fewer or

less significant shortcomings, than the alternative schemes.

1.11.1 Requiremen+s

An exact and detailed specification of requirements is not
intended, but rather, a list of general requirements as a basis for

comparing the various schemes.

(1) Adequate Display Quality; 1i.e., adequate resolution, brighfness,
stability, size, etc. (for definitions, 46,47). A multi-
terminal system does not require the precision or stability
of a 4096 x 4096 point display as used in the DAC-1 system
cited in Sect. 1.2; also, precision terminals are inherently
too expensive. For many applications, even 1024 x 1024 point
displays are unnecessarily precise and, at the moment, are
also expensive for an economical multiterminal system. The
author believes that a 512 x 512 point display is the lower
limit of resolution for displaying arbitrary graphics in a
multi-terminal system, because a lower resolution would pro-

hibit many applications. (For some restricted graphics, a display

of fewer grid points is adequate, provided the points are
stable and clearly resolvable, e.g., the 320 x 192
point display of the IBM 1500 System, discussed in Sect.
1.11.2, Scheme 5.) Unless the display is used in con-
junction with a mechanical overlay (grid, map, etc.),
high absolute accuracy is not necessary. A display with
noticeable flicker is undesirable - the regeneration or
refresh rate of short persistence displays should be at
least 20 cps.

(2) Arbitrary Graphics; 1.e., an ability to display free-form
curves and clearly distinguishable symbols from several
alphabets.

(3) Fast Response; i.e., an ability to display a modified or new
image in several seconds. Applications which require a
continuous and rapid new frame rate (animated diag;ams)

~demand considerable processing time, and, unless only a
few other terminals are active, cannot be accommodated

by an economical multiterminal system.

(4) Graphical and Symbol Input; i.e., a light-pen or equivalent
device for referencing displayed items, moving sub-
pictures and inputting arbitrary curves; and a keyboard,.
or equivalent (e.g., a set of permanent light buttons),
for inputting symbols.

(5) A Flexible and Versatile System; i.e., a facility to build a
repertoire of display oriented instructions at several
programming levels which can be efficiently executed (this
would enable users to develop new problem-oriented
languages and experiment with graphical structures). Also,
the system must accommodate an operating system or compon-
ent of the overall operating system, i.e., it must also

be able to execute non-display-oriented functions efficiently

1.11.2 Comparison with Alternative Schemes

Five schemes will be outlined and compared with Intergraphic:
three use direct view storage tubes (DVST's), one uses short persist-
ence CRT's regenerated in stroke mode, and the fifth uses modified TV

displays, but has no scan converter.

Scheme 1: DVST terminals deflected in parallel from a common pair of
analogue deflection buses; terminal selection by DVST umblanking.

If there is no intermediate storage between the interface and
the terminals, 1i.e., if image generation is concurrent with image dis-
play, then the image generation rate will be tied to the bandwidth of
the deflection system. Thus, the high image generation rates which have
been achieved by Intergraphic (10 MHz increments with matching D/A con-
verters) could not be used with the current deflection bandwidth of
large DVST's; this would slow the syéfem and, therefore, reduce the
number of fterminals for a given response time. Also, the transmission
of precise, high-frequency analogue signals other than over short dist-

ances, Is difficult.

Seheme 2: DVST terminals which decode digital image codes (lists of
point co-ordinates, increments, ete.). ecodes may be transmitted om
individual eircuits or distributed on a common digital bus with term-

inal selection by coding keys.

A coding compromise exists: compact codes ease transmission
specifications, but require elaborate vector and symbol generators at
each terminal, whereas expanded codes reduce terminal decoding complex-
ity, but increase the transmission bandwidth for a given image genera-
tion time. Reliable code transmission is essential for this scheme.

As in Scheme 1, the new image generation rate of an interface would be
limited by deflection bandwidth (in this case,_terminal bandwidth).
This mismatch dould be absorbed by digital buffers: one buffer per dis-

1.20

play (and Individual transmission) increases the per-terminal cost
significantly, whereas a shared buffer (and common transmission) re-
duces the new-image rate at a given terminal, i.e., prolongs the
average minimum viewing time. A compromise exists whereby terminals

are grouped, the terminals within a group sharing a buffer.

An example of Scheme 2 is the ARDS |l terminal (39) which,
although originally designed for remote operation over dataphone lines
(2000 baud), has been operated at 10,000 baud. The terminal displays
arbitrary graphics, but the terminal circuitry is relatively complex.
For dataphone connection, the scheme conserves communication band-

width, but the response time is slow. Fig. 1.4 shows the terminal.

v To/FrOM
V1 cru
i
TRANSMISSION
MATCHING
1 sYMBoL
GENERATOR,
CONTROL BRM's
e
OPERATIONAL
AMPLIFIERS
Alp

KEYBOARD "

FIG. 1.4. ADVANCED REMOTE DISPLAY STATION 11

1.21

It comprises a DVST; vector and symbol generators; a key-
board; a "mouse'" input device (potentiometer pair); deflection
circuitry; and simple control electronics which routes incoming words
to the vector or symbol generator, and assembles outgoing words from
the keyboard or A/D converters attached to the "mouse". Binary rate
multipliers (BRM's) produce vector increments which are added as cur-
rent pulses into integrating operational amplifiers. Pictorial inform-
ation, apart from the transient cursor mark which the user positions by
moving the ''mouse", is accumulated on receipt of digital commands from
the central processor. New images require an initial flood erasure.
DVST's are less dynamic than regenerated short-persistence CRT's and
cannot use conventional light-pen ftechniques. Several workers (3,48)
and the author (27) have developed light-pen techniques for DVST's

which are alternatives to the "mouse".

At dataphone rates, even compactly encoded images may need
more than five seconds to build up; thus, the choice of codes is of
utmost importance. Since the original announcement of the terminal,
which described codes for plotting symbols, random points and long
vectors, the command form has been changed to mode form, a short-vector
code has been included and an incremental mode has been consideredl. No
doubt, alternative combinations of transmission-bandwidth, coding com-

plexity, and response-time will evolve.

Reduction in ARDS-II| costs from approximately $10,000 to
the projected $3,000 depends upon DVST and integrated array costs. A
further per-terminal cost is introduced at the CPU by the mismatch
between the data rates of the CPU and dataphone line. Developments in
integrated electronics which reduce terminal logic costs, will also re-
duce the cost of centralized logic. Thus, the relative cost of a
system having complex terminals to a system having simpler terminals

which share centralized logic, may well remain constant. A disadvant-

1 J.E. Ward, Deputy Director, Elec+roni¢ Systems Laboratory, MIT ---

Private Communication.

.22

age of Installing large numbers of terminals having considerable local
logic is that transmitted codes and terminal behaviour must be fixed;
this would discourage the development of more efficient transmission

codes and terminal functions.

Scheme 3: DVST terminals written in TV mode from a central scan con-
verter; terminals time-multiplexed on a single frequency channel and
selected by video coding keys, or time-multiplexed within groups each
group having a specific channel frequency.

The advantage of this scheme is that video signals need be
transmitted once only, +heréby eliminating the high information rates
necessary for refreshing even static images on short-persistence TV
terminals. In a recent review (49, 1968, reprint enclosed), the author
advocates TV terminals with local storage (DVST or some other medium)
for the terminals of an extensive computer graphics network. This
scheme Is nearest to Intergraphic, and could become more economical;
further advantages are that it eliminates the electro-mechanical video
disc, and interlaced TV is not necessary, which simplifies scan con-
version.

(Note on DVST costs: When the decision to use a video disc

and standard TV terminals was made, the cost of a DVST with power
supplies and deflection amplifiers was at least $4000, compared with
$1000 for a TV terminal refreshed from a video disc track. Laboratory
DVST displays (10cm x 8cm max.) were available and cost approximately
$1000, but were considered too small. fn late 1967, a 21cm x 16cm
DVST display (as used in ARDS 1) of good resolution became available
(approx. $3000). However, its 20usec/dot writing time prolongs image
generation time (e.g., 1t would take 0.4 sec to display 1000 symbols,
each represented by an average of 20 dots, even ignoring the time needed
to position the beam). Thus, buffers would be necessary, at least for
every few displays, to maintain an average response time of several

seconds. In addition to the cost of this buffering, some further term-

.25

inal circuits would be necessary (decoding and D/A conversion for
Scheme 2, raster generation for Scheme 3). For these reasons, disc
refreshed TV displays were chosen in preference to DVST's, but the

resolution of 525 or 625 line TV displays is poorer.)

Scheme 4: Short-persistence CRT terminals regenerated in stroke mode
from recycled digital codes: the interface generates and routes digit-
al codes once only to core or synchronous (drum, disc or delay line)

stores, which are cycled to regenerate displays.

Compact digital codes are preferred for storage, but, as in
Scheme 2, compact codes increase terminal decoding complexity. A
central regeneration store imposes a high total digital transmission
rate from store to terminals. Individual terminal regéneraTion stores,
however, reduce the central-to-terminal transmission requirements, but
the cost of scattered storage is greater. Core regeneration stores can
be filled at a rate matching the interface, but cycled more slowly to
match terminal performance. This is not possible with synchronous
storage, although several intermediate core buffer areas, written at the
interface rates but read more slowly into synchronous regeneration stores

once only, could absorb this mismatch.

This scheme is limited by the deflection bandwidth of the
large CRT's written in random point or incremental modes (the image must
be completed within a persistence of vision period). Also, it demands
a reliable digital storage system. An occasional error, or burst of
errors, in transmission, however, will produce only one or two faulty
regenerations of the display, provided the beam co-ordinates are reset

before each regeneration.

An example of Scheme 4 is the GLANCE terminal system (31,41),
developed at Bell Telephone Laboratories. Terminals are 1024 x 1024 dis-
plays refreshed at 30 cps ffom incremental codes stored on a digital
disc. The code, expressed in 4-bit groups, specifies one of eight

1.24

incremental displacements or controls the intensity level or scaling
factor. At a transmission rate of 4 x 106 bits/sec, the display can
plot 106 points/sec; 1i.e., a maximum display complexity of about
33,000 points. The cost of storage, as in Intergraphic, is the cost

of one track of a disc (in fact, identical discs are used‘) and cabl-
ing is similar; however, the terminal decoding, D/A conversion and
deflection circuits are more expensive than TV receiver circuifts. A
somewhat higher packing dénsify and, therefore, higher bit rate is
possible when video signals are stored on the disc because some storage
noise can usually be tolerated.The GLANCE and Intergraphic schemes
lllusffafe two uses of high-density disc storage -~ regenerating an
incrementally driven display of about 33,000 points and refreshing a
525 line TV display. For applications which require mostly silhouette
type displays, TV coding is preferred, whereas for applications requir-

ing high resolution displays (not limited to 1024 x 1024), incremental

coding is essential. For many applications, either scheme is practical.

Scheme 5: TV display tenwinals.refreshed from video dise, but from

video patterns computed (assembled) directly in core.

The general concept of this scheme is that a one-to-one Image
of a display is built in core (i.e., one bit is set in core for each
visible display point) in a sequence natural to the description of the
display, then the image is read out to the refresh store in a TV
scanning sequence. The core is scanned out synchronously with the re-
fresh store, i.e., 1in a persistence of vision period, and as in
Intergraphic, the processor is free for other tasks during this time
(assuming the processor has access to other memory). The concept is
precise digital scan-conversion, but, if fully developed (i.e., if the
entire display area is mapped in core), has two disadvantages:

‘ Data Disc Inc., Palo Alto, Calif., U.S.A.

.25

(i) for a 1024 x 1024 display, a memory of some 106 bits
(possibly organised as 32K of 32 bit words) would be

necessary,

(11) if each display point were set individually, as could
be the case for arbitrary curve plotting, a fast
memory and addressing scheme would be necessary to

generate an image in, say, 30 ms.

An advantage of the scheme is that the expensive storage and
logic for the fully developed scheme is shared, and could support say
30 terminals with new images on the average every 2 seconds (assuming

equal times for image assembly and image transfer).

A partially developed scheme, however, is well suited for
displaying restricted graphics (e.g., symbol arrays in fixed format),
because a smaller store is required (e.g., sufficient to hold one line
of text only) and groups of display points (e.g., one row of a the dot
matrix pattern of a symbol), rather than isolated points, can be
assembled in one core access. An example of the partially developed
scheme is the IBM 1500 Instructional Display Subsystem (21,40) which
has a display format of 40 columns and 16 rows: a character (8 x 12
dot matrix) occupies one column-row intersection, so that the display
frame comprises 192 horizontal scan lines each having 320 dot positions.
In addition to standard symbols, arbitrary 8 x 12 characters may be
defined and placed in the column-row array fto constitute a graphic. It
Is also possible to displace characters vertically by half a row. Al-
though the scheme is not pfacflcal for arbitrary graphics (each new
graphic would generally require the detailed specification of many new
component characters), it is possible to build a restricted class of
graphics from a well chosen set of elements. Restricted graphics are
adequate for many applications, e.g., annotated block schematics and
flow diagrams. Individual CRT displays are specially designed TV
receivers with improved pos?fional linearity (the TV raster is non-
standard). Each frame of video is buffered on one track of a standard

1.26

IBM 2314 disk store which refreshes displays 30 times per second at
2.5 x 106 bits/sec over individual coaxial cable links. For the given
flicker rate, the conservative, but accurate, display grid of 61,440

points eases both storage and speed requirements for image assembly.

For arbitrary graphics, conventional stroke mode image

generation is inherently simpler and faster than the assembly of a video

image in core. Thus, as an ability to display arbitrary graphics was
a principal design objective of Intergraphic and the CRT - plumbicon
scan converter was inexpensive, the Intergraphic scheme was chosen in
preference to Scheme 5. (A further advantage of adopting conventional
stroke mode generation within Intergraphic was that, as an alternative
to driving a set of TV displays, the interface could drive one highly
dynamic or highly precise display directly from its X,Y display

registers.)

However, the digital precision of scan conversion within
Scheme 5 is attractive, and for a network of 30 terminals, the per-
terminal cost of a smaller core store for mapping 512 x 512 point dis-
plays would be only about $1000. Further work is recommended in the
design of logic for mapping vector points into core (or other digital

store).

1.27

CHAPTER 2

LOGICAL STRUCTURE OF THE INTERFACE

Tha author uses the term "logical structure" for the func-
tional description of the parts of a machine (i.e., the immediate-
access registers, the data paths, the arithmetic-logical unit, the con-
trol logic, etc.) and the relationships between these parts. In a
microprogrammed machine, the numerous combinations within the logical
structure are controlled by microcode. Thus, the logical structure
described in this chapter is strongly related to the confroiliné‘micro—

code, the topic of Chapter 3.

The number of registers, the repertoire of basic afifhme*ic,
logical and mapping operations, the extent of additional special logic,
the propagation delay of the logic gafés,‘e*é., were chosen by trial
and error until a set of graphical routines could be executed without
numerous register reshuffles, frequent references to core, lengthy
microprograms, etc., at speeds corresponding to an average image gener-
ation time of 5-10 ms. The logical structure and microcode stemmed from
the author's experience as a co-designer of CIRRUS, an earlier micro-
programmed computer (50, 1963). There are similarities also with other
microprogrammed machines (51, 1964) and proposals (52, 1967), but as far
as the author is aware, Tﬁe "walt", "repeat" and "back" sequencing op-
tions, the "microroutine stack", the special micro-order facilities
which assist multiplication, division and A/D conversion, and the inclu-
sion of vector and symbol plotting micro-order types within Intergraphic
are novel. To a certain extent, the effectiveness of these features,
and the structure generally, is shown by the microprograms completed to
date, but as in other design procedures, there is no simple measure of
merit. Step-by-step justification of the logical structure and micro-
code is, therefore, not possible, so that much of this chapter and
Chapter 3 is purely descriptive.

2.1

2.1 DETAILED DESCRIPTION OF GENERAL-PURPOSE PROCESSING SECTION

Fig. 2.1 shows the general-purpose processing section. I+t
comprises,

(1) A Conventional Core—Store‘, cycle time 1.5us, of 4096, 18-bit
words (2 parity bits per word) addressed from register CSA
(Core Store Address). Read/write data is held in register
CSD (Core Store Data).

(2) A Set of General-Purpose Registeré A,B,C,D,E,M,N, each comprising
an upper-byte (bifs 0-7) and a lower-byte (bits 8-15).
Register M is automatically copied from CSD when data is
read from core store (read-restore and read-only cycles), and
is the source register for writing data into CSD (clear-write
and write-only cycles).

(3) A Pair of Register Seiection Gates (called the left-operand and
right-operand gates), each capable of selecting one of eight,
16-bit registers. The left-operand gate can select a word of
16 zeros (shown "O"), A, B, N, or one of X, Y, S+1, or Q to
be defined later. The right-operand gate can select "0", C,
D, E, M, or Pi’ W, or R to be defined later., The selected
16-bit left-operand is called "a" and the selected 16-bit
right-operand, "b".

(4) A Pair of Logical-legate Selection Circuits which allow a to
replace a and b to replace b. Negation is optional and
negation of a is independent of negation of b. Symbol a'

denotes a or a, and b' denotes b or b.

(5) A Pair of Identical Byte-L ength Arithmetic Units (AU's), each cap-
able of addition (+), logical AND (A), logical OR (V) and
exclusive OR (¢). The operands for these operations are a'

! Ampex model RF-1 Ampex Corp., Culver City, Calif., U.S.A.

2’2

CORE 4096; 16+2 PAR. | core
0 Ul ls 15
1 |
C,N,S M C,N,S_ M
"7\ CsA CSD » Y_CSA \J csD
Tr 7 0 7 8 15 8 15 -
e e,CSD,F e . e,CSD,F
NN M NN M
[7 0 7 8 15 8 15
e e ‘e e
\ A \ ¢ N_A _¢C
REGISTERS | ‘
.e e ’ e ' e
\ B \ D NB N\ D
e e
_E- N E
non non B non ‘ uoﬁ
A C <A C
B D B D
N UPPER BYTES e REGISTER N LOWER BYTES ¢
« (BITS 0-7) M SELECTION w (BITS 8-15)
Y Pi Y Pi
351 y 551 "
R R
| |
OVERFLOW |OF o= + OFg +
UF UFfed a A b
oW
UNDERFL ofla A Plecr ariTHMETIC cc? =, T[os
CARRY OUT [0+ a v b UNITS 3 a b
BUFFER Bd, I 8 ® oBdis
do_']u.\ (8T) d8-15""
/ P——— r
CIRCULATE tg,gg tg,gg .
SHIFT \ ’ — 612,19 ’ [~ 2027
TRANSPOSE 47,87 » 47,81
——1%0-7 —~—————1€g-15
' Ze,:
BUFFER e Beg |Be; |Bey ZeU ‘ Beg|Beg|Bes| 148
INPUT BUS INPUT BUS

e
‘3\ Po 7 RN 8 P 15 8 N\ Py 15
N *OUTPUT BUS fa.u. ' *OUTPUT BUS A.U.

FIG. 2.1. GENERAL-PURPOSE PROCESSING SECTION 2.3

and b', and the result of the operation is "d". As the
operand gates are each 16-bits wide, the left operands for
both the upper and lower AU's must come from the same
register; i.e., if AVM (bits 0-7) is formed in the
upper AU, then A VM (bits 8-15) must be formed in the
lower AU.

The two AU's may be operated independehfly (i.e., carry-out
from the lower AU, co,, does not automatically become the

carry into the upper AU, c,) or concatenated into a 16-bit

AU (i.e., co, = c,). Overflow and underflowlare defined for

_ 8
2's complement addition as follows,

of = a'b'c
o o o

uf = a'b'c whe
Lol re,

o “o’
S, is the carry into the most significant stage of the
adder, and aé and bé are the sign bits of the operands
("O" = positive). Overflow, ofo, and underflow, ufo, are
buffered in flip flops OF0 and UFo respectively. Also,
the carry-out from the most significant stage, Oy is
buffered in COO. Corresponding quantities are defined and

buffered for the lower AU, e.g., of, = a} b} ¢, is buffer-

8
ed in OF , but these would normally be ignored, although
accessible, for 16-bit operation. Result bits do and d
are buffered in flip-flops Bdo and Bd15 respectively so
that these bits are not lost after a left or right shift
respectively (shift specification follows in (6)).

Input carry c can be optionally 0, 1 or COO. Option

15

c,s = 1 allows the negative of one operand fo be formed, for,

! being added

1. The thesis uses the term underflow when the result of an

operation is more negative than the most negative number

which can be accommodated. |t is not used in the sense of

indicating too small a magnitude in floating point

arithmetic.

2.4

In the least significant position. (It is noted that it is not
possible fo form -A -M in the AU.) Option Cys = COO
allows the AU to perform extended length addition. For In-

dependent AU operation, ¢, can be optionally O or 1, but

7

these options are tied to the options for ¢ i.e.,

15’

C, = Ciq (there Is no carry option c = CO for independent

AU operation).

(6) Cireulate, Shift and T ranspose Gates which map d into "e".

Seven options are available, one of which is the trivial mapp-
ing e <« d. Right shift, RS, preserves sign and left shift,

ALS, clears the least significant bit. (Only single bit shift
or circulate options are available.) Circulate (C) and shift

are defined as follows;

For independent AU operation,

RC: ey_y5 € dy, do_gs dyg, dg_yy,
LC: Aeo—ls “ d1—7’ do’ da—ls’ da
RS: ey_15 ¢ dos dy_gr dgr 94y,
LS: eg s €950 O do1sr O

(It is noted that the same shift or circulate type anplies
to both bytes; e.g., RC upper byte, RS lower byte is

Impossible.)

For 16-bit operation,

RC: eg_15 < dysr doga
LC: ep_15 < diss o
RS: ey « dgs doyy
LS: eq_ys € dj4ss O

Transpose mappings are the same for independent or concatenated AU opera-

tion;

they are defined as follows,

2.5

4T: ey_ys < dy_y, d d

d
0-37 "12-15’ “g-11

8T: g5 “ dgysr 94,
Thus, 4T is equivalent to a four position left or right
“circulation, independent AU operation; 8T simply interchanges

the upper and lower bytes of the AU result,

(7) A Machine Distribution Bus which distributes the output from the
mapping unit, e, Via this bus, e can be nominated as input
to one of 16 destination registers which are, with one excep-
tion, the set of operand registers listed in (3) above. One
of the 16 destination registers is pseudo (denoted NIL) so
that, for example, overflow can be detected in buffer OFO

without changing any of the machine registers.

The minimum path delay from source regisfef through the sel-
ection, negate, arithmetic and mapping logic is sufficlent
for a source register to be also nominated as destination,
without additional buffering. The maximum delay (i.e.,
allowing for 16-bit addition) for a complete cycle is
approximately 100 ns.

Outputs e,, e ., e

e, e and e are buffered in flip-

0’ “1’ Y7’ T8’ Yo 15

flops Beo, Be!, etc., at the time the nominated destination
register is set (clocked). Also at this time, buffer ZeU
is set to 1 if the upper byte of e is zero, and similarly
ZeL for the lower byte. By nominating destination NIL,
these buffers (which are clocked regardless of whether the
destination regisTer‘is NIL or not) allow the sign of a
result, or whether a result will be zero or not, efc., to be
formed without changing any of the machine registers in the
same way as overflow, etc., above. Also, any bit of any

source register can be inspected via these buffers; e.g.,

Ao becomes BeO for the operation,

2.6

A+ 0" > NIL,

D, becomes Be, for the operation,
47
"o" + D , NIL.

(Access to buffers and control are detailed in Chapter 3).

For independent AU operation, there are three options for
clocking the destination register: all 16 bits are clocked
(i.e., copied from e), +the upper byte only is clocked,

or the lower byte only is clocked. The double-byte independ-
ent AU option is designated U/L. The single-byte options,
however, aré not nominated directly, but rather by nominating
which AU generates the byte of e which is copied: 1if the
upper AU generates the single byte which is copied into the
destination register, the option is designated U; and sim-
ilarly, if the lower AU is the source then the option is
designated L. The 8T mapping introduces the need to disting-
uish between which AU generates the result and which byte of
e is copied; for other mappings the upper AU generates the
information copied intfo the upper byte of the destination

register, and similarly for the lower byte.

For concatenated AU operation, all 16 bits of the destination

register are always clocked; this option is designated UL.

(8) Input and Output Registers P, and Po respectively., The connec-

tion of peripheral devic;s is via a peripheral input bus, Pi’
and a peripheral output bus, Po, each of which has 18 bits
including bytewise parity. All peripheral transfers will be
| executed by microcode sequences within Intergraphic, the
particular sequence being entered from 0S/1G (cf. Section
1.10.2). Status changes in peripheral'devices set indicators
which, in turn, condition the execution of various jumps dis-

tributed within microcode sequences. These traps return con-

2.7

trol to 0S/1G which identiflies the status change in detail and
branches control accordingly. Peripheral control of paper-
tape equipment, etc., is not central to the thesis and will

not be described further.

2.2 DETAILED DESCRIPTION OF THE MICROPROGRAM CONTROL SECTION

Fig. 2.2 shows the microprogram control section. It comprises,

(1) A Read-Only Memory (ROM), access time 50 ns, of 4096, 32-bit words

(1 parity bit per word) addressed from bits 4-15 of register

So_14+ Register G Is the output buffer.

0-31
(The ROM contains microprograms, register S is the micro-
program instruction counter, and G is the microprogram
instruction register.) S may be incremented, decremented,
copied from the distribution bus e, or copied from a micro-
routine stack to be described in (2). Normally, S is
incremented and micro-orders are executed in a simple contig-
uous sequence. The decrement option returns control the
preceding micro-order, a mode detailed later (Sect. 3.2, under
ABA,‘BK); Option e » s enables microprogram control to be
transferred to a computed address, and popping the microrout-
ine stack into S returns control to a pre-stacked address
(detailed in Sect. 3.2, AQS). Register G is partitioned
into fields which control the gate and processing options out-
lined in Sect. 2.1 and other options to be detailed in
Chapter 3.

(2) A Microroutine Stack (Q, Q', Q'') pushed and popped from Q. The

stack may be pushed from distribution bus e or from S+1,
the incremented value of S; it is popped either if Q s

nominated as an operand register or on returning from micro-

2.8

v o
y
{0 MICROROUT INE
1 STACK
e
Nt 0
o15,05 |51
5 15 ROM
ADDRESS
READ-ONLY MEMORY
4096; 32+1 PAR.
CSD,MG CSD,MG
¥ {6 4 3
ROM BUFFER
— GATES
MICROCODE DECODE; TIMING AND CONTROL — TIMING
< J INDICATORS

e,DR,Xm,Ym

W R

15

(O’l’f""o) . o 0

F

(0,1,M,)

¥

FIG. 2.2.

M| CROPROGRAM CONTROL SECTION

FIG. 2.3.

G

\y SF
l STROKE

FORMAT

STROKE
LOGIC

D/A
CONVERTERS

INTENSITY
CONTROL

CO-ORDINATE
MATCHING

SPECIAL-PURPOSE SECT ION

2.9

routines which use the microroutine stack facility.

(3) A Counter Ro_1s which can be used as a general purpose register
(in the same way as register D for example), as a decre-
ment counter, or as an intermediate buffer which allows
registers Xm,Ym of the display section (Sect. 2.3) to be

accessed. Logic also detects when R is zero.

(4) A Bitwise Programmable Register F. The 16 flip-flops which con-
stitute F may be individually cleared, set, or copled from
'corresponding bits of M. Any number of F bits can be
nominated (selectively masked) for clearing, setting or copy-
ing for M, but these three operations cannot be mixed
throughout the F word. F is neither a source nor destina-
tion register of the processing section; rather, it
communicates via M. F provides a set of programmable
indicators, some specialfpurpose, some general-purpose, for

switching mircoprogram control.

2.3 DETAILED DESCRIPTION OF THE SPECIAL-PURPOSE SECTION

Fig. 2.3 shows the special-purpose display section. |t com-

prises,

(1) The Display Co-ordinate Counters, X,Y. Both X and Y are
source and destination registers of the processing section and
are 16 bits long; thus, they can be accessed and jam-set as
general-purpose registers. Also, X and Y are incremented/
decremented while the interface is operating in vector and
symbol plotting modes. The least significant 10 bits of X
and Y (bits 6-15), drive the D/A converters which position
the beam of the central CRT; bits 0-5 allow a higher resolu-
tion CRT to replace the central CRT for special applications,

2,10

and allow the "display" to extend beyond the display window.

(2) The Registers, X',Y', for buffering X,Y. This register pair
is jam-set from X,Y whenever the display co-ordinates need
to ,be temporarily recorded; later the recorded co-ordinates
are copied back into X,Y. (Copying the contents
of X',Y' into X,Y does not change the contents of X',Y'.
One use of X',Y' is to hold an origin to which the display
is reset after each vector of a list of vectors is plotted;
this results in a set of radial vectors ("spokes") from the

origin X',Y', instead of an end-to-end vector plot.)

(3) The Coordinate-Matching Registers Xm’Ym which are preset to a
particular co-ordinate pair and subsequently compared with
the current co-ordinate pair X,Y. When the corresponding
bits of Xm,Ym and X,Y match, co-ordinate matching logic
sets an F indicator. Two indicators are provided for match-
ing: one for an exact match over all 16 bits; the other for
a match extending fo all but the least significant three
bits. (Chapter 6 details the use of co-ordinate matching for

light-pen referencing.)

(4) A Pair of 10-bit D/A Converters. A settling time of 20 ns has

been achieved using non-saturating circuits.

(5) An Arc Length Counter, W, which, in small polar vector mode (Sect.
- 4,2,1), integrates increments of arc length and thus holds

distance from the start of an arbitfrary curve. An approxima-
tion to arc length is recorded in Cartesian and large polar
vector modes. A nominated bit of W, or the logical "OR" of
several bits, confrols the unblanking of the display beam:
this givés broken display lines of various on-off patterns.
(Sect. 4.3 details this "Line-Form", LF, control.)

2.1

(6) Stroke Generation Logiec. Strokes for symbol plotting, coded four

to a ROM word are buffered in stroke-format register SF
from G and interpreted by stroke logic.
SF produces a pair of X,Y

Each stroke in
increment/decrement streams and
corresponding unblanking pulses. Chapter 5 details the cod-
ing and interpretation of symbol strokes.

2.12

CHAPTER 3

DEFINITION OF THE MICROCODE

This chapter defines the Intergraphic microcode, i.e., the
set of micro-orders which controls the logical structure detailed in
Chapter 2. The word-length chosen for the code was 32 bits: this was
sufficient to accommodate a range of arithmetic, immediate-constant,
transfer, indicator-setting and special graphical micro-orders, as set
out below, and also, 32-bits was a multiple of the core-store word-
length (16 bits), so that micro-orders, stored one to a pair of core
words, could be executed from core store for preliminary testing,
before being wired into the ROM. The mode is believed to be novel, and
is particularly useful for debugging new microprograms; it is des-
cribed in APPENDIX 2,

3.1 OUTLINE OF THE MICROCODE

Table 3.1 sets out the microcode formats. Within any column
of options shown in the table, the codes corresponding to mnemonics are
ascending binary integers; e.g., for field Go-a’

0000 codes ABA

0001 " ADR
0010 " ASQ
1111 " SFS

Table entries shown "@" are available for future definition; entries

shown "#" are forbidden.

There are 16 micro-order types, designated by field Go-s’

which are arranged in five main groups: A-orders, D-orders, the TRF

3.1

REGISTER G _BIT_LOCATIONS

0 1 2 3 4 5 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ABA L (OPRN.) (DEST.)
ADR U "oll) +,O l!o" d N l L
ASQ u/L A R
AQS uL A +,1 c LC g
L : B
RR A B +,00 D RC
ACC cw : N
ACN RO W N e : Ls P,
| _____| W WT X |a A M o] Rrs c
APV : B _ 0
ASO APP RP y |3 v P, [P 4T
.,] . £
BK | S+1 o W 8T
______ e ' : X
AMY 0 e R # y
AST ADV J
AAD + + R s
AXS _ a b e Q
oMC ' M
e ot * MICROPROGRAM CONSTANT e
DSQ W
U
0QS 12 19 20 27 R
1]
4 x |y x|y x|y |x (yo
TRF v v v +
] 1
oL 'Y [x |v Ix |v IR R M 2000
CF M P v
e SF | M cim| |v
)
MF
IFS Jol s , » '
. -10 4- -
SFS q as as 0 as 4-10
TABLE 3.1. INTERGRAPHIC MICROCODE

3.2

order, the FBC order and FS-orders. A brief outline follows; +the orders
(excepting FS-orders, cf. Sect. 5.2) are defined in detail immediately

after this outline.

A-orders (Arithmetic) control the general-purpose processing
section, i.e., control the register selection gates, logical negation,
the AU mode, the mapping gates, and the destination clocks. Concurrently
with this basic source-to-destination control, A-orders can also decre-
ment R, push and pop the microroutine stack, initiate a core-store
cycle, and establish some special conditions which facilitate vector
plotting, point plotting, multiplication, division, analogue-tfo-digital

conversion, and extended length operation.

D-orders (Distribute) bypass the AU's and mapping gates;
they simply distribute an immediate-constant nominated in field G, ,_ .,
(microprogram constant) to a destination register. Concurrently with

distribution, D-orders can also push and pop the microroutine stack.

The TRF order (Transfer) controls register-to-register trans-

fers which are not possible via the general-purpose processor.

The FBC order (F register, Bitwise Control) controls the
clearing, setting, and copying from M of individual F bits.

FS-orders (Forma#s) contain four identical fields which encode

the detailed incremental or stroke composition of symbols.

3.2 DEFINITION OF A-ORDERS

Eight of the 16 micro-order types are A-orders. The first,
designated ABA, is the basic arithmetic micro-order; the remaining 7

augment or modify ABA. The detailed codes following should be read in

conjunction with Chapter 2.

3,3

ABA (Arithmetie, Baste), G,_, = 0.

Field G,.’5 specifies whether the AU's are operated independ-
ently (L, U, or U/L) or concatenated to 16-bits (UL), and, if independ-
ently, whether the result received by the destination is actually
generated in the lower AU only (option L), the upper AU only (option U)

or both AU's (option U/L).

Field G,_,,, designated J, nominates one of 64 binary
indicators which conditionally control the execution of the current
micro-order. Examples of J indicators are OFO, Be, and 7Eb, desig-
nated JOFU, JBe7 and JNZeU respectively. [|f the nominated J
indicator hés the binary value "1", +the micro-order is executed, other-
wise the order is inhibited. Jo (Gg_,, = 0), instead of being a
machine buffer or the output from a logical circuit, is the constant
"M, thus, Jo specifies unconditional execution. TABLE A3.2 lists
the J indicators. (In the following description, J=1 means that
the value of the nominated J indicator is currently 1; i.e., J=1

does not represent the indicator Jl.)

Field G,, 13 specifies the options, FW (Forward), WT (Wait),
RP (Repeat) and BK (Back) which are defined in conjunction with the

value of J, as follows,

FW: Except for the case of a successful computed jump order
"(i.e., A-order, J=1, destination register = S), the
next mirco-order is read from ROM address S+1: this is
the simplest instruction sequence (J controls whether
the order is executed or not; the next order is always

read from S+1, regardless of J).

WT: If J=1, +the order is executed immediately and, except
for a computed jump, the next order is read from S+1
(identically to FW). If J=0, +the order is indefinitely

delayed until the nominated indicator becomes 1. This

option enables the machine timing fo be tied to external

3.4

RP:

BK:

events. For example JCRA (J Core-Read-Available), which
is "O" at the start of every core store cycle and becomes
"1" when read-data is available, is nominated to delay a
micro-order which requires core data as an operand until
the data is available. Unless there is a machine fault,
the nominated J of a WI order always becomes 1 and the

conditions stated under J=1 +then apply.

This option allows a micro-order to be repeated until the
nominated J indicator becomes 0. When 0, or if
initially 0, the order is not executed and control
advances to S+1. (There is no possibility of a computed
jump, because a repeated jump is meaningless.) To
illustrate the RP option, consider the J indicator
JNZR (J Non-Zero R) conditioning the simple arithmetic

order which decrements R,
ABA, UL, JNZR, RP, R-1 =+ R,

Then, if R=8 initially, the order will be repeaied 8
times, thereby clearing R. On the 9th attempt, however,
JNZR = "Q0", +the order is not executed and control
advances tfo S+1. (A more meaningful example of RP

follows under A-order ADR later.)

If J=1, +the order is executed and the next order is
read from S-1; otherwise, the order is not executed and
the next order is read from S+1. (As for RP, BK
would be meaningless if used in conjunction with a
destination of S, 1i.e., a computed jump.) AN FW=-BK
order pair enables two micro-orders to be alternated
repeatedly until the J indicator clears (both orders
would nominate the same J indicator). This alternation
effectively extends RP to a pair of micro-orders; it
saves a third test and branch order. For example, an FW-
BK pair is used in the multiplication of two 16-bit

numbers where two passes of the AU are necessary to

3.5

accumulate each partial product and shift the double-

length accumulator which finally holds the product.

Field G,,_,, nominates the left-operand source for the AU's,

1.e., which register becomes "a". Before any micro-order held in G
is interpreted, the sequence register S 1is automatically advanced to
S+1 in anticipation of a simple advance of control; +thus, if the S
register is selected to become the left-operand (Glu—qs = 1,1,0), the
value selected is S+1.

Bit G,, controls the negation of "a": if G,, =1, a

replaces a.

Field Gm__20 nominates whether the AU's perform addition or
a bitwise logical operation: variants of addition are input carry = 0,
1 or CO denoted by "+,0", "+,1" and "+,CO" respectively; logical

operations are AND, OR and exclusive OR denoted by "A", "V" and " & ",

Field Gu_23 nominates the right-operand source for the AU's,

i.e., "b", and G, ~controls the negation of "o (if G,, =1, b

replaces b).

Field G,._,, nominates the mapping type, i.e., the trans-

formation of d into e. The entry coded by G = 0,0,0, shown

25-27
"d", indicates e = d. Shift, circulate and transpose are defined in

Sec.t'. 2’] (6) L]

Field G,g_3, codes the destination register. (Byte clock-

ing within the destination register is specified by Gu’s.)

ADR (Arithmetic, Decrement R), G,_, = 1.

This micro-order augments ABA by decrementing R each time
the order is executed. Register R cannot be nominated as a source or

destination within an ADR order; tHis avoids the need to define, and

3.6

control precisely, when R is decremented within the cycle. R s
decremented sufficiently late in the cycle so that JUNZR (cf. ABA, RP)

is derived from the pre-decremented value of R. The combination ADR,
JNZR, RP with R initially set to n, is a convenient way of execut-
Iing an arithmetic order n +times; without the ADR, J and RP
facilities each iteration would take 3 micro-orders (the computation step,
a decrement order and a test jump). As examples, the compact count
facility is used in multiple shifting, byte-length multiplication and
vector plotting. |In each of the last two examples, the single micro-
orders which are iterated are extensions of ADR. They are AMY and APV

which are defined later in this section.

ASQ (Avithmetic, S to @), G,_, = 2

This order augments ABA by also pushing S+1 into the micro-
routine stack if fhe order is executed. The S+1 -+ Q +transfer is
early in the cycle; thus, S refers to the address of the current
order and not a computed address which would be formed late in the cycle
if S were nominated as destination. A single ASQ order, then, with
S nominated as destination, plants the return address, S+1, in the
microroutine stack and transfers control to a computed address. O
cannot be nominated as a destination or source register within an ASQ
order; this avoids the possibility of either double-pushing or
pushing-and-popping in one cycle, which would require a complex

sequence definition and precise timing.

AQS (Arvithmetic, Q to S), G,_, = 3.

This order is designed to return control automatically to the
calling microprogram at the end of a microroutine, provided the termin-
ating order of the microroutine is arithmetic. AQS augments ABA by
popping Q into S if the order is executed. AsAin ASQ, Q cannot
be nominated as a source or destination register. [t Is meaningless to

nominate S as destination register. As many microroutines are short

3.7

and do terminate in an arithmetic operation, AQS has contributed to

microcode efficiency.

ACC (Arithmetic, Core addressed from C), G _, = 4.

ACC initiates a core-store cycle after the arithmetic opera-
tion has been completed. The order addresses the core-store from
register C by copying C into CSA, the internal address register
of the core-store. The contents of C are not fransferred until the
destination register of the arithmetic order has taken its new value;
thus, the order, ACC, C+1 -+ C, addresses the core from the incremented
value of C. This is useful for fetching instructions or data from con-
tiguous addresses as only one ACC execution per access is necessary.
Field Gu—s’ instead of specifying L,U, etc., nominates the type of
memory cycle. Options are, read-restore (RR), clear-write (CW), read-
only (RO), and write-only (WO). ACC implies UL operation. APPENDIX
1 defines the memory cycles, sthe three J indicators which refer to

memory cycle events, and some operational constraints.

ACY (Arithmetic, Core addressed from I), G _, = 5.

This order is identical to ACC except that the core is

addressed from register N instead of C.

ASO (Arithmetic, Special Group 0), G,_, = 6.

This "order" is a group of four orders; only two of the
orders within the group, viz., APV and APP, have been defined to

date, the remaining two are spare.

APV (Arithmetic, Plot Vector) has been designed for plofting

vectors. Each cycle of the AU in an "APV, RP" mode, usually

3.8

generates an X increment/decrement or a Y increment/
decrement or both, and, as the time for one pass of the AU is
approximately 100ns, vector increments are produced at a rate
of about 10MHz.

The APV orderlimplies U/L operation, and augments ABA, U/L
by;

(i) incrementing X if the upper AU overflows,
(ii) decrementing X .if the upper AU underflows,
Lit1) incrementing Y if‘*he lower AU overflows,
(iv) decrementing Y if the lower AU underflows,
(v) decrementing R on every execution,

(vi) applying an unblanking pulse (80ns duration) to the

| central CRT 40ns after X or Y has been incremented
or decremented; this plots a>poin+ after the D/A con-
verters have settled (20ns) and the CRT beam has moved

incremental ly (20ns),

(vii) preserving the sign of an addition on overflow or
underflow; i.e., dO (or d,) is forced to be "o" if
two positive operands overflow the upper (or lower) AU,
and d0 (or dg) is forced to be "1" if two negative

operands underflow the upper (or lower) AU.

The APV order, defined above, performs the iteration within
all types of vector plotting. The justification of APV, and
a detailed description of its application to vector plotting,

follows in Sect. 4.3.

APP (Arithmetic, Plot Point) augments ABA by applying an

unblanking pulse of 80ns duration to the central CRT, 40ns

3.9

after the destination register has assumed 1ts new value. The
40ns delay has been designed for APV which only increments

X or Y. For random point plotting, however, a 200ns settl|-
ing time is necessary; +thus, if X or Y is set by an order
in preparation for plotting a point, then the unblanking APP
order must be separated from this order by a third order,
(this ensures a delay of about 240ns). M| PLT SML CTN PNT D
(p A3.33) terminates with the following 3 orders;

ABA Y+D=>Y SET Y REGISTER

ABA NIL NO OPERATION, DELAY ONLY
APP Q > S POP STACK (RETURN) & UNBLANK CRT.

AS1 (Arithkmetic, Special Group 1) G, . = 7.

This "order" is a group of four orders, AMY, ADV, AAD and
AXS which are defined as follows: ‘

AMY (Arithmetic, Multiply) 1is a variant of ADR which per-
forms the iteration within byte multiplication. (Ml BYT MPY
BUxEL=>E, p A3.49 , illustrates the use of AMY in detail.)
AMY implies UL operation, and as well as decrementing R

each cycle to control the number of iterations, the order AMY;

(i) conditionally inhibits the "a" operand depending on

Be. ; t.e., the "a" operand becomes,
15

Bels.a

(In the byte-multiply algorithm, .Bels contains a copy
of the current multiplier bit and "a" nominates the
multiplicand; thus AMY accumulates a partial product
which is either the multiplicand or "O". The accumula-
tion of partial products is progressively right-shifted
to form the produéf), |

3.10

(ii) preserves the true sign of a sum, regardless of over-
flow or underflow, on right-shift. (Normally, if two
positive operands overflow the AU, then do becomes
"1" and this would be extended to both e, and e, on
right-shift. AMY, however, forces e, to be "O" on
right-shift for overflow, and forces e, to be "1" on
right-shift for underflow. This modification effect-
ively extends the length of the accumulator by one bit

as required by the multiplication algorithm.)

The inclusion of AMY has simplified both byte multiplication
and word multiplication (Ml WRD MPY BxE+ED, p A3.50) and
has resulted in rapid execution; e.g., MI BYT MPY comprises
only 9 micro-orders and multiplies two signed bytes to form a
signed double-byte product in 1.4us.

ADV (Arithmetic, Divide) assists non-ﬁesforing division by

conditionally forming the negative of the nominated "b" oper-
and depending on Beo. ADV implies UL operation. |If

Beo = 0, +then the nominated fields "+,0" and "b" are re-
placed by "+,1" and "b", whereas if Be = 1, the nominated
fields remain unchanged. The non-restoring division algorithm

is not included in the thesis.

AAD (Arithmetic, Analogue-to-Digital) has been designed to

assist A/D conversion; it is similar to ADV, except that
the output of a digital-differential-comparator, DDC, replaces
Beo. The comparator compares the output of the D/A converter
driven from the X register with an unknown external voltage:
1f the unknown exceeds the D/A converter output then DDC = 1,
otherwise DDC = 0. The AAD order adds/subtracts progress-
ively-halved increments to/from register X, +the number of
iterations depending on the precision of the converter and
comparator. The algorithm executes two orders (an FW-BK pair)

per iteration (i.e., 200ns/bit) and requires a comparator with

3.1

a response time not exceeding 100ns.

AXS (Arithmetic, Fxtended Shift) enables shift and circulate

operations to be extended to double-word, or longer, register

sets; it implies UL operation.

For right-shift, instead of copying do Into e, (il.e.,
copy sign), AXS coples Bd15 into e, Bdls buffers the
least significant bit of the previous UL operation which
would normally be lost on right-shift as it would not be
.mapped into any e bit. Extended right shift sequences
begin by applying an "ABA, UL, RS" order to the most signif-
icant word of the register set (this copies fthe sign bit in
the usual way), then an "AXS, RS" order shifts the second
word component (this ensures that the least significant bit
of the first word becomes the most significant bit of the
second word), and so on until the last word or byte of the

register set is reached.

For left-shift, AXS copies Bdo into €s° A left-shift
sequence begins at the least significant word component with
an "ABA, UL, LS" order, then "AXS, LS" orders fol low.

Similar procedures follow for circulate, except that an

initial NIL order is required to load Bd,, or Bd,, and

all subsequent orders are AXS orders.

3.3 DEFINITION OF THE D-ORDERS

The code provides for four D-orders: three have been defined;

the remaining order is spare.

3.12

DMC (Distribute Microprogram Constant), G _, = 8.

This order enables a constant, held in field G, ,_, . of
OMC, * to be immediately loaded into a destination word or byte. There
are three options specified by G,_;
(1) option L: the lower byte, G, . ., Is transferred to
the lower byte of the nominated destination,

(ii) option U: the upper byte G is transferred to

12—-19’
the upper byte of the destination,

(ii1) option UL: +the whole word 612_27 Is transferred to

the destination word.

The destination and J fields are as defined under ABA. DMC
implies FW operation; hence the next order is read from S+1 regard-
less of J, except for a successful jump order (nominated J = "1",
destination = S). DOMC with destination S, then, is useful for con-
ditional (or unconditional, if Jo is nominated) transfer of control
to a known address. For other destinations, ODMC conditionally clears
registers, loads known mask patterns, etc., then increments control to
S+1,

DSQ (Distribute Microprogram Constant, S to Q), G,_, = 10.

This order augments DMC in the same way as ASQ augments
ABA; i.e., a single DSQ order, with destination S, if executed,
plants the return address, S+1, in the microroutine stack and trans-
fers control to the address coded in G,, ,,. This use of bSQ is
frequent and has improved microcode efficiency. The J facility condi-
tions the insertion of the microroutine beginning at the address coded

inGyypqe

3.

13

DQS (Distribute Microprogram Constant, @ to S), G,_y=11.

This order is similar to AQS, i.e., it is designed to
return control automatically to the calling microprogram at the end of
a microroutine, but, in this case, the terminating order of the micro-
routine must be a distribute order. To avoid both pushing and popping
‘the microroutine stack in the one DQS order, Q cannot be nominated

as destination.

The DQS order is particularly efficient for writing tables
of constants in the ROM. For example, the sine table (TABLE SIN (DL)
+ D, P A3.35) comprises 129 values of Sin 6 corresponding to the
argument kange,
® = 0 (n/256) n/2 radians,

i.e., the first quadrant (including m/2), in steps of m/256 radians.
Each +ablé entry is a single DQS order which, when accessed, loads
:fhe appropriate Sin 8 value into register D and fransfers control tfo
the address stored in 0. Without the QS 'facili+y, each table entry
‘would require two DMC micro-orders having destinations D and S

respectively.

3.4 DEFINITION OF TRF (TRANSFER), G,_, = 12.

This order enables a number of register-to-register (or byte-

to-byte) transfers to be executed concurrently.

comprises 16 individual bits, each correspond-

Field 6,,_,,
ing to a transfer: if a "1" is coded, the appropriate transfer is
executed, otherwise it is not; e.g., G, ="1", +transfers X' to X.

14
To avoid timing hazards, a register cannot be the destination of one

transfer and the source of another transfer in the same TRF order

(e.g., G,, and G, ~ cannot both be coded ""). Fields Gu,s and

J are as defined under D-orders, and the field G, , ., must contain

zeros. Concurrent transfers are of the same word type (L, U or UL),

and J conditions all transfers. The TRF order enables transfers to
be executed which are not possible via the "e'" distribution bus. Also,
concurrent transfers are convenient for transferring co-ordinate pairs
X,Y + X',Y , etc. The vector-plotting option which resets the display
to the local origin X',Y' after each vector is plotted, is achieved

by an X',Y' =+ X,Y transfer, the nominated J being a copy of the end-
to-end/reset bit (cf. Sect. 4.2.1, (2)).

3.5 DEFINITION OF FBC (F REGISTER BITWISE CONTROL), G, _; = 13.

This order, like TRF, partitions 612_27 into 16 individ-

ual bits. The command option coded in G,_. viz., "clear" (CF),
"set" (SF) or '"copy from M" (MF), applies to each F bit for which the
corresponding bit within G,, ,. is coded "1". (Within any one FBC
order, it is impossible to mix CF, SF and MF commands.) F bits
0-7 are reserved for special functions, whereas bits 8-15 are general-
purpose programmable indicators. An example of a special-function
indicator is Fy (controlled via G, ,), designated visible mode (VM),
which is a master unblanking control: if F. ="0", the CRT beam
remains blanked; if "1", other logic can unblank the beam. All F
bits are also J indicators, and F can be copied into M by a TRF

order, as it is for example in storing the state of the machine.

3.6 FS-ORDERS

There are two FS-orders: Increment Formats (IFS) and Stroke

Formats (SFS). Each order comprises the order-type field, G,_,, and
=10’ Cr1-172 Crg—py 23Nd Cpg 40

Sect. 5.2 details the interpretation of these formats, and the applica-
tion of IFS and SFS to symbol plotting.

four identical fields or formats, G

CHAPTER 4

VECTOR GENERAT ION

4.1 THE NEED FOR EFFICIENT VECTOR CODES AND GENERATORS

Vectors or straight-line segments are used so frequently in
the construction of arbitrary graphics that efficient vector coding
and generation schemes are essential: efficient coding to conserve
bandwidth and storage; efficient generafion'*o achieve high plotting
rates with a minimum of hardware. Because graphics usually comprise
large numbers of vectors drawn end-to-end, precision interpretation of
codes is essential, i.e., generation of the exact number of horizon-
tal and vertical increments of a vector. Where errors can accumulate,
e.g., in plotting strings of polar vectors which are first converted
to Cartesian form, a set of check points (i.e., points at which the
display Is reset to precise absolute locations) may be necessary. Sil-
houettes and shaded areas are also included in arbitrary graphics, and
these usually comprise large numbers of vectors which cover an area
eifher by a series of parallel scan lines (e.g., the type font synthes-
is application reported in (14)) or by a series of contours which are

derived from the boundary shape.

Although many applications need only horizontal and vertical
lines, and display files can be compressed if this Is a constraint,
arbitrary graphics require vectors of any orientation. Also, vector
codes and generators must accommodate a wide range of vector magnitudes.
A format designed for long vectors is inefficient in space if used tfo
code a piecewise linear approximation of an intricate curve, and con-
versely, it is inefficient to build long vectors from individually
coded increments or very short vectors. Therefore, several vector
formats are necessary and, for a 16-bit core store word, one would
expect a long vector format of two words (one containing the horizontal

component, the other the vertical component), a short vector format

4.1

of one word (each half-word containing a component) and, possibly, an

Incremental vector format of four increments to a word.

Vectors are most frequently drawn end-to-end; therefore, a
block mode in which vectors are coded in variable-length blocks, each
block labelled with a héader word, is more efficient in space than
individual vector commands, each of which must carry a label as well
as the pair of components. |In block mode, block length may be
specified within the header, or alternatively, each vector may carry .a
link or continue bit. An individual blanking bit for each vector is
normally included in vector codes so that isolated groups of visible
vectors can be joined by a blanked segment. Short vector, and
particularly incremental, codes are often grouped for coding efficiency,
the vectors within a group sharing a common link bit and a common
blanking bit. ,

Following, is a description of the range of vector types and
corresponding vector formats used in Intergraphic, details of the
chosen vector generation algorithm, and a comparison between the chosen
and an alternative algorithm. The section concludes with a discussion
of two alternative vector generation techniques, viz., binary rate
multiplier (BRM) techniques and analogue generation techniques, includ-

ing some comments on curve generators.

4,2 VECTOR TYPES AND FORMATS USED IN INTERGRAPHIC

The interface can interpret and plot four basic types and
six special vector types. The basic vectors are small Cartesian, small
polar, large Cartesian and large polar. The special vectors have been
included to facilitate the coding and plotting of frequently occurring
graphics, e.g., block diagrams, regular grids, circular arcs and

diagrams comprising only horizontal and vertical lines.

4.2

4,2.1 Basic Vector Types

1. Small Cartesian vectors are coded one to a 16-bit word, and
each vector has an unblanking bit and a link bit. Format 4.1 shows the
core-store representation of a small Cartesian vector and states the
number representation and range of the components AX, AY. Figs. 4.1,
a and b show a list of small Cartesian vectors plotted end-to-end

and reset to X', Y', respectively. Small Cartesian vectors are coded

0 . 6 7 8 14 15
vt | IR |
| ! AX | vl o AY I |L
124 L/ 'l R 12
7 7 7 1 T 7
=28 25 20 T-zs 25 20 I
VISIBLE LINK
(IF 1, UNBLANK) (IF 1, MORE DATA)

AX, AY: 7-BIT 2's COMPLEMENT INTEGERS,
RANGE, -64 (1) 63 DISPLAY INCREMENTS,

FORMAT 4.1 CORE REPRESENTATION OF A SMALL CARTESIAN VECTOR.

PZ
Y END-TO-END Y RESET
VECTORS VECTORS
\
\
AX
: X, —
1 1 .
~ o, (X',Y") rsz .
(X',Y") ' 1
0,0 X 0,0 X
GRAFN 0; SML CTN VTRS (ETE). GRAFN 0; SML CTN VTRS (RST).

(a) (b)

FIG. 4.1. SMALL CARTESIAN VECTORS:
(a) End-to-End, and (b) Reset to X', Y'.

4.3

In blocks of words under a header word. The header specifies that
small Cartesian vectors follow, and also, whether end-to-end or reset
plotting is required, the line-form (i.e., continuous or broken
lines of various on-off patterns, cf. Sect. 4.3),>The intensity level
(inapplicable for binary-video storage) and the magnification (X1,X2,
X4 or X8).

Graphical functions within Intergraphic are grouped under
two machine-code functions, GRAPHICS-A and GRAPHICS-B, designated GRA
and GRB respectively., GRA and GRB are further subdivided: GRA has
eight sub-functions, designated GRAFN's, and GRB has sixteen sub-

functions designated GRBFN's, The four basic vector-types are inter-

preted by GRAFN's and the six special vector types by GRBFN's, Format

4,2 shows the general GRAPHICS~A header: it precedes a block of small
Cartesian vectors if the 3-bit GRAFN field has the value 0. Micro-
routine GRA SML CTN VTRS (p A3.7), called by GRAFN = 0, plots a

list of small Cartesian vectors.

0 4 5 6 7 8 9 11 12 13 14 15
GRA . |GRAFN RST LF IT MG

GRA; MACHINE-CODE FN GRAPHICS-A.

GRAFN; SPECIFIES 1 OF 8 FUNCTIONS WITHIN GRAPHICS-A

RST; IF 1, AFTER PLOTTING EACH VECTOR OR POINT,
RESET X,Y TO THE INITIAL VALUES X',Y',
ELSE, ADD COMPONENTS END~TO-END (ETE).

LF; LINE-FORM (APPLICABLE TO VECTORS, FIG. 4.9).

IT; INTENSITY FIELD, 4 LEVELS OF INTENSITY, ALL
OF WHICH ARE VISIBLE.

MG; MAGNIFICATION X1, X2, X4, X8 (APPLICABLE TO
SMALL CARTESIAN VECTOR/POINT COMPONENTS ONLY.)

FORMAT 4.2. GRAPHICS-A HEADER

4.4

2. Small polar vectors are also coded one to a 16-bit word, and
each vector has an unblanking (or visible) bit V and a link bit L.
Format 4.3 shows the core-store representation of small polar vectors
and states the representation and range of +the components A6, As.
Small polar vectors are also coded in blocks preceded by a GRA header,
but the GRAFN field corresponding to small polar vectors has the value
2. Figs. 4.2, a and b show a list of small polar vectors plotted

end-to-end and reset, respectively.

0 ‘ 678 : 14 15
) | . I]

R AB V|0 I As I JL

£ I 7 | 7 ’1 { l,/
-1/4 /8 m2 "8 2° 2°

AB; 7-BIT 2's COMPLEMENT ANGLE (FIG. 4.2)

RANGE; - m/4 (n/256) (m/4 - w/256) RADIANS.

As; 7-BIT POSITIVE INTEGER, BIT 8 = 0 (FIG. 4.2)
RANGE ; 0 (1) 63 DISPLAY INCREMENTS.

FORMAT 4.3. CORE REPRESENTATION OF THE INCREMENTAL ANGLE AND
LENGTH OF A SMALL POLAR VECTOR

\ AB,
: ET
END-TO-END VEE%RS
VECTORS . 0
2
Y
2
As1 o e
O (INITIAL ©) (X', YY) 0
(X',y"
0,0 X 0,0 X
GRAFN 2; SML PLR VTRS (ETE) GRAFN 2; SML PLR VTRS (RST)

. (a) (b)
FIG. 4.2, SMALL POLAR VECTORS;
(a) End-To-End, and (b) Reset to X', Y'. 4.5

The incremental angular specfficafion A0 (i.e., the angular
difference from the preceding vector, or for the first vector the
angular difference from Go the initial value of 8) has three advant-
ages over absolute angular specification: it allows graphics to be
rotated by modifying 60 only, it allows circular arcs to be compactly
encoded by repeating a A6, As vector in end-to-end mode, and it
allows greater angular resolution to be encoded in a given field length

because a A8 specification need not cover 2m radians.

The range of As is identical to the range of posi*i?e AX or
AY, and the range of A8 has been selected as

- %-s AB < %-radians,

which, encoded in 7 bits, gives an angular resolution of /256 radians.
Two reasons for this selection are that the ftangential displacement of a
polar vector of maximum length, As = 64, rotated by‘n/256 is
approximately one display increment, and that one revolution comprises an

integral number (512) of least significant A8 increments.

Line-form and intensity are as described under small Cartesian
vectors. Magnification, however, is not extended to small polar vector
length As, because errors in the least significant bits of the sine and
cosine routines, which are called before polar vector plotting, would also
be magnified. GRA SML PLR VTRS (P A3.10) plots a list of small polar

vectors.

3. Large Cartesian vectors are coded in two 16-bit words, the
first containing the horizontal component XC and the unblanking (or
visible) bit V, the second containing the vertical component Yc and
the link bit, L. Format 4.4 shows the core-store representation and
states the number representation and range of the components Xc’ Yc'
Although the XC and Yc fields could each accommodate 15 bits, the
fields have been restricted to 12 bits to be compatible with polar-to-

Cartesian conversion (cf. CQ LRG PLR = CTN E,A, p A3.45) and the

4.6

special large-vector formats to be defined in this Sect. 4.2.2. The 12-
bit fields can accommodate a 4096 x 4096 display, or alternatively, allow

temporary display overflow for displays of lower resolution.

o 2 3 14 15
| ! : X
17/ J‘ ll: C ,l V
11 10 0
2" 2 2 Visible
0 2 3 14 15
1 1 : Y :
!IJ } ’ll C l{ L
11 10 0
-2 2 2 Link
X Yy s 12-BIT 2'S COMPLEMENT |NTEGERS
RANGE — 2048(1)2047 DISPLAY INCREMENTS

BITS 0,1,2 = BIT 3 (1.E., FIELDS 0-2 EXTEND SICN)

FORMAT 4.4. CORE REPRESENTATION OF THE COMPONENTS
OF A LARGE CARTESIAN VECTOR

Fig. 4.3 shows a list of large Cartesian vectors plotted end-

to-end; the reset option is also available, but is not shown.

4.7

GRAFN 4; LRG CTN VTRS (ETE)

FIG. 4.3. LARGE CARTESIAN VECTORS, END-TO-END

Large Cartesian vectors are coded in blocks under a GRS header
with a GRAFN field value of 4. Line-form and intensity apply, but
magnificiation is not extended to large vectors. GRA LRG CTN VTRS

(pA3.12) plots a list of large Cartesian vectors.

4. Large polar vectors are also coded in two core-store words.
Format 4.5 shows the R,6 core format and ranges, and Fig. 4.4 shows a
list of large polar vectors plotted end-to-end; the reset option is also
available. Large polar vectors are distinguished by GRAFN = 6, and line-

form and intensity options are applicable.

4.8

0 | R R A
2'10 éo
0 14 15
1
L ‘ e L L
-7 2
R; 12 BIT POSITIVE INTEGER

R;ANGE; 0(1)2047 DISPLAY INCREMENTS
0; 15 BIT 2's COMPLEMENT ANGLE

RANGE; -m(m27**) (m-n271*) RADIANS

FORMAT 4.5 CORE REPRESENTATION OF THE LENGTH AND ANGLE OF
A LARGE POLAR VECTOR

GRAFN 6; LRG PLR VTRS (ETE)

- -FIG. 4.4. LARGE POLAR VECTORS, END-TO-END. B

4.9

4.2.2 Special Vector Types

1. Small "X then Y" wvectors have the same format as small
Cartesian vectors (Format 4.1.) but, instead of being the hypotenuse
of the right-angled triangle with sides AX, AY, this "vector" is the
sequence AX, 0 then O0,AY, the fterminus being identical to that of
the conventional vector. Fig. 4.5 shows two small "X +then Y"

vectors. There is no reset option.

rd AY 1

(X1,Y1)aX;

0,0 X

GRBFN O; SML XTHENY VTRS
FIG. 4.5, SMALL "X THEN Y" VECTORS

Line-form, intensity and magnification options are as defined
under small Cartesian vectors. Small "X then Y" vectors are coded
In a block which is headed by a GRB with GRBFN = 0, Format 4.6 shows
the general GRB header. |

0 4 5 8 9 ° 15
GRB GRBFN

GRB; MACHINE~-CODE FN GRAPHICS-B,

GRBFN; SPECIFIES 1 OF 16 FUNCTIONS WITHIN

FIELD 9-15; FOR GRBFN's 0-7,AS GRAPHICS-A,
OTHERWISE FIELD 9-15 IS GRBFN
DEPENDENT.

FORMAT 4.6 . GRAPHICS-B HEADER

Small "X +then Y" vectors, appropriately magnified, en-
able block diagrams to be coded efficiently (blanked "X then Y™
vectors allow individual blocks of a diagram to be separated). Stepped
waveforms are also efficiently encoded by small "X +then Y" vectors.
The vectors are plotted by GRB SML XTHENY VTRS (p A3.16).

There Is no facility for plotting large "X then Y"
vectors, partly because most block diagrams do not require block -
dimensions to be specified to more than seven significant bits (i.e.,

magnified small vectors are adequate), but mainly because a pair of

large "X or Y" wvectors, to be defined shortly, can achieve the same
result.
2. Small "X-reset, increment Y'" wvectors are shown in Fig.

4.6, Each "vector" comprises a horizontal vector AX, O which is reset

to X' and a vertical disﬁlacemeni AY._.The vertical displacement is blanked.

ETC.
v AY3 o

I AX3

AY,
! AXy

AYy
L -

(x1,yly ax;

0,0 X

GRBFN 1; SML X RST VTRS IY

FIG. 4.6, SMALL "X-RESET, [INCREMENT Y'" VECTORS

C 4.

11

Format 4.1 codes the AX,AY components and V,L, and "vectors"
are contained in blocks under a GRB header with GRBFN = 1. Line-form,
Intensity and magnification options are as defined under small Cartesian
vectors. This plotting mode is useful for plotting the horizontal lines
of tables: +the lines, of arbitrary length and separation, may be aligned
on the left, as shown, or on the right (AX < 0). GRB SML XRST |Y VTRS
(p A3.17) plots a list of "vectors" in this mode.

The large version is not provided: as for small "X then
Y" vectors, it is less useful and can be composed of two large "X or
Y'" vectors which also require fwo core-store words.
3. Small " Y-reset, increment X" wvectors, interpreted by
GRB SML YRST IX VTRS (p A3.18), are the orthogonal versions of small
k"X-reseT, increment Y" vectors. The GRBFN code is 2.
4, Small repeated polar vectors are illustrated, in part, by Fig.

4,7 which shows a single "small repeated polar vector". The A6,As
elements are drawn end-to-end and form part of a regular polygon or, if
A6 and As are sufficiently small, approximate a circular arc. Angle
6, Initially 60, Is incremented by A6 +to form the orientation of the

first vector, the line segment As is then drawn, and so on.

0,Q X
GRBFN 3; SML RPT PLR VIRS (only one list element shown)

FIG. 4.7. A SMALL REPEATED POLAR VECTOR : 4.12

Two core words are used to code a small repeated polar vector:
the first is identical to the small polar vector format (Format 4.3); '
the second is a positive integer which specifies the number of times the
A8, As element is plotted. A list of such word-pairs, then, is a list
of part polygons or circular arcs. GRB SML RPT PLR VIRS (P A3.19)
plots a list of independent, small repeated polar vectors. The list is
‘headed by a GRB header with GRBFN = 3.

, This plotting mode, for small A6, As, plots a set of linked
circular arcs of différenf curvatures and fotal swept angles: it is use-
ful for plotting arbitrary continuous curves which, through the parameter
60, may have any orientation. Line-form and intensity apply fo small
repeated polar vectors, but, as for small polar vectors, magnification

is inapplicable. Also, there is no reset option.

5. Large "X or Y" wvectors, each coded in a single 16-bit
word, are restricted to be either horizontal or vertical. Format 4.7
shows the core store representation; it comprises, the 12-bit field
"XC or Yg (which specifies either the vector X_, 0 or the vector
0, Yc) and the four independent bits (12-15) which specify, horizontal
or vertical, end-to-end or reset, blanked or visible, and end or linked,

respectively.

0 11 12 1314 15
1 X orY T IX/YRRT] V] L
L2 | c_ ¢ Ve i, 1
7 7 P)
-1 o 20 X orY_ RESET
€ € VECTOR

XC or YC; 12-BIT 2's COMPLEMENT INTEGER,
RANGE ; -2048(1)2047 DISPLAY INCREMENTS,
BIT 12 = 0 FOR Xc’ 1 FOR YC; BIT 13 = 1 FOR RESET.

FORMAT 4.7. CORE REPRESENTATION OF LARGE "X OR Y'" VECTORS.

4.13

Large "X or Y" vectors constitute many graphics and, for
a diagram consisting entirely of horizontal and vertical lines, only one
half of the storage which would be required for conventional large
Cartesian vectors is necessary. The reset option is specified individual-
fy for each vector, not for the entire list as in the GRAFN vectors, i.e.,
the current X,Y s temporarily stored in X',Y' before each vector is
plotted and, 1f reset is nominated, X,Y is restored from X',Y' before
the next vector is interpreted. Llarge "X or Y" vectors are coded
under a GRB header with GRBFN = 4, GRB LRG X/Y VTRS (p A3.20) plots
a list of these vectors. Line-form and intensity are applicable, but, as

for other large vectors, magnification does not apply.

6. Large "X or Y, constant-separation' vectors are coded in
the large "X or Y" vector format (Format 4.7), but, in addition to
plotting the X or Y vector specified, the CRT beam is displaced by é
constant amount (the "constant separation' , CS) at right angles to the
vector (viz., if an X vector is specified, then CS refers to a Y dis-
placement; +the displacement has the sign and magnitude of CS, i.e., it
Is independent of the sign of XC). Fig. 4.8 shows a list of large Y
vectors (reset) which are separated by a constant X displacement of CS.
Although each vector is independently labelled as horizontal or vertical
and reset or not, these options would normally be constant throughout the
list.

C1,C2 Ci

(X1, 5] | CONSTANT SEPARATION (CS)

0,0 X
GRBFN 6; GRB LRG X/Y CS VTRS

FIG. 4.8. LARGE Y, CONSTANT-SEPARATION VECTORS (RESET OPTION)

4.14

Applications include bar-graphs and horizontal or vertical
shading lines. For shading, two lists, e.g., one having positive YC
values, the other having negative YC values, are required to shade some
shapes (e.g., a circle); more lists are required for more complex
shapes.‘ Comp lex shapes, however, are often more conveniently shaded or
silhouetted by plotting a series of contours derived from the boundary

shape, e.g., a set of concentric circles.

The constant separation, CS, is specified by a 2's complement
integer word which is inserted between the GRB header (GRBFN = 6) and
the first vector word of the list. GRB LRG X/Y CS VIRS (p A3.22)
plots a list of large X or Y vectors at the constant separation re-
quested. Line-form and intensity are applicable, but magnification is

not.

4.3 THE CHOSEN VECTOR GENERATION ALGORITHM

This section is descriptive only. The chosen scheme is justif-
ied in the next two sections by comparison with an alternative algorithm

and with two alternative techniques.

The simplest case of vector plotting, viz., a Cartesian
vector with components which are positive byte integers, will be described.
The following should be read in conjunction with the definition of APV
(Sect. 3.2, AS0) and the microroutine MI PLT SML CTN VIR D (p A3.29).

Consider the repeated micro-brder,
APV, UNZR, RP, B + D + B,

and assume that B is initially cleared, DU (upper byte of D) contains
the X component of a vector, and DL contains the Y component.
Further, assume that both vector components are positive integers, and
that, initially, R contains 128. Since APV decrements R (as ADR), and
JNZR, RP is nominated, the arithmetic process is performed 128 times.

During these 128 cycles, overflows ofO and of, will be generated at

4.15

rates proportional to DU and DL respectively, i.e., X will be
incremented at a rate proportional to the X component, and Y will be
incremented at a rate proportional to the Y component. Moreover,
during these cycles there will be exactly DU overflows, i.e., X
increments, from the upper AU and exactly DL overflows, i.e., Y

increments, from the lower AU. This is derived as follows:

In APV mode with positive DU’
remain 0O (cf. definition of APV, Sect. 3.2 APV, vii); i.e., the
expression, of =a' b' c_ (cf. Sect. 2.1, 5), reduces to, of = c_.

o 0o o0 © o o
But, for APV, if ofO =1, X is incremented; +thus S the carry into

the sign bit Bo is forced to

the most significant stage of the upper AU, increments X (rather than
change BO). tn APV mode, then, the X register extends B,_, to form
a.single, long accumulator, X _,s, B,_,. The result of 128 repeated
additions of DU into Xo_,s» 81_7 Is identical to left-shifting DU
seven places and adding, 1i.e., 1is identical to adding DU’ the horizon-
tal vector component, to X. Similarly, Y extends B,_,., and after
128 cycles, Y is incremented by DL' Thus, the mode produces the
horizontal and vertical vector increments uniformly, in the correct ratio,
and the pair X,Y s incremented precisely by the vector components.
Moreover, after the 128 cycles, B returns to its initial value (in this

example, zero).

Negative vector components are also accepted by the same
repeated APV order, provided the initial values in the accumulators BU’
BL are given the same signs as the corresponding components DU’ DL'
For example, the algorithm M| PLT SML CTN VIR D sets an initial value
of all 1's into BU if D,
(the description accompanying MI PLT SML CTN VIR D, p A3.29,

explains the need for negative initial values).

is negative, and similarly for the lower AU

In the plotting mode above, vector components must each be

within the range of a 2's complement byte, i.e.,
-128 < X or Y component < 127 display increments.

(For a 1024 x 1024 display, the extremes of this vector range are approxim-

ately 13% of the display square side.) Larger vectors are divided into

4.16

segments by microroutine M| PLT LRG CTN VTR (p A3.31), each segment
being within the range of MI PLT SML CTN VIR D.

Polar vectors are also plotted by microcode: large polar
vectors are first converted to Cartesian and then plotted by MI PLT LRG
CTN VTIR; small polar vectors use M| PLT SML CTN VTR D, where
D, = Cos 6, D, = sin 6, but the number of cycles (i.e., the initial

U L
value of R) is As, the length of the vector, not 128.

Vector plotting is improved by prenormalizing vector components
and proportionally adjusting the number of cycles (e.g., doubling the
vector and halving the number of cycles); +this gives a more nearly con-
stant incremental plotting rate and, therefore, a plotting time almost
in proportion to vector length. MI PLT SML CTN VTR D begins with a
normalize sequence. The routine also accepts a magnification factor of
X2, X4 or X8 by increasing the number of cycles proportionally to 256,
512 or 1024, respectively; +this method of magnifying vectors preserves
the fine structure of vectors (i.e., vector-increments remain single
display-increments), but the end-points of magnified vectors coincide with

a correspondingly magnified display grid.

A vector is normally plotted as a continuous line of uniform
brightness. As an alternative, however, a line-form (LF) option has been
provided which plots vectors as broken lines with various on=off intensity
paT+érns along the length of the vector. The LF field of a GRA or GRB
header (bits 9-11; Format 4.2, p 4.4 and Format 4.6, p 4.10) specifies
the broken-line patterns according to the logical sum-of-products

expression

Unblank = W, LF, + W LF + W, LF2 + LF LF, LF,
where W, ., are three bits of WL, a byte-length counter which

integrates distance along a vector string, and LF,_, are}fhe bits of
field LF. |f one display increment is 0.01 in., then the weight of W;S

is 0.01 in., i.e., the weights of Wlo, Wlx and le- are 0.32, 0.16

and 0.08 in. respectively., As examples, LF code 000 specifies an unbroken

line; LF code 00! results in the expression

Unblank = W ,
i.e., a broken line of alternate visible and blanked sections each
0.08 in. (Fig. 4.9); and LF code 101 specifies the periodic centre-line
pattern - long visible 0,40 in., gap 0.08 in., short visible 0.08 in.,
and gap 0.08 in.

. LF 000

LF 001 = —mmmm e mmmmm o

LF 100

LF 101 - - -

LFO11

FIG. 4.9, VARIOUS LINE-FORM PATTERNS

In small polar vector mode, distance along the string -is re-
corded simply by incrementing WL once in each APV cycle (as the
average increment/decrement rates of X and Y are Cos ©6 and Sin 6
display increments per cycle respectively, the average beam velocity
along the vector is precisely one display increment per cycle). In
other vector plotting modes, the beam velocity is not constant and, as
an approximation, W is incremented whenever X or Y is incremented/
decremented, and doubly incremented when both X and Y are
incremented/decremented simultaneously. This increments W at the cor-
rect rate for horizontal or vertical vectors, but increments W at V2
times the correct rate for vectors of unit slope. Thus, the scale of an

on-off pattern varies with slope, but the pattern type is invariant.

4.18

4,4 AN ALTERNATIVE VECTOR GENERATION ALGORITHM

Let x,y be a vector and, further, suppose x and y are
positive integers and x > vy. [|f [IX denotes a horizontal display in-
crement, 1Y a vertical display increment, and IXY a combined IX,I1Y

increment, then the display sequence for vector x,y would be,

either, blocks of IXY elements separated by single [X elements, the

length of the blocks being "uniform" (meaning that the block

lengths are not necessarily constant, but, except for the

first and last blocks, are within one element in length), e.g.,

an acceptable sequence for the vector 13,8 is,

CIXY, IXY, IX, XY, IXY, IX, IXY, IX, IXY, IXY, IX, IXY, IX,

or, "uniform" blocks of IX elements separated by single IXY

elements, e.g., an acceptable sequence for the vector 15,4 is,

IXY, 1X, IX, IXY, IX, IX, IX, IXY, IX, IX, IX, IXY, IX, IX, IX.

These strings can be generated by the following algorithm,,

(i) each step produces a horizontal increment, 1i.e., produces

either an IX element or an IXY element,

(ii) there are exactly x steps, counted, for example, by decrement-

ing at each step a register which initially contains x, until

it is cleared,

(iii) in each step, y is subtracted from an accumulator (initially

cleared) and, if the result is negative, a Y increment is

produced (which, in combination with the X increment of (i),

produces an IXY element) and the accumulator is restored to
a positive value by the addition of x. This is a balancing
process which attempts to null the accumulator; it inserts

A Y-increments in the stream at a "uniform" rate, but maintains

a ratio of Y to X increments which approaches y/x.

4,

19

The sample strings above were produced by this algorithm.
After x steps, the accumulator is diminished by x subtractions of v,
but, to maintain the balance, the accumulator must also be augmented by
y additions of x; i.e., y vertical increments are produced, and

the accumulator is cleared in the terminating step.

Some variations in the actual insertion points of the fixed
number (y) of vertical increments within the stream are possible by
choosing different initial values for the nulling accumulator, but these
variations in fine structure are normally of no consequence in display

applications.

The algorithm can be extended to accept negative vector compon-
ents and the reverse inequality, |y| > |x|. For components which are
within the range of 2's complement byte integers, the algorithm requires
four byte-registers: two to hold x,y, the third for the counter and
the fourth for the accumulator. This is one byte-register less than the
U BL’ DU’ DL’ RL)' Also, only one 8-bit
AU is necessary, not two. As in the chosen scheme, some hardware modific-

chosen algorithm (which uses B

ations would be necessary to automatically route increments/decrements to
the X,Y registers (the paths would be conditioned by the signs and
relative magnitudes of x and y). However, the process cannot be
reduced to the repetition of a single micro-order, as the chosen

algorithm is, unless the operand subtracted from the accumulator is con-
ditional upon the sign of the accumulator, i.e., if the accumulator is
positive, y is subtracted (assuming x >0, y >0, x >y), whereas

if the accumulator is negative, y-x 1is subtracted (i.e., the accumulator
is incremented by x-y). Conditional subtraction requires another byte-

register to hold y-x.

Magnification by 2, 4 or 8 is simply achieved by increasing the
initial value in the counter from x to 2x, 4x or 8x, respectively. A
disadvantage of the algorithm is that small polar vectors As Cos 8,
As Sin 6 cannot be plotted without first forming As Cos 6 to control
the number of sfeps.' (This premultiplication is not necessary for the
chosen algorithm - the number of cycles simply becomes As, not 128.)

14.20

Although the alternative algorithm is practicable, the need for
initially testing for relative magnitude, the need for conditional sub-
traction, and the need for premultiplication when plotting small polar

vectors led to the adoption of the chosen scheme.

The development and comparison of algorithms, especially when
logical design modifications are involved, is difficult, and the above
comparison does not prove that the chosen scheme is the best solution
attainable. However, the chosen scheme does show that efficient vector
plotting is possible within a conventional microprogrammed structure
provided certain logical modifications are introduced. Microroutine
MI PLT SML CTN VTR D, which normalizes and plots a vector, has only 11
micro-orders.

4.5 BINARY RATE MULTIPLIER TECHNIQUES FOR VECTOR GENERATION

Fig. 4.10 shows a binary rate multiplier (BRM). It produces an
output pulse train which has an average pul!se repetition frequency pro-

portional to the contents of a multiplier register, M.

27 21 20
0 1 M 7
M'IER
(,.— [P DU D D ___—/"\
5§ — |— | — | —| — | —= OUTPUT
'AND' | | — | —|—] :
GATES —{— | |7 0R=>~
Sl = 7 > M. f
ISR B g = e 256 PPS:
_ I f.o8
f pps. - COUNTER
0o 1 7

FIG., 4.10. A BINARY RATE MULTIPLIER

4,21

The counter is a conventional binary. counter, incremented at an
input pulse rate of f pulses/sec. (pps). Apart from the internal organ-
ization of the counter, each stage of the counter generates an output
pulse whenever it undergoes a 0-+1 fransition. These outputs will have

rates of

/2, f/4 ... £/256 pps,

and moreover, the pulses from any two stages never coincide, provided the
counter propagation time does not approach 1/f sec. (Multiple coincid-
ence of 1+0 +transitions is frequent and 120 transitions usually
accompany each 0+1 +transition, but 0+1 +transitions are always

singular.)

A set of "AND" gates selects those pulse trains for which the
corresponding multiplier bit is 1, and all selected pulse trains are
collected by the "OR" gate (i.e., If multiplier bit M =1, then the '/2
pps train is gated into the "OR" gate and contributes fo the output).
Thus, since no two pulses coincide, the rate of the output pulse train
will be '

Mof/2 + Myf/4 + + My /256 pps
i.e. (27Mp + 25M; + + My)£/256 pps
i.e. Mf/256

where M is the positive integer multiplier. Although the pulses in
any one contributing sfream are uniformly spaced, the superposition of
several streams will not produce a precisely uniform pulse rate and,

therefore, Mf/256 pps must be interpreted as an average pulse rate.

A vector generator can be produced from two multiplier
registers (containing x,y), two sets of "AND" gates, two "OR" gates and
one counter which drives both sets of "AND" gates. If 256 pulses are

applied to the counter, there will be exactly x pulses collected by one

4.22

"OR" gate and exactly y pulses collected by the other. These trains
increment the X,Y display registers and so plot the vector x,y. ’
(Although the output trains are not precisely uniform, the fine struct-

ure of the frains is not noticeable in vector plotting.)

The BRM uses pulse-rate oriented techniques which are related
to DDA (digital differential analyser) techniques. The BRM pair above
produces the precise number of display increments, it can accommodate
binary magnification by applying 512, 1024,... pulses, and it can also
plot small polar vectors from cos 6, sin 6 provided As, not 128, input

pulses are applied.

Moreover, by substituting counters for the x,y registers and
cross-coupling the "OR" gate outputs to increment these counters such
that,

.dx = =ky, dy = kx (k = constant),

the BRM pair could update sin 8, cos 6(held in the multiplier counters)
from increments in 6 (expressed as input pulses). Further application
of a BRM pair are circle plotting (the streams in the cross-coupled sin 6,
cos 6 connection above also increment the X,Y display registers) and
the generation of right parabolas, hyperbolas and exponentials. An aEray
of BRM's has also been used for co-ordinate transformations (53).
Sutherland (54, 1963) proposed DDA techniques for displaying the general
conic and estimated a point plotting rate of 1 MHz using 20 MHz serial

logic. .

The vector generation scheme adopted in Intergraphic resembles
the BRM techniques described above (overflow/underflow rates are prooor-
tional to the contents of registers), in fact, the scheme stemmed from
DDA techniques. |In the author's original proposal (26) the upper and
lower AU's were designated the "cosine AU" and "sine AU" respectively
and the cross-coupled mode, designated the "circular mode", was proposed
for the génerafion of incremental polar vector components. As the design

progressed, however, several disadvantages of incremental techniques

4.23

became apparent;

P

(i)

Gitid

C(iv)

(v)

"registers" must be able to be incremented/decremented, and
for rapid plotting rates, counting logic with short propaga-
tion times is necessary (i.e., simple transition generated

carry propagation is inadequate);

to plot parts of circles which have radii of curvature several
times larger than the display size requires registers of 12

bits or more;

for the cross-coupled connection above, the plotting time for

a circle is constant regardless of curvature, so that addi-
tional rate multipliers or alternative increment insertion
points must be provided to maintain mofe‘nearly constant ploT%~
ing rates. (ldeally, the increment rates should match the

bandwidth of the display medium, -1.e:, should be constant.);

mode changing requires various pulse pafhs to be switched,
e.g., for simple vector plotting, the cross-coupled pulses
must be inhibited;

although a wide variety of curves can be generated (especially
if four rate generators are used), considerable computer time
and software complexity may be needed in the selection of
curve types and parameters to approximate segments which
synthesize a curve within the DDA's repertoire. Moreover,
formats must be designed to transmit the parameters from the
CPU, and interface-logic or programs must be provided to,
interpret these formats, set initial values, and control the

number of cycles.

Thus, a DDA oriented interface using bitwise parallel logic

(in contrast to bitwise serial logic) in order to achieve a nominal plott-

ing rate of 10 MHz, would be compatible in size and complexity to the

general-purpose processing section of Intergraphic. But the DDA struct-

4.24

ure is specialized and therefore not suited to the variety of supervis-
ory and conventional digital computing tasks which must also be

performed within a graphical infterface. Indeed, a DDA structure may

even need to be modified to ensure efficient symbol plotting. Possibly,

a hybrid structure with some DDA logic and some conventional digital logic
would be the most suitable form for a graphical interface, but the hybrid
structure would necessarily involve a wider range of engineering tech-
niques. The microprogrammed interface chosen can generate vectors,
strings of circular arcs and high quality symbols at 10 MHz increment
rates using compact microcodes, and being a general-purpose computer, is

also well suited to the more conventional supervisory and control tasks.

4.6 ANALOGUE GENERATION TECHNIQUES

Johnson (55, 1965) has described an analogue generator for the
high speed display of rotated cubics and conics. The generator used con-
ventional analogue-computer concepts, but, by using‘high—currenf field-
effect transistors for path switching and operational amplifiers with
100 MHz gain-bandwidth products, it achieved a plotting rate equivalent
to an incremental rate of 1 MHz, One of the problems introduced when
linking curve segments produced by different hardware configurations is
that the potential across the capacitors of integrators, and therefore

their stored energy, must be changed rapidly.

Roberts (56, 1966) and Blatt (57, 1967) have developed
analogue display techniques for the general coric in terms of basic
parabolic equations. Wideband multiplying decoders (D/A converters with
variable reference voltages) were used. Fourteen decoders were required,
three of which were conventional D/A converters and two had digital
registers which varied with time, but the remaining nine had only
analogue varying inputs during the generation of any one curve segment.
Curve plotting rates were also equivalent fo an incremental rate of
1 MHz. The scheme can be extended to general 2-D cubic curves (18
multiplying decoders) and to 3-D cubics rotatable in 3-D (34 decoders).

4.25

An advantage of this scheme is that it contains no energy storage
elements (neglecting stray elements) and the constant configuration
eliminated the need for path switching; 1i.e.,, it is potentially a very

high speed generation device.

Dertouzos and Graham (58, 1966) have described a third analogue
technique which segments an arbitrary curve by a set of breakpoints
(command points) and approximates the given curve with selected fraject-
ories which link adjacent breakpoints. Trajectories are determined by
the relative step responses of a pair of networks which are fed with the
D/A converted versions of the breakpoint co-ordinates (e.g., matched
. networks give a piecewise linear interpolation). The network responses
are controlled from segment to segment by switching physical parameters.
Intensity control is necessary to compensate for .variable plotting
velocity. The authors considered both polynomial and simpler exponen-
tial trajectories, but stressed that while the more complex realisation
yielded a larger class of curve segments, it had two disadvantages; the
computing time necessary fo select an optimum set of segments to match
a glven curve was far greater and the implementation was much more com-
plicated and expensive. The technique does allow compact coding (24
bits per segment for the exponential network adopted) and the

co-ordinates of each breakpoint are maintained digitally.

The diversity of approaches and techniques referred to above
indicate that the field of analogue curve generation within computer
graphics is still exploratory. No doubt, for certain applications
special hardware for spatial rotations of 3-D objects is justified.
However, since there will always be curve types which are outside of the
family of curves provided, synthesis techniques will always be necessary.
It could be possible that an algorithm specialized for piecewise linear
and circular segmentation is simpler and faster than an algorithm for
segmentation into conics or cubics. This is similar to the compromise
between network complexity and parameter determination stated by
Dertouzos and Graham. More experience is required in this area and, as
in other comparisons, the outcome will clearly depend upon the range of

applications. The approach with Intergraphic has been to-limit the

4.26

variety of directly interpretable graphics to straight lines and
circular arcs, to generate these very rapidly and precisely within the
standard digital framework, and to rely on CPU soffware to partition
arbitirary curves (including parabolas, hyperbolas and exponentials) into
piecewise linear or circular segments. (The breakpoint insertion
algorithm for input graphics (Sect.6.2.2)can be used to form a piecewise
linear approximation to a curve which is generated in the CPU by
incremental techniques.) This approach has eliminated the need for in-
corporating BRM's, multiplying decoders, signal switching circuits,
analogue networks or operational amplifiers., The plotting rates (100u
sec. for full display deflection in incremental mode) are sufficient to
plot 100 new frames/sec. Moreover, using the same codes and logical
structure, speeds an order of magnitude greater (100 MHz increment
rates) are feasible. This is so because subnanosecond gates are avail-
able, the ROM and the D/A converters are nonsaturating techniques which
can be extended to high frequencies, and very high frequency CRT

electrostatic deflection structures already exist.

4,27

CHAPTER 5

SYMBOL GENERAT ION

5.1 GENERAL CONSIDERATIONS

Loewe, Sisson and Horowitz (59, 1961) and Grol | (60, 1964]
have reviewed a variety of techniques for the high-speed generation of
alphanumeric symbols. They describe three main classes: CRT beam
shaping tubes (e.g., the Charactron), raster scanned memories which
store symbol dot patterns, and analogue symbol-stroke waveform gener-~

ators. Also, within these classes, they outline a number of variants.

To eliminate the need for a separate symbol generafor, some
workers have displayed symbols as strings of vectors using an existing
vector generator. The vector codes may be stored in core or read-only
memory. However, codes designed primarily for vector plotting are
often inefficient for coding intricate symbol details; e.g., long-
vector codes accommodate vector components much larger than necessary.
Storage can be reduced if symbols are built of standard vectors
selected from a small, well-chosen set, because a code which nominates
one of a small number of vectors is much shorter than a code which
specifies arbitrary vector components. The complexity and cost of the
intermediate ftranslation of standard-vector selection codes fto vector

components for a vector generator, however, must be assessed.

The following considerations led to the symbol generation

scheme chosen for Intergraphic.

1. If possible, it is preferable to use the main-frame logic and
memory techniques of a machine for symbol generation rather
than develop special techniques. Thus, digital techniques
were preferred to analogue, and the use of the existing core
or read-only memories was preferred to the addition of a

separate memory which held only symbol details.

5.1

2. It is preferable to build symbols of linked strokes rather

\ than to define symbols within a fixed symbol-matrix, because
symbols composed of strokes can extend arbitrarily. (It is
possible to assemble two or more "special-symbol" matrices
to synthesize one symbol, e.g., an integral sign, but the
assembly procedures are not simple and many '"special-symbol"

matrices may be necessary.)

3. Standard symbol-strokes reduce storage requirements, but
must be carefully chosen so that symbols are clearly dis-
tinguishable and can be built from a small set of standard

strokes.

4, Standard strokes need not be restricted to straight line
segments: standard curves can also be encoded compactly, and

can be approximated digitally.

5. The storage of symbol-stroke details must be efficient; a
comparison with some existing dot matrix and Incremental

code storage requirements should be favourable.

6.) A large number of symbols should be available, and it should

be easy to define new symbols.

7. Symbol plotting should fit nicely into the existing control
Iogi¢ of the machine, i.e., special buffering, interface

logic and timing should be minimised or, preferably, avoided.

8. Symbol plotting rates should be limited by the bandwidth of
the display deflection system, not by the symbol generation
hardware, because symbol plotting occurs frequently within a

graphical interface.

These points have been satisfied by - the chosen scheme which
forms symbols from standard straight-lines, quarter circles and quarter

ellipses.

5.2

5.2 SYMBOL GENERATION WITHIN INTERGRAPHIC

The standard strokes above are encoded in the microprogram
read-only memory of Intergraphic, four strokes to a word: these words
‘are distinguished from other micro-orders by the order-type field,

G
0-3*
digital logic. There are two such micro-order types, SFS (stroke

and are interpreted by a small amount of symbol generation

‘formaTs) and |IFS (increment formats), the final two orders shown in
Table 3.1, p 3.2.

~ Micro-Order SFS encodes the standard symbol-strokes shown in
Fig. 5.1. The four curved strokes, (a) - (d), are quarter circles
and ellipées approximated by elemental X,Y increment chains and the
four straight strokes shown at (e), are approximated by the four
elemental chains PO - P3, The display is unblanked for about 80ns
after each elemental step, producing a series of overlapping visible
dots as illustrated in (d). Although the origin of a stroke is not
unblanked, that point is usually the end-point of another stroke so
that continuity of dots is maintained. Variants of the strokes i!lus-
trated in Fig. 5.1 are also available in the 2nd, 3rd and 4th quadrants.

Fig. 5.2 shows all quadrant variants of the small quarter-circle PO.

Detailed formats of the four identical stroke fields within
an SFS micro-order are shown in Table 3.1. |f v ="1" +the stroke
is visible, otherwise it is blanked; if r ="1" +the stroke is
curved, 1i.e., a quarter circle or ellipse, otherwise it is straight.
Field p comprises two bits py,p, which code PO - P3 (p, p, = 00,
01, 10, 11 respectively) and field q comprises two bits qg, q,
which code the four quadrants, Q1 - Q4 (qo q, = 00,‘10, 11, 01
respectively, i.e., q, is the sign bit of &X, q, is the sign bit
of 8Y). The seventh bit, "2", is a link bit: if & ="1" a further

stroke follows, otherwise the stroke is the final stroke of the symbol.

Micro-Order IFS encodes smaller standard strokes. The
strokes are shown in Fig. 5.3, and are half and quarter-length versions

of the elemental chains which constitute the straight strokes of SFS:

5.3

P1

(k)

P1 P3

(d) (e)
FIG. 5.1. SPS STROKES (FIRST QUADRANT)
50 PO
02 Q1
t 7
@ w7 M3
Q4 ‘ | a
O (it
|N2 I
PO 'NO MO

FIG.

5.2. THE FOUR QUADRANT

VARIANTS OF SFS, R, PO

FIG, 5.3. IFS STROKES

(FIRST QUADRANT)

5.4

points MO - M3 terminate the half-length versions, and NO - N3 term-
inate the quarter-length versions. Detailed coding within [IFS s
similar to that within SFS, except for bit r. If r =1, the p
field specifies one of MO - M3, otherwise p specifies one of NO -

N3. As for SFS, all four quadrant versions are available.

A symbol is usually plotted by executing a short sequence of
SFS or IFS micro-orders. SFS and IFS orders can be arbitrarily
mixed and, if necessary, other micro-orders can be included in a symbol
sequence (e.g., an APV order and some associated orders could plot a
long vector as part of an extensive "symbol"). Thus, the scheme
integrates symbol generation with other microprogram functions within

Intergraphic.

Fig. 5.4 shows a selection of upper and lower-case letters
and numbers composed of SFS micro-orders only. The detailed coding

for the letter "A" is shown symbolically using the following conventions;

V = visible, S = straijght, L = linked
= blanked, R = rounded, E = end.
The mnemonics PO - P3 and Q1 - Q4, are as detailed above. Only two
SFS orders are necessary to code the 7 strokes of "A": the final

stroke (7) leaves the CRT beam at the origin of the next symboi, and
the stroke interpretation logic then returns control to the main micro-
program by popping the microroutine stack info the ROM address register,
S. Some points are plotted twice (e.g., the end of strokes 1 and 4

of "A"); +this can often be avoided by reccding the stroke sequence.
(e.g., for the double-point above, stroke 1 could be blanked, and
stroke 5 replaced by a new unblanked downstroke, which replaces the old
unblanked 1, followed by a blanked horizontal stroke), but the author
believes double-plotting of a few points is not objectionable. For

binary-video storage, double plotting cannot be detected.

Fig. 5.5 shows the detailed coding of two complex symbols, @

and % using mixed IFS and SFS sequences. The symbolic coding for

5.5

"AM: SFS VSPOQ2L, VSPOQ1L, VRP2Q2L, VRP1Q3L
SFS BSP3Q4L, VSPOQ2L, BSP2Q4AE.

"am; 3/SFS by 2/SFS

nsi, 2/SFS ton, 3/SFS "o"; 2/SFS

FIG. 5.4. SOME_SYMBOLS COMPOSED OF SFS STROKES

5.6

IFS is identical to SFS, except that "2 or 4" replaces the "S or R"
symbol for the r bift:

1]

two-increment strokes (points N, Fig. 5.3)

four-increment strokes (points M, Fig. 5.3)

SFS or IFS orders which do not terminate a symbol, must nominate a

"stroke in each of their four stroke-fields; thus, in some places, a
pair of two-increment strokes has been used instead of single, four-
increment stroke (e.g., strokes 1 and 2 of @ are equivalent to the

four-increment stroke, B, 4, P3, 01, L.

Symbol-plotting microcodes are accessed via a table of start-
ing addresses (SYMBOL TABLE, p A3.54) which is entered from the
GRAPHICS-B order "GRB SYMBOL PAIRS" (p A3.23). The EBCDIC graphic
symbol-code has been chosen to be compatible with the central processor
(I1BM 360/50); symbols are nominated by an 8-bit byte; e.g., "A" =
X 'ClI' (hexadecimal), 193 (decimal) or B '10100001' (binary). An
advantage of a byte code is that 256 "symbols" are possible, so that
there is émple~space for introducing new symbols, which may be dis-
play symbols or control symbols. In either case, the symbols indirectly
address microcode execution sequences via the SYMBOL TABLE above; thus
the mode of interpretation of all "symbols" is identical - this is an

advantage of symboi plotting by microcode.

Double and qUadruple—sized symbols are also avallable: the
stroke generation logic plots each elemental increment twice, or four
times, respectively, unblanking the display beam each time. The time
between guccessive points plotted is constant (approximately 80ns, i.e.,
a 12:5 MHz increment rate) regardless of symbol size, so that the

larger symbols take proportionally longer fo plot.

5.3 ~COMPAR] SON-1TH-DOT MATRIX -AND -INCREMENTAL CODES

With few exceptions, alphanumeric symbols require only two
‘micro-orders each, i.e., 64 bits including SFS and IFS fields;

5.7

"@": |FS B2 P3Q1'L, B2P3Q1 L, B2P3Q1L, V2P0 Q2L
IFS V2 P1 Q2 L, V2P2Q3 L, V2P0 Q4 L, V2PI Q4L
IFS V2 P2 Q1 L, V2P2Q4 L, V2P1 Q1 L, V2P0 Q2L
SFS VR PO Q2 L, VRPOQ3L, VRP2Q4L, BSPOQIE.
"gn. IFS B4 P2 Q1 L, B2P2Q1 L, V2PI1 Q3L, V2Pl Q4L
IFS V2 P1 Q1 L, V2P1 Q2 L, B4P2Q2L, B4 P2Q2L
IFS B2 PO Q2L, V2PI Q1 L, V2P1 Q2 L, V2PI Q3L
IFS V2 P2Q1 L, B2P2Q1 L, B2P2Q1 L, B2P2Q1L
SFS VS P1 Q3 L, VSP1Q3L, BSP3Q1 L, BSP2Q4E.

FIG. 5.5. DETAILED COMPOSITION OF @ AND % USING IFS AND SFS MICROCODE

5.8

the chosen scheme is more than twice as efficient in storage as a dot
matrix encoding for the chosen symbol resolution because the equivalent

dot matrix for a 16 x 8 increment grid is 17 x 9 dots; i.e., 153 bits.

Freeman (61, 1961) and McDonald, Ninke and Weller (41, 1967,
GLANCE Terminal] describe incremental codes which encode one of eight
bossible increments (right, right and up, up, etc.) using three bits.
A fourth bit is included with the GLANCE code which expands the code to
sixteen options and thereby allows intensity level and scaling control:
“scaling control allows rapid beam movement while the beam is blanked.
For Thé symbol set adopted within Intergraphic, an average of apbroxim—
ately five visible strokes per symbol is used; this corresponds to an
average of approximately 40 visible points per symbol which would re-
quire 120 bits for a 3-bit incremental code (assuming continuity).
Thus, ignoring blanked beam movement and, for incrementally specified
symbols, the additional unblanking and control bits of the incremental
codes cited, the complete SFS and IFS codes are approximately twice
as compact. The numbers of bits coding @ and % are 128 and 160 respécT-
ively, compared‘wifh 153 for equivalent matrix coding, or 150 and 162,
respéc*ively; fbr a simple 3-bit increment code. Thus, even for tThese
intricate symbols, the chosen coding scheme is efficient.

Increment codes, however, are readily converted to beam move-
ments, so that symbol-detail storage requirements cannot be considered

in isolation: code interpretation logic must also be examined.
In Intergraphic, separate digital logic converts to standard sfroke

codes to elemental increment strings. A simple four-stage binary

counter provides a base of four binary variables fo step through the

cells of a.pair of 4x4 Karnaugh maps for each standard stroke (first
quadrant versions only): one map encodes whether the step requires an

X increment or not, the other correspondingly for Y. Each step produces
either an X or Y increment or both, and the end of the stroke is detected

by neither an X nor a Y increment. The maps reduce considerably and have
common terms; quadrant versions are derived from the first quadranT strings
by transposing X and Y and changing increment signs where necessary.

Simple 1 of 4 selection gates select the appropriate strings depending on

5.9

PO-P3. A pair of binary rate multipliers was also considered for
circular-arc stroke generation, but the non-uniform pulse separation
characteristic of BRMs, as outlined in Section. 4.5, was particularly
noticeable for circular-arc strokes containing only a small number

(typically 8) of increments.

5.10

CHAPTER 6

GRAPHICAL INPUT

This chapter discusses the operations of "pointing" and
"fracking". "Pointing" is the nomination of a displayed item
using a light-pen and associated circuitry and software; '"tracking"
is the following of light-pen movement, either to input a freehand

curve or to move a displayed item along the pen's path.

The nomination, or identification, operation is relatively
simple when a photo-sensor |ight-pen is pointed to a core-regenerated
‘display. As the beam passes under the pen tTip, a pulse is generated
which interrupts the normal progression through the display-file cycle.
If the display is structured as a simple tree (i.e., if displayed
entities are identified by an ordered set of pointers or names which
specify the nodes at each level of the tree), then the state of the
nodal descriptors at the time of interrupt identifies the referenced
item. Economical displays, however, are not continuously regenerated
from core, so that an alternative scheme is necessary. The approach in
Intergraphic has been to determine |ight-pen co-ordinates, store them
in a pair of registers Xm’Ym’ and then begin and proceed with a second
pass through the display file until an interruptible point is reached
which has been alerted by the proximity of X,Y to Xm,Ym. Thus, the
light-pen interrupt has been replaced by coordinate-matching logic, and,
at most, one pass through the display file is needed for each entity

referenced. (The display is blanked during a coordinate-matching pass,

and the scan-converter does not need to be free before the cycle is

commenced.)

The pen-following operation is also based on pen-coordinates

which are polled by Intergraphic core once in every TV frame time (40ms).

(The TV raster provides the exploratory scan for the pen [43] and the
"raster-coordinates" so determined are readily converted to X,Y
co-ordinates.) Pen-following is based on detecting frame-to-frame
differences in pen co-ordinates, and encoding the string of significant
differences which constitute the path. The TV raster scan has
eliminated the need for local plotting patterns (tracking-crosses)
“which probe the receptive field of a pen to detect the relative position
of the pen and pattern. An algorithm is described later (Sect. 6.2)
which compactly encodes a freehand input curve intfo a piecewise-linear-

string.

6.1 THE "POINTING'" OPERATION WITHIN INTERGRAPHIC

This section describes the matching logic, the indicators, and
the distribution of interruptible points relevant to identification by
pointing. Within these facilities which are at microcode level, free
and other data structures [63] can be alerted as if by conventional

| ight-pen interrupts.

Figure 2.3, p 2.9 shows the coordinate-matching registers
Xm,Ym which are standard word-length registers. They can be copied from
X,Y in one TRF micro-order and are accessed, if necessary, via the R
register. Indicator F2 (bit 2 of the bitwise programmable F register;
Sect. 2.2(4) and Sect. 3.5) is automatically set when the match between
Xm’Ym and X,Y extends from bit position O fo bit position 12. Mnemonic

MC,, (matched co-ordinates to bit position 12) refers fto F,. However,
F-indicator Fy, mnemonic MM (matching mode), must be in the 1-state and
the current display item must be visible (V = 1) before MC,, is set by
the matching logic. The MM binary, which is set or reset conventionally
by an FBC micro-order, prevents a spurious interrupt from occurring when
.a match_occurs by chance. Matching only to bit location 12 allows some

folerance between the stored pen co-ordinates and the precise display

co-ordinates. This tolerance is a necessity, because |ight-pen

6.2

resolution is less than display-point resolution and, moreover, there

is some drift in the scan converter and video-distribution system.
(Either non-uniform separation between TV lines or curvature or TV lines,
provided it is introduced after scan conversion, does not infroduce

| ight-pen errors because the pen's Y-ordinate is locked to the ordinates
of the image. Non-uniform line velocity at a TV terminal, however, does
intfroduce errors in the pen's X-location because abscissae are determined
by a local high frequency counter which is only synchronised at the
beginning of each TV line.) The selection of matched co-ordinates to
bit location 12 is experimental; it can be readily changed fto either a
more stringent or more relaxed match, because the matching logic is an
interative network and the match from location O to any bit location

is available.

A match can be detected (i.e., a display file is interruptible)
immediately after an isolated point, a vector,or a symbol has been
plotted. (An isolated point is not a constituent point of a vector or
symbol, but a separate entity, e.g., one point within a list of points
plotted by GRA SML CTN PNTS; P A3.9) After any one of these
entities has been plotted, control is fransferred to an interrupt
handling microroutine, "MI INTRPT", conditionally on JINT. JINT is the
logical union of peripheral interrupts and internal intferrupts, MC;, being
an internal interrupt. For GRAPHICS-A orders (GRA SML CTN VTRS to GRA
LRG PLR PNTS), the transfer conditional on JINT is within the short
microroutine '"MI RST; INTRPT; LOOP" (p A3.48) which is called within
every GRA microprogram after each vector or point has been plofted. The
microprogréms interpreting GRAPHICS-B orders (GRB SML XTHENY VTRS to
GRB EXTRACODE) each call MI INTRPT directly if JINT is 1. (The insertion
of traps for testing matched co-ordinates at the end of each point,
vector or symbol also ensures that peripheral interrupts from any devices
connected to Intergraphic are sampled at relatively short time-intervals.

_The longest period between samples could be approximately 500 us,
corresponding to a vector having a 12-bit component; normally, however,

interruptible points are separated by less than 100 us.)

6.3

During the single regeneration cycle which compares X,Y with
xm’Ym’ the display is blanked by initially clearing Fs, a special-
purpose F-bit denoted VM (visible mode). After a coordinate-matching
inferrupt is serviced, MC12 is reset with a normal FBC, CF micro-order,
Indicator MC;, is the only F bit which is automatically set; others
can only be set via an FBCQ SF order. Thus, the setting of MC,, is
analogous fo the setting of a binary by the "strike" pulse from a
conventional |ight-pen. The matching logic, indicators and
interruptible points, merely provide general microcode-level, pointing

facilities; they do not restrict the choice of display-file structure.

6.2 THE "TRACKING" OPERATION WITHIN INTERGRAPHIC

6.2.1 Introduction

The object of tracking may be solely to encode a freehand
curve, in which case fracking and encoding can be accomplished entirely
within the infterface; on completion of the curve, the encoding is
transmitted to the user's main program held in the CPU (the parent
program). Here, only one transmission of data from the infterface to the
parent program is necessary. A number of transmissions, however, would
be needed if the pen's path defines a locus for successive copies of a
rigid subpicture (guided franslational movement) or a locus for one
point of a picture which is progressively reshaped according to relations
held in the parent program (e.g., the pen's ordinate defines the
deflection of the free-end of a cantilever frame and the display shows,
for each significant ordinate value, the corresponding deformation of
the frame). Multiple transmission in guided translational movement is
necessary, because the user requires to see the subpicture in its various
locations against its background; this, in turn, requires multiple
updating of the display file which must reside in the CPU because the
shared interface has insufficient memory to hold the display file of

any one program for an indefinite period of time. In the reshaped

6.4

picture example above, multiple transmission is again necessary to
input a parameter (end-point deflection) to the parent program. Here,
each significant value of the parameter, possibly after extensive
calculation, defines a new shape, i.e., requires the display file fo

be updated which then sets a new display task for the interface.

For a graphical-communication system to be economical, the
number of new images displayed and the amount of data transmitted between

the interface and the CPU must be reduced whenever practicable.

Various schemes can be used for the transmission of curves to
a parent program. Four examples are; a sequence of co-ordinates
sampled at regular time intervals during the drawing of the curve; a
sequence of co-ordinates such that the differences between successive
co-ordinates have a constant magnitude, or nearly so; a sequence of
co-ordinates which define the breakpoints of a piecewise-linear
approximation to the curve; and compact parametric specifications
derived from an extensive analysis of the curve. Constant-time
sampling is exTrémely inefficient when the real-time detail of data is
not required, which is assumed, because a stationary point generates a
stream of identical co-ordinates. Constant-separation (spatial) sampling
is well-suited to one curvature, or small range of curvatures, but higher
curvéTures are inadequately encoded and lower curvatures are over
detailed. Piecewise-linear encodings are more efficient than the previous
two, but require algorithms for breakpoint determination. Compact
parametric specification of curves is the most economical in ftransmission,
but also the most demanding in processing time. The compromise is

similar to that outlined under output-curve specification (cf. Sect. 4.6).

A piecewise-linear scheme has been adopted in Intergraphic.
I+ is necessary to distinguish between a scheme which declares breakpoints
—after the curve has been_completed (a "static" scheme) .and .a..scheme which
inserts breakpoints as the curve is being formed (a "dynamic" scheme).
A static scheme can encode the curve more compactly, but it requires a
relatively complex algorithm and presupposes that the entire curve is
stored before analysis. This storage is impractical, because an

input-curve can be arbitrarily long, and, even if inputs are restricted 6.5

.
1

in extent, the total storage which would need to be reserved in a
system with many ferminals would be excessive. A dynamic scheme has
been chosen because it requires only a small amount of storage, a
simple algorithm has been devised, and the compression of the encoding
which it generates approaches that of the static scheme. (Because the
difference in coding efficiencies between the one extreme of constant-
time encoding and the other extreme of compact parametric encoding is
so great, the author considered that a detailed comparison of the
compressions of static and dynamic piecewise-|inear schemes was not

Justified for the prototype system.)

6.2.2 The Dynamic Breakpoint-lnsertion Algorithm

This algorithm selects breakpoints from the stream of X,Y
co-ordinates which are determined by sampling the input graphic at
regular time intervals (one co-ordinate pair per TY frame-time, namely,
40 ms). It is assumed that the drawing rate is sufficiently slow so
that the sample-points adequately represent the input. FPigure 6.1
illustrates a fypical input curve, the stream of sample~points
(50’51"'Si") and the sparser stream of breakpoints (50,51..bi..)
selected by the algorithm.

L

SQ bo

FIG. 6.1. TYPICAL INPUT CURVE, CONSTANT-TIME SAMPLES AND BREAKPOINTS

6.6

The algorithm declares the first sample-point s, as the initial
breakpoint bys it then considers sy, s,, efc., in sequence, as
possible points for b,. Figure 6.2 illustrates fthe hypothesis,
b, = sj.

Sy

Area A
Chord bgss

Piecewise-Linear String
through Sample Points

bo

S0

FIG. 6.2. ILLUSTRATION OF THE HYPOTHESIS THAT BREAKPOINT b1

EQUALS SAMPLE-POINT s,

Breakpoint b, is declared when the mean departure of the chord bosi

from the fine piecewise-linear string SpS1++S; exceeds a preset threshold

t. Departure is defined to be measured normal fo the chord. Thus, b,

is declared when,

Al

|bosi|

> 1 where,

A is the area between the chord bosi and the piecewise-linear string

(the reckoning of negative area is discussed later), |A| is the

magnitude of A, and |bys.| is the length of the chord bs;.

6'7

Breakpoint b, is then found in an identical manner, but the

origin for this determination is taken at b, instead of b,.

In general, then, is declared when

bk+1

[A]

> 1 where,
o5, |

A is the included area between the chord b s. and the string

k™

S.s S, (bk = sJ,i >j). Figure 6.3 illustrates the calculation of A.

Jogr1t i

FIG. 6.3. THE CALCULATION OF INCLUDED AREA A

6.8

The shaded area labelled AAi is the increase in A from the hypothesis

bk+1 =5 to the hypothesis bk+1 = s
Incremental Area A, = 3 Isi-lsi|°H|
where |Si-lsi' is the base of the triangle bksi—lsi’ and Hi is its

altitude measured perpendicular to the base.

But Isi—lsi|'Hi is the moment of the vector Si—lsi about the
Therefore, AAi = 4 moment of Si— s, about b, .

previous breakpoint b 154 K

k'

However, the moment of Si15; about bk equals the moment of

1

the components of Si.15; (AXi’AYi) about bk; provided the intersection

1

of these components l|ies on the line through i and S;- Considering

the components intersecting at Si.1» @s shown in figure 6.3,

= 4 -
BA; = (Y, 0K, = X, 0Y)

where Xi— Y are the co-ordinates of S with respect to b

17 -1 1 k*

Alternatively, the components AXi, AYi may be displaced fo

intersect at s; without affecting their moment about b i.e.,

k’
alternatively,

AA. = 3(Y.AX, - X, AY.)
[i i

Thus, area A may be calculated by accumulating a pair of simple

products for each step along the sequence of sample points. The

operands AXE’AYi are fed directly to the algorithm if either is non-zero,

and operands Xi’Yi are readily found by accumulation. It is noted that

~this determination of A is precise even for coarse sampling. The

expression for AAi can clearly be negative, as can the accumulation A.

6.9

Chord length |bksil may be calculated precisely from

\/X% + Y% , but the estimate
%(lxi| +|Yi|)

is adequate for breakpoint insertion, and saves considerable computing

timé. Thus, breakpoint bk+1 is declared when

IZ(YiAXi - XiAYi)|

and, on declaration of b 0 accumulators Xi’Yi and A are cleared and the

k+1

process begins again and proceeds until bk+2 is selected.

This technique for breakpoint insertion requires very little
computing and storage and, at the speeds possible with efficient
microprograms within Intergraphic, the algorithm can issue breakpoints
in step with the receipt ofisample points. Minor variations on the above
process are possible, e.g., declaring S;., as the breakpoint instead of s
The algorithm outlined above can be extended to overcome the following
objection. Suppose a straight line were drawn and retraced backwards.

A breakpoint would not be inserted at the point of reversal by the
algorithm because the included area A would remain zero. Moniforing

changes of sign of AX and AY can detect this situation.

IT is also possible to refine the algorithm by definingﬁ
breakpoints which are not sample?poinfs; e.g., when the basic algorithm
above declares a breakpoint, the mean departure of the chord from the
sampled graphic is known and the co-ordinates of the chord are known;
therefore, it is feasible to displace the breakpoint normal to the chord
to reduce the mean deviation. For curves of approximately constant
curvature, the breakpoints can be placed outside of the curve such that

the mean departure is zero, i.e., the maximum magnitude of the

6.

.

10

departure could be approximately halved. However, inflexed graphics
intfroduce difficulties; the author considers that this refinement is
possibly not justified in the present application, but recommends further
analysis. The author also recommends that the coding efficiencies of

several dynamic and static schemes be defined and compared.

An advantage of a dynamic scheme is that the interface can
display fto the person drawing the curve the piecewise-|inear
approximation, breakpoint-by-breakpoint, as declared by the algorithm.
It is impossible to display every sampled point (40 ms intervals) via
the scan-converter to provide feedback from the interface (the TV
terminal itself can provide local feedback every frame-time, but this
does not verify the samples received by the interface)l. Moreover, by
definition, it is impossible fo feedback to the user, breakpoint-by-
breakpoint, the piecewise-linear approximation derived by a static

scheme.

In the event of a number of users simultaneously inputting
curves, the dynamic algorithm updates the various accumulators for
each input every 40 ms, checks for breakpoints and adds new breakpoints,
when declared, to the breakpoint lists corresponding to each input. If
the demand on the inferface is such that the vector strings corresponding
to these breakpoint |ists cannot be displayed "in-step" with the
determination of new breakpoints, fthen some fedback versions will be
delayed by then updated by several vectors at a time. The user requiring
"in-step" visual feedback will ftherefore need to reduce his input rate.
Provided the individual drawing rate is such that 4Q ms sampling
adequately defines the input curve, then, even fhough the fedback version
may be delayed by excessive demand on the interface, there is no loss
in precision in defining breakpoints and eventually the interface's
breakpoint versions of all input curves will be displayed. The
proposed scheme, therefore, does not degenerate in precision with

—increased demand, _buf causes. users to.reduce their input rate.

6.11

CHAPTER 7

CONCLUSIONS

The work described in the thesis shows that economical
~graphical communication is possible using state-of-the-art devices.
Low cost is achieved by centralizing commonly-used graphical

functions at an interface computer and using a low-cost television
storage and transmission system for maintaining and distributing images.
Scan conversion at the infterface allows the functions of image
_generation and image distribution to be independent of one another;
this allows each to be developed more economically than it could be
within a system in which distribution considerations constrain
generation techniques and vice versa. The interface generates display
points synchronously in conventional computer-driven display modes
(incremental and random point modes) whereas the terminals receive

display points synchronously in a reguiar scanning mode.

The centralized system chosen is compared with systems which
require local display processors, and the particular scheme which was
chosen for image generation, storage and distribution is compared with
five alternative schemes. Provided video-frequency connection is
feasible (very extensive video networks link 7% of all TY homes in the
United Kingdom at low per unit cost), the chosen scheme is currently

the most economical,

The thesis shows, through the detailed logical structure of
the interface and microprograms, that a microprogrammed interface is -
well-suited to the numerous tasks imposed by graphical communication
and a large number of‘Termjnals. The microprograms written to date for

a variety of tasks, illustrate that the interface's repertoire can be

7.1

readily extended by short microprograms (typically 10 micro-orders long).

This flexibility, inherent in interpretation by microprogram, is also
available fo the more conventional tasks within the interface, e.g.,
supervisory tasks. As multiple-terminal, graphical-communication is
still in the exploratory stage, the flexibility of the interface is
particularly useful for experiments in graphical languages, operating
systems (or more precisely, those components of proposed operating
systems which would reside in the interface), post-processing CPU data
before display, pre-processing input data before transmission to the
CPU, etc. The commonly used functions of vector and symbol generation
have been decomposed intfo short microprograms, the execution of which,

In turn, has been assisted by special micro-orders.

Vector generation is integrated within the logical design of
the interface in a similar manner to commonly-occurring computational
procedures such as multiplication. The thesis details the vector
~generation mode and compares the chosen method with special vector
~generation devices; it shows that the general-purpose microprogrammed
interface with the small logical extensions for vector generation is
competitive, and requires no new circuit devices. Moreover, through
microprogramming, the vector repertoire can be readily expanded. To
date, the repertoire comprises four basic vector types and six special
vector types. The basic vectors are Cartesian or polar in large or
small format; special vectors facilitate the coding of block diagrams,
regular grids, circular arcs and diagrams consisting of only

horizontal and vertical lines.

The thesis discusses the more general question of d}gifal
generation of graphics versus analogue and hybrid generation. It

defends the approach which,

(i) limits the variety.of directly-interpretable graphics

_to_straight lines and circular arcs,

(i1) generates these vector and circular elements very
rapidly and precisely within the standard digital

framework of the interface,

7.2

(1ii) relies on CPU software fo partition arbitrary

curves into piecewise-llinear or circular segments.

However, from the diversity of approaches which have been proposed, it
is apparent that techniques for curve generation within computer-graphics

is still exploratory, and further work is necessary.

Symbol generation has also been integrated within the logical
structure of the interface. Symbols are synthesized from standard
straight lines, standard quarter circles and standard quarter ellipses
or, for.inTricafe sections, from short elements of either 2 or 4 increments
in lengTh.' Compositions are encoded in the interface's ROM, and a small
amount of stroke-detail logic assists in the interpretation of standard
strokes. The chosen scheme has shown that it is possible to use
standard main-frame logic techniques to generate symbols and that a
separate symbol-detail store is not necessary. A comparison with
existing dot-matrix and incremental coding schemes shows that, even for
infricate symbols, the chosen scheme is very efficient in storage. An
adVanTage of the linked-stroke scheme is that symbols can be of arbitrary
extent. Moreovef, by integrating stroke generation within the inferface,
symbols can also contain non-standard strokes which are interpreted by
the vector generation logic rather than the stroke generation logic.
Provision is made for 256 "symbols", some of which are control symbols;
the plotting rate is limited by the deflection bandwidth, not by the

stroke generation logic.

The thesis also shows that arbitrary graphics can be accepted
as inputs from many users simultaneously (Sect. 6.2.2). A simple
algorithm is outlined which encodes an input as a piecewise-linear
string having a prescribed maximum mean deparTufe frdm the graphic.

The advantage of the particular dynamic algorithm described is that it

declares breakpoints in step with the input and this enables the
ﬂcompuier'shinierpneTaTion (coding) of the graphic to be fedback to the

user as he draws. Displaying the piecewise-linear version is practical

because there are normally far fewer breakpoints than sample-points

7.3

(25 samples per second). Further work Is recommended in the refinement
and comparison of dynamic encoding schemes. |t would appear that the
encoding derived from an efficient piecewise-linear scheme could become
the Input fto higher-level algorifhﬁs which determine curvature and |

partition a graphic into elements as a basis for recognition.

At the current interface speeds (3-5 ns logic, 50 ns access-
Time ROM, and 10 MHz incremental plotting rates for vectors and symbols),
images comprising some 500 short vectors or 1000 symbols can be frans-
ferred from the CPU to the interface and plotted in less than 10 ms,
i.é., in less than a quarter of a TV frame period. The current
limitations of the system are the response of the reading section of
the scan converter and the limited resolution of the TV storage and
distribution system. Further work is recommended on the development of
single-beam, electrostatically deflected scan-converter tubes of improved
resolution (single-beam to eliminate alignment problems between the
reading and writing sections of a dual-tfube or dual-ended system;
electrostatic deflection to achieve high-frequency response; and
hfgher resolution to match a 1024x1024 computer-driven display rather
than a TV monitor of approximately 500 lines). Improved video storage
is also required to match a higher quality (say 800-1000 line) TV
system. Because a scan converter would be shared by say 32 terminals
(a fully developed system of some 100 terminals would need a set of scan
converters), the converter can be relatively expensive ($10,000).
Alternatively, as outlined in Sect. 1.11.2 Scheme 5, studies in core-
store (or equivalent) scan-conversion appear to be well worthwhile,

because they result in digital conversion.

Local image-retention displays (e.g., DVST's) greatly reduce
the total data transmission rate in television distribution systems
with predominantly static Images, and, as this type of operation could
possibly dominate low-cost multi-terminal systems for some time,
further developments are justified. Local storage displays also
eliminate the need for a multi-track video disc which, being electro-

mechanical; is potentially limited in high frequency performance.

7.4

The cost of the Intergraphic system developed to 32 terminals
is expected to be less than $2,000 ber terminal. Thls cost Includes
the cost of some 2000 in+egra+ed circuits; a 4096 word, 18-bit core
store; a 4096 word, 33-bit ROM; a scan converter; a video disc;
and the TV receivers and |ight-pens. The cost does not include
development costs for elther hardware or software, overheads, etc.,
but it does indicate that the per-terminal cost of graphical systems
will become compatible with that of current electro-mechanical teletype
terminals. The advantages of speed, quiet operation and an ability fo

transmit arbitrary graphics are apparent.

An order of magnitude increase In the speed of the interface
is feasible using sub-nanosecond logic and improved output amplifiers
for tThe ROM (t+he word-drive circuits and basic ferrite coupling
elements are non-saTuranng and are capable of a frequency-response
mafching.a 5 ns access-time ROM). The D/A converters, currently 25 ns
settling Time, have not |imited the performance of the interface to
date; they also use non-saturating techniques which are capable of
extension to match a 100 MHz incremental system. At these rates, an
Interface having the same logical structure as Intergraphic could
produce some 1000 new images per second, which would enable dynamic
displays to be distributed to say 30 terminals, or static displays to
more than 1000 terminals. An image distribution system of this
performance would impose a heavy load on the CPU(s), but inclusion of
sub-nanosecond logic in these main processing units is equally

feasible.

Some applications require precision graphics, but although
such graphics could be interpreted by the interface described in the
thesis, it is unlikely that low-cost distribution schemes will have
sufficient resolution for these applications. Rather, precision
terminals would be regarded as special cases. Also, highly dynamic

displays are so demanding, particularly if good resolution is also
| required, that a special interface is justified, at least until 100

MHz Increment rates are achleved.

For fterminals which are located such that only dataphone
links are practical, the new image rate is limited by transmission
bandwidth; thus, compact codes are necessary and relatively complex

decoding circuits are required at each terminal.

) A large, comprehensive graphical-communication system, then,
will need a variety of terminal types having different resolutions,
transmission bandwidths and operating modes. |t is expected that many
of the terminals in such a system would be TV terminals capable of
displaying arbitrary graphics every few seconds. The author has
recently proposed a possible configuration for an extensive, yet
econbmicaI,Acompufer—graphics network (49), and attributes low costs

to;

n Borrowing from non-computer fields (radar, television, etc.)
techniques such as scan conversion, television image
" transmission, frequency multiplexing and video signal

storage;

(ii) Classifying applications into broad classes according to
terminal performance requirements, and providing matching
terminal types (high-precision, high-resolution; standard

Television} and dataphone connected DVST's);

(rin Improving systems organization, e.g., introducing shared
~graphical-interface computers which allow more efficient
task distribution, reduce central processor interrupts and

interpret more compact data codes;

(iv) Improving logical design, e.g., plotting vectors and symbols
by high-speed microcode, which eliminates the need for special

vector and symbol generation hardware;

(v) Replacing core-store image regeneration by video-disc image

refreshing or storage-tube image retention.

7.6

The significance of economical graphical communication is
that current plaﬁning of computer utilities should include extensive
computer-graphics networks. Such networks will greatly increase the
availability of computer-graphics to professional workers and students
in many fields, e.g., in education at all levels and in machine-aided
design. The thesis has not debated whether computer graphics has
sufficient application to justify its widespread availability - the
usefulness of computer-graphics has been clearly established by other
workers - the thesis has concentrated on the extension of graphical-

communication to many users at low-cost.

7.7

BIBL IOGRAPHY

G.J. CULLER and B.D. FRIED, "An on-line computing centre for
scientific problems", TRW Computer Division, Canonga Park, Calif.,
Rept. M19-3U3, June, 1963.

| .E. SUTHERLAND, "SKETCHPAD, a man-machine graphical communication
system'", 1963 Spring Joint Computer Conf., AFIPS Proc., Vo!. 23,
pp. 329-346.

B. HARGREAVES et al., "Image processing hardware for a man-machine
graphical communication system", 1964 Fall Joint Computer Conf.,
AFIPS Proc., Vol. 26, Pt. 1, pp. 363-386.

W.F. BAUER and W.L. FRANK, "DODDAC - An integrated system for data
processing, interrogation, and display", 1961 Eastern Joint Computer

Conf., Proc., pp. 17-29.

R.M. FANO, "The MAC system: the computer utility approach", I|EEE
Spectrum, Vol. 2, pp. 56-74, January, 1965,

F.J. CORBATO and V.A. VYSSOTSKY. "Introduction and overview of the
Multlics system'", 1965 Fall Joint Computer Conf., AFIPS Proc., Vol.

27, P+. 1, pp. 185-196.

D.E. RIPPY et al., "MAGIC, a machine for automatic graphics input
to a computer", ibid., pp. 819-830.

W.H. NINKE,'"Graphic | - a remote graphical display console system",
ibid., pp. 839-846.

R.W. LICHTENBERGER and M.W. PIRTLE, "A facility for experimentation

in man-machine interaction, ibid., 'pp. 589-598,

B1

10.

1.

12.

]3.

14,

15.

16.

17.

18,

-9,

J.R. KENNEDY, "A system for time-sharing graphic consoles", 1966
Fall Joint Computer Conf., AFIPS Proc. Vol. 29, pp. 211-222,

N.A. BALL, H.Q. FOSTER, W.H. LONG, |.E. SUTHERLAND and

R.L. WIGINGTON, "A shared memory computer display system'", IEEE
Trans. Electronic Computers, Vol. EC-15, pp. 750-755, October,
1966. ’

S.A. COONS, "An outline of the requirements for a computer-aided
design system", 1963 Spring Joint Computer Conf., AFIPS Proc.,
Vol. 23, pp. 299-304.

E.L. JACKS, "A laboratory for the study of graphical man-machine
communication", 1964 Fall Joint Computer Conf., AFIPS Proc., Vol.
26, pp. 343-350.

M.V. MATHEWS and J.E. MILLER, "Computer editing, typesetting and
image generation'", 1965 Fall Joint Computer Conf., AFIPS Proc., Vol.
27, Pt. 1, pp. 389-398,

M.D. PRINCE, "Man-computer graphics for computer-aided design",
Proc. |EEE, Vol. 54, No. 12, pp. 1698-1708, December, 1966,

J.R. LOURIE and J.J. LORENZO, "Textile graphics applied to textile
printing", 1967 Fall Joint Computer Conf., AFIPS Proc., Vol. 31,
ppo 33-400 ’

G.A. CHAPMAN and J.J. QUANN, "VISTA - Computed motion pictures for
space research", ibid., pp. 59-63.

C. WYLIE, G. ROMNEY, D. EVANS and A. ERDAHL, "Half-tone perspective
drawings by computer", ibid., pp. 49-58,

-G MW.-ROMNEY, -G.S. WATKINS and D.C. -EVANS, "Real-time display of

computer-generated half-tone perspective pictures", 1968 Edinburgh

|FIP Conf. Proc., Hardware 2 Section.

B2

20.

21,

22,

23,

24.

25.

26.

27.

28.

R.H. TERLET, "The CRT display subsystem of the IBM 1500
instructional system", 1967 Fall Joint Computer Conf. AFIPS Proc.,
Vol. 31, pp. 169-176.

E. HERBERT, "Report on technology for education", International
Science and Technology, Vol. 68, pp. 28-49, August, 1967.

A. APPEL, "Some techniques for shading machine renderings of
solids", 1968 Spring Joint Computer Conf. AFIPS Proc., Vol. 32,
pp. 37-45.

A. APPEL, "On calculating the illusion of reality", 1968 Edinburgh

IFIP Conf. Proc., Hardware 2 Section.

R.A. WEISS, "BE VISION, a package of IBM 7090 Fortran programs to
draw orthographic views of combinations of plane and quadric sur-
faces", J. Assoc, Computing Machines, Vol. 13, No. 2, pp. 194-204,
April, 1966.

 D.J. HALL, G.H. BALL, D.E. WOLF and J.W. EUSEBIO, "Promenade - an

interactive graphics pattern-recognition system'", 1968 Edinburgh

IFIP Conf. Proc., Hardware 2 Section.

G.A. ROSE, "Economical, graphical-communication techniques for
multiple console operation", Third Australian Computer Conf. Proc.,
pp. 399-402, May, 1966.

G.A. ROSE, "Light-pen facilities for direct view storage tubes",
|IEEE Trans. Electronic Computers, Vol. EC-14, No. 4, pp. 637-639,
August, 1965.

J.C. GRAY, "Compound data structures for computer-aided design:

A survey", Assoc. for Computing Machinery, Proc. 22nd National
Conf., 1967, pp. 355-365.

B3

29.

30.

31.

32,

33.

3'4Q

35,

36.

37,

38.

D.T. ROSS, "The automated engineering design (AED) approach to
generalized computer-aided design'", ibid., pp. 367-385.

A. VAN DAM and D. EVANS, "A compact data structure for storing,
retrieving and manipulating line drawings", 1967 Spring Joint
Computer Conf. AFIPS Proc., Vol. 30, pp. 601-610.

C. CHRISTENSEN and E.N. PINSON, "Multi-function graphics for a
large computer system", 1967 Fall Joint Computer Conf. AFIPS
Proc., Vol. 31, pp. 697-711,

J.D. JOYCE and M.J. CIANCIOLO, "Reactive displays: improving man-

machine graphical communication", ibid, pp. 713 721,

R.A. MORRISON, "Graphic language translation with a language
independent processor", ibid., pp. 723-729.

W.M. NEWMAN, "A system for interactive graphical programming",
1968 Spring Joint Computer Conf. AFIPS Proc., Vol. 32, pp. 47-54.

W.M. NEWMAN, "Definition languages for use with the reaction
handler", Computer Technology Group Report 67/9, Imperial College,
London, October, 1967.

W.M. NEWMAN, "The ASP-7 ring structure processor", Computer
Technology Group Report, 67/8, Imperial College, London, October,
1967,

K. LOCK, "Structuring programs for multi-program, time-sharing,
on-line applications", 1965 Fall Joint Computer Conf. AFIPS Proc.,
Vol. 27, Pt. 1, pp. 457-472,

S. BOWMAN and R.A. LICKHALTER, "Graphical data management in a
time-shared environment", 1968 Spring Joint Computer Conf AFIPS
Proc., Vol. 32, pp. 353-361.

B4

39.

400

41,

42,

43.

44,

45,

46.

47,

48,

R.H. STOTZ and T.B. CHEEK, "A low-cost graphic display for a computer
time-sharing console'", Society for Information Display, 8th National

Symposium, pp. 91-97, May, 1967.

R.A. AZ1Z, "An instructional display terminal", ibid., pp. 83-90,
May, 1967.

H.S. McDONALD, W.H. NINKE and D.R. WELLER, "A direct-view CRT
terminal for remote computing", Digest of Technical Papers, 1967
International Solid-State Circuits Conf., Vol. 10, pp. 68-69,

G.A. ROSE, "Intergraphic - a microprogrammed graphical-interface
computer", I|EEE Trans., Electronic Computers, Vol. EC-16, No. 6,
pp. 773-784, December, 1967,

M. MACAULAY, "Low cost terminals using television techniques",
IREE (Australia), Vol. 29, No. 9, pp. 307-312, September, 1968.

S.B. GRAY, "A computer time-shared display", Society for Information
Diglay, January/February, 1966, pp. 50-51.

R.P. GABRIEL, "Wired broadcasting in Great Britain", IEEE Spectrum,
pp. 97-105, April, 1967,

L.C. HOBBS, "Display applications and technology", December, 1966,
pp. 1870-1884,

C. MACHOVER, "Graphic CRT fterminals - characteristics of commercially
available equipment", 1967 Fall Joint Computer Conf. AFIPS, pp. 149-
159,

M.B. CLOWES and J.R. PARKS, "Improved two-dimensional potentiometer
and arrangements for use therewith", British Patent Spec. 982,008,

——Published February, 1965.

B5

49.

50.

51.

52.

53.

54,

55.

56.-

57.

—58.

G.A. ROSE, "Computer graphics communication systems'", 1968

Edinburgh IFIP Conf. Proc., Invited Papers Section.

M.W. ALLEN, T. PEARCEY, J.P. PENNY, G.A. ROSE and J.G. SANDERSON,
"CIRRUS, an economical multiprogram computer with microprogram
control", IEEE Trans. Electronic Computers, Vol. EC-12, pp. 663-
671, December, 1963,

P. FAGG et al., "IBM System/360 engineering", 1964 Fall Joint
Computer Conf., AFIPS Proc., Vol. 26, Pt. 1, pp. 205-231,

M.J. FLYNN and M.D. MaclAREN, "Microprogramming revisited", ACM,
22nd National Conf., Proc., pp. 457-464, 1967.

R. STOTZ, "Man-machine console facilities for computer-aided design",
1963 Spring Joint Computer Conf., AFIPS Proc., Vol. 23, pp. 323-
328.

I .E. SUTHERLAND, "Sketchpad, a man-machine graphical communication
system", Lincoln Laboratory, Tech. Rept. 296, Appendix E, 1963.
(This report contains additional material to (2)).

T.E. JOHNSON, "Analog generator for real-time display of curves",
M.1.T. Lincoln Laboratory, Lexington, Mass., Tech. Rept. 398, July,
1965.

L.G. ROBERTS, "Conic display generator using multiplying digital-
analogue converters", Lincoln Laboratory Rept. DS2978, March, 1966.

H. BLATT, "Conic display generator using multiplying digital-
analog decoders", 1967 Fall Joint Computer Conf. Proc., AFIPS Proc.,
Vol. 31, pp. 177-184,

- —M.L..-DERTOUZOS-and H.L.-GRAHAM, "A -narametric -graphical display

technique for on-line use", 1966 Fall Joint Computer Conf., AFIPS
Proc., Vol. 29, pp. 201-209.

B6

59.

60.

61.

62.

63.

R. LOEWE, R.L. SISSON and P. HOROWITZ, "Computer generated displays",
Proc. IRE, Vol. 49, pp. 185-195, January, 1961.

H. GROLL, "A comparison of various displays of alpha-numerical
symbols on cathode-ray tubes", Nachr.-Techn. Z-CJ, No. 3, pp. 133-
143, 1964.

H. FREEMAN, "On the encoding of arbitrary geometric configurations",
IEEE Trans. on Electronic Computers, Vol. EC-10, pp. 260-268, June,
1961.

S.H. CHASEN, "The introduction of man-computer graphics into the
aerospace industry", 1965 Fall Joint Computer Conf. AFIPS Proc.,
Vol. 27, pp. 883-891.

C.!. JOHNSON, "Principles of interactive systems", IBM Systems
Journal, Vol. 7, Nos. 3 and 4, pp. 147-173, 1968.

B7

APPENDIX A1l

CORE _STORE - CONVENT IONAL MODES

This appendix describes the conventional read and/or write
mode control of the core store. APPENDIX A2 describes the core-store

mode which simulates the ROM.

Section 3.2 introduced two micro-orders, ACC and ACN, which
control the conventional operation of the core store. Both orders are
ABA, UL orders, but, after the arithmetic operation is completed, a
core cycle is initiated. The four options, introduced on p 3.8
are shown in Fig. Al.l, p. Al.2. Options RR and CW are full cycles
which require 1.5us, whereas RO and WO are part cycles and require only
T.Ous. Option RR automatically restores an accessed word, but RO leaves
the location cleared. Option WO requires that the store location be
clear initially; +thus, the longer CW cycle is necessary if the pre-write

contents are unknown, or known to be non-zero.

Three J-indicators have been provided to mark the completion
of various core-cycle events: JCNB (J-Core-Not-Busy) becomes 1 at the
completion of any core cycle; JCRA (J-Core-Read-Available) becomes 1
in RR and RO cycles when the core data has been read to CSD, transferred
To register M and successfully checked for parity; and JCWA (J-Core-Write-
Accepted) becomes 1 in CW and WO cycles when the data to be read into
store has been transferred from M to CSD. All ACC and ACN micro-orders
should await the availability of core-store, i.e., should nominate JCNB, WT.
Clearly, write-data in M should not be overwritten by microprogram until
JCWA becomes 1, and micro-orders awaiting read-data in M must nominate
JCRA, WT. The core store address register, CSA, is automatically copied from
C or N during the first 200 ns of any core store cycle, so that the
nominated address source (C or N) must not be changed by microprogram during

this interval.

Al.1

RR
(READ- READ DATA TO M.
RESTORE) 777
v JCRA>1 ¥ en
cu JCNB~>1
(CLEAR-|WR|TE DATA FROM M,
WRITE) oarerd
, VWA 1 v JoNB+
RO - '
(READ- READ DATA TO M.
ONLY) U777
¥ JCRA>1 4 JCNB~1
Wo C
(WRITE-1yR|TE DATA FROM M.
ONLY) b~
v JCWAS1 JJCNB>1
TRANSFER ADDRESS TO CSA.
7 7771
TJCRA, JCWA, JCNB - 0

0 0.2 0.4 .0.6 0.8 1.0 1.2 1.4 1.6 s

FIG. A1.1. CONVENTIONAL CORE-STORE TIMING

For normal operating speeds, there is time for write-data to be
set into M between an ACC or ACN (denoted AC) micro-order which initiates
a CW cycle and the beginning of the automatic ftransfer of M infto CSD;
also, in read cycles, there is time to access the pre-read contents of M
before it is overwritten automatically from CSD. However, single—shof
or slow-run execution of micro-orders is desirable and has been'provided in
Intergraphic. These slowed operational modes prohibit the late setting

—of -accessing of M described above, -because the core cycles would be

completed before the execution of any orders following the initiating AC
orders. |In summary, M must be neither accessed nor set between an AC order
and an order conditioned either by JCWA or JCRA.

A1.2

Provided the constraints on M and N above are satisfied,
micro-orders can overlap the running of a core-store cycle; in fact,
overlap is necessary to exploit the high ratio of core-store to ROM
cycle times. The core-store indicators JCWA and JCRA are cleared at the
beginning of the next core cycle, not at the end of the current cycle:
Tﬁe slowed operational modes have forced this timing, because there
could be an indefinite delay after a core cycle is completed before

either of these indicators is inspected.

Al

3

APPENDIX AZ

CORE STORE SIMULATION OF ROM

It is desirable to be able to execute microcode from core

store for the following two reasons,

(i) new microcode can be checked and modified from core before

it is wired (semi-permanently) into ROM;

(ii) " microcode can be mixed with machine-code (M/C) orders: +this’
~generalizes the M/C repertoire beyond orders which have

existing inferpretation sequences wired into ROM.

FIGURES 2.1 and 2.2 show the additional paths which allow core simulation
of ROM. Register CSA can be copied from S, and read-data in CSD can be
copied either to Gy-35 or to Gyg-3;. The distinction between a normal
access to ROM from S and a simulated access via two core-store cycles is .
marked by the value of Sy, the most significant digit of S: if S = O,

the ROM is accessed (denoted a "firm'" cycle), whereas if Sy = 1, the pair
of core words is accessed (denoted a 'soft" cycle). During a "firm" cycle,
Sy-15 addresses the ROM, and the 32-bit micro-order is read directly into
Gp-31. (Bits S;-3 allow for expansion of ROM.) During a "soft" cycle,
Sg-15 is transferred to CSAy-14, the first core cycle (CSA;5 = 0) transfers
the upper half of the micro-order fo Gg-15, and the second core cycle

(CSA15 = 1) transfers the lower half of the micro-order to Gyg-33-

Soff—mode core-cycles are borrowed. That is, the paths from S
to CSA and CSD to G are normally inhibited, but, if S0 = 1, then the pulse
which would drive the ROM is diverted; it sets a binary, denoted "soft"
(not the binary Sj), which connects S to CSA and CSD to G (the distinction
between G,_,5 and G,._5; being made by another binary, denoted "first").
After the second core-word is read info Gig-31» "'soff" is cleared (S, is
unchanged) and the C or N to CSA and CSD to M paths are resfored in readiness

for the normal execution of the micro-order in G (which happened fto be read

from core). Bit Sy is controlled by microcode via - ‘e or Q which accommodate

A2.1

bit location 0. Thus, "soft" operéTion fol lows automatically for S
addresses > 2!5; bits Ss-15 then refer to the 2K even addresses of core
0,2,..4K-2. As both SQ and QS transfers include Sy, "soft" microprograms
can call, via the microroutine stack, microroutines which are either

"firm" or "soft". Provided the constraints which were introduced to allow
slowed operation (core simulation of ROM is also slowed operation) are
observed (APPENDIX A1), then microcode debugged in core can be transplanted
directly into ROM. Any "soft" microroutine should also be wired in; this

avoids having fto change calling addresses wired in ROM, at a later date.

Microcode may be mixed with M/C instructions as follows. A M/C
function, FMIC, heads the inserted microcode. FMIC is interpreted in the
standard way by a short microprogram accessed via the M/C table; it causes’

the transfer,
215 + RS(C) + 1 + S

where RS(C) is the instruction address (held in register C) right shifted.
Term 215 sets Sy to 1 and establishes the "soft" mode, and, because
Ss-ls.is connected to CSA,_;, in "soft" mode (a "wired" left-shift), the
transfer simply begins executing microcode in core at the first even address
following FMIC. During the "soft" mode execution of microcode, the
instruction address register, C, is not advanced as it would be for normal
M/C execution; thus, the final micro-order to be executed from core must
advance C to the final core address of the microcode (the Get Next
Instruction, GNI, sequence always increments the instruction address
register before reading the next M/C instruction) and then refturn control
to GNI via a QS transfer. This is achieved by,.

e
AQS SH1 +,0 0 » C

(The pre4incremenfalvalue, S+1, is cancelled by Eﬁ the left shift

component of LC aligns S to the core-store address which must be advanced

A2.2

at twice the rate of S, and the 1 value which is circulated to the least
significant position from Sy by LC, increments C fo the final core address
of the microcode.) The implementation of core store simulation of ROM
would be simpler if the core store and ROM word-lengths were identical,
say 32 bits (excluding parity). However, the difficulties introduced by

unequal word-lengths, are invisible to the user.

A2.3

APPENDIX A3

DETAILED DOCUMENTATION OF MICROPROGRAMS

This appendix documents 47 microprograms, index p A3.2,
which are referred to in the text or by other microprograms. Page
A3.3 lists the J-INDICATORS which condition micro-orders.

Cémmenfs to the microcode are mostly |ine-by-line with the
microcode, but in some cases comments refer to a group of micro-orders,
in which case the group is defined by a vertical bar. Labels iocal tfo

The microprogram have the prefix LL.

The documentation includes the list of microroutines called by
each microprogram, the total set of registers needed fto execute each
microprogram, and the nesting depth. |In some cases, the physical
requirements of a call was not known at the time of writing - these are

marked with an ¥,

Subscripts are not depressed, i.e., Fg is shown as F8; and

F8, 15 represents Fg,F;5, efc.

The microprograms which interpret the conventional machine
code instructions, i.e., machine codes other than GRA and GRB, are not

shown.

A3.1

AR

‘Ml READ LRG CRD~E,A

MICROCODE NAME PAGE M{CROCODE NAME PAGE
TABLE M/C FN AS. 4 ‘M| READ X/Y CRD~E,A A3.28
M/C GRA A3. 5 Ml PLT SML CTN VTR D A3.29
M/C GRB A3. 6 Ml PLT LRG CTN VTR A3.31
GRA SML CTN VTRS A3. 7 Ml PLT SML CTN PNT D A3.33
GRA SML CTN PNTS A3. 9 MI PLT LRG CTN PNT A3.33
GRA SML PLR VTRS A3.10 TABLE SIN(DL)-D A3.35
GRA SML PLR PNTS A3. 11 MI SIN(D TRC 9)-D A3.36
GRA LRG CTN VTRS A3.12 MI SIN(A TRC 9)-D A3.38
GRA LRG CTN PNTS A3.13 MI SINCA RND 9)-D A3.38
GRA LRG PLR VTRS A3.14 MI COS(A TRC 9)+D A3.39
GRA LRG PLR PNTS A3.15 MI COS(A RND 9)-D A3.39
GRB SML XTHENY VTRS A3.16 MI SIN(A)=D A3.41
GRB SML XRST IY VTRS A3.17 MI COS(A)~D A3.41
GRB SML YRST IX VTRS A3.18 MI COS,SIN(A+E)+D A3.43
GRB SML RPT PLR VTRS A3.19 MI N*COS,N¥SIN>D A3.44
GRB LRG X/Y VTRS A3.20 CQ LRG PLR+CTN E,A A3.45
GRB LRG X/Y PNTS A3.21 Ml 128%2%¥MG>N A3.47
GRB LRG X/Y CS VTRS A5.22 MI RST; INTRPT;LOOP A3.48
"GRB LRG X/Y CS PNTS A3.21 Ml BYT MPY BUXEL-E A3.49
GRB SYMBOL PAIRS A3.23 MI WRD MPY B¥*D~ED A3.50
GRB MODIFY X,Y,THETA A3.24 Ml PUSH CQ A3.51
M| READ SML CRD-D A3.25 Ml POP CQ A3.51
M| READ SML PLR-E,N A3.26 SYMBOL TABLE A3.54

A3.27

TABLE A3.1. INDEX TO MICROCODE ROUTINES AND TABLES

Ge-11 | MNEMONIC | VALUE Gg-11 | MNEMONIC | VALUE Gg-11 | MNEMONIC | VALUE Gg-11 | MNEMONIC VALUE
0 J0 "e 16 INZel §€L 32 JFO Fo 48 Jcuo Control-Unit 0
1 JOFU OF 17 INZe Ze 33 JF1 F1 49 Jout " 1
2 JUFU UFg 18 INZR Z 34 JF2 . 50 | Jcuz " 2
3 Jcou 0y 19 JNNMU p A3.29 35 JF3 51 Jeus "
4 JBdo Bd 20 INNML " 36 JF4 52 Joua "
5 JBeo Beg 21 JZe Ze 37 JF5 53 Jous "
6 JBel Bey 22 JMSW Wanual 38 JF6 . 54 Jous " .
7 JBe? Bes 23 39 JF7 . 55 Jeuz " 7
8 JNZeU 2Zb 24 40 JF8 . 56 JINT Any Interrupt
9 JOFL OFg 25 a1 JF9 . 57 JPIP Peripheral Input Parity Error
10 JUFL UFg 26 42 JF10 . 58 INPSD | Not Peripheral Status/Data
y JooL C0g 27 43 JF11 59
12 JBd15 Bd;s 28 a4 JF12 60
13 JBe8 Beg 29 45 JF13 61 JCNB Core Not Busy
14 JBe9 Beg 30 46 JF14 62 JCRA Core Read Available
15 JBel5 Be1s 31 47 JF15 F1s 63 JCWA Core Write Accepted
NOTE: INDICATORS 48-63 ARE BUFFERED TO AVOID THE POSSIBILITY OF A CHANGING J AT THE TIME OF INTERROGATION. INDICATORS 0-47 ARE STATIC AT

eTey

INTERROGATION TIME.

TABLE A3.2.

THE 64 J-INDICATORS

SHOLVIIAGNI-T ¥9 3HL

pcy

DESCRIPTION OF MACHINE CODE FUNCTION TABLE

This table is entered from the GNI (Get Next Instruction)
sequence by a DSQ order. It transfers control to the beginning of a
specific machine code function routine (M/C O to M/C 31) specified by the
FN field (bits 0 - 4 6f the instruction). M/C routines terminate with
Q + S transfers which return control to the GNI sequence.

A preliminary sequence extracts the FN field from the machine
code Instruction In M (or the first word of the Instruction for multiple-

_word instructions) and aligns it to bits 11-15 of register D. The M/C

function number in D is then added to S+1; this advances S.to the

appropriate DMC order which transfers control to the specific M/C routine.

INITIAL VALUES

M: THE MACHINE CODE INSTRUCTION WORD.
Q: RETURN ADDRESS TO THE GN! ROUTINE.

MICROCODE

1 TABLE M/C FN: ABA M (8T) D
2 DMC(U) 0 . + D
3 DMC 3 + R
4 _ADR JNZR (RP) D (RS) D
5 ABA S¢41 +0 D -+ S
6 DMC M/C O + S
7 DMC M/C 1 + S

31 Dve 31 + S

FINAL VALUES

M: AS INITIAL.
Q: AS INITIAL.

CALLS - M/C's 0-31.

SELF NEEDS D, M, R.

NO. OF MICRO-ORDERS 37.

COMMENTS

PUT FN FIELD TO D8-12
CLEAR DU
PUT 3R FOR SHIFT COUNT
RIGHT SHIFT D 3 PLACES TO ALIGN M/C FN NUMBER TO D11=15 FOR ADDITION TO S
ADVANCE D+1 ORDERS '
IF M/C =0 (i.e., IF CONTENTS D = 0), GO_TO M/C 0
1 1 . MC 1

. .

. . .

31 31 GO TO M/C 31.

N4 3/W 3189Vl

sev

DESCRIPTION OF MACHINE CODE FUNCTION "GRAPHICS-A"

GRAPHICS-A (GRA) is the first of two machine code functlons

designed specifically for graphics.

(GRAFN's) introduced on p 4.4.

the header.

This routine puts RST, LF, IT, & MG (bits 8-15 of the GRA
instruction) from ML to WU, copies the current display register contents

GRA is divided into 8 sub-functions
A GRA instruction (header) occupies
one word, FORMAT 4.2, p 4.4; the relevant data words immediately follow

X,Y to buffers X',Y', puts the GRAFN fleld to D13-15 in order to enter the
table proper which then transfers control to the beginning of the specific
GRAFN encoded. M/C GRA is entered via a DMC order in TABLE M/C FN and
M/C GRA then transfers control, also via a DMC order, to the specific GRA

routine; return to GNI is the responsibility of the terminating order of

each GRA routine.

INITIAL VALUES

M: THE MACHINE CODE INSTRUCTION WORD.

Q: RETURN ADDRESS TO GNI ROUTINE.

MI1CROCODE

1 M/CGRA: ABA(L)
2 TRF
3 oMC
4 ABA
5 ABA
6 (GRA TABLE BEGINS) DMC
7 DMC

X+X1,Y-Y!
X'0700'
B A
S+1 +0
GRA SML CTN VTRS
GRA SML CTN PNTS

. S .

GRA LRG CTN PNTS

M

M
D

(8T)

(8T)

>

W

“”w n »nw o o

FINAL VALUES

M: AS INITIAL

Q: AS INITIAL

WU: RST, LF, IT, MG.
XU, X,Y.

CALLS - GRA's-0-7 (SML CTN VTRS -~ LRG PLR PNTS).

SELF NEEDS B, D, M, W.

NO. OF MICRO-ORDERS 13.

COMMENTS

COPY RST, LF, IT AND MG FIELDS INTO WU.
COPY CURRENT X,Y VALUES INTO X',Y' (REQUIRED FOR RST OPTION WITHIN
PUT GRAFN SELECTION FIELD IN B. GRAFN's)
SELECT GRAFN AND PLACE IN D13-15.
ADVANCE D+1 ORDERS.
IF GRAFN = 0 (i.e., IF CONTENTS D = 0), GO TO GRA SML CTN VTRS

1 " .)

.

7 7 GO_TO GRA LRG PLR PNTS.

vy9 /W

9°gy

DESCRIPTION OF MACHINE CODE FUNCTION "GRAPHICS-B"

GRAPHICS-B (GRB), the second of two machine code functions
desligned for graphics, Is divided into 16 sub-functions (GREBFN's).

As GRA, the GRB instruction (header) occupies one word and the
relevant data immediately follows. FORMAT 4.6, p 4.10 applies to GRB.

This routine puts bits 9-15 of the GRB Instruction word from
M9-15 to Wi=7, copies the current X,Y values into X',Y', puts the GRBFN
field to D12-15 in order to enter the table proper which then transfers

control to the specific GRBFN encoded.

M/C GRB is entered via a DMC order in TABLE M/C FN and M/C GRB
then transfers control, also via a DMC order, to the specific GRB

routine; return to GNI is the responsibility of the terminating order of

each GRB routine.

MI CROCODE

1 M/C GRB: ABA(L) M (8T) W
2 TRF XX, YaY !

3 DMC X'0780" > B
4 ABA B A M (LS)D
5 ‘ ABA D (8T) D
6 : ABA S+H1 40 D

7 (GRB TABLE BEGINS) DMC GRB SML XTHENY VIRS =+ S
8 DMC GRB SML XRST IY VIRS =+ S
22 ' DMC GRB EXTRACODE + s

INITIAL VALUES

M: THE MACHINE CODE INSTRUCTION WORD.
Q: RETURN ADDRESS TO GNI ROUTINE.

FINAL VALUES

M: AS INITIAL

Q: AS INITIAL.

W: BITS 9-15 OF GRB INSTRUCTION.
X',Y' o X,Y.

CALLS - GRB's 0-15 (SML XTHENY VTRS TO EXTRACODE).
SELF_NEEDS B, D, M, W.

NO. OF MICRO-ORDERS 22.

COMMENTS

COPY BITS 9-15 OF GRB INSTRUCTION TO W1-7 (WO NOT REFERRED TO BY GRBFN's)
COPY CURRENT X,Y VALUES INTO X',Y' (REQUIRED FOR SOME GRB RST OPTIONS).
PUT GRBFN SELECTION FIELD iN B.
SELECT GRBFN FIELD AND ALIGN TO D4-7.
PUT GRBFN IN D12-15.
ADVANCE D+1 ORDERS.
IF GRBFN = 0 (i.e., CONTENTS OF D = 0), GO _TO GRB SML XTHENY VTRS.
" 1 1 .

. . .

. . .

15 15 GO _TO GRB EXTRACODE.

249 O/

OESCRIPTION OF GRAPHICS=A FUNCTION 'SMALL CARTESIAN VECTORS' (GRAFN 0) NEEDS
' CALLS ‘NEEDS DEPTH
This routine plots a Ilist of small Carteslian vectors coded In Ml 128%2%*MGaN N,R, WU NIL
FORMAT 4.1, p 4.3, The vector |ist Immediately follows a GRA HEADER MI READ SML CRD=D C,D,F7,15,M NIL
(FORMAT 4.2, p 4.4), The upper byte of the header identifies the Ml PLT SML CTN VTR D 8,0,R NIL
particular routine (i.e., In Thls case, GRAFN fleld contains 0); the MI RST; INTRPT ; LOOP : Wo, ¥ 2
lower byte specifies the reset option, Iine form, Intensity level and ADDITIONAL FOR SELF 0 10
magnification exponent.
TOTAL NEEDS & DEPTH B,C,D,F7,15,M,N,Q,R,W,* 3Q
The magnification exponent MG extends the otherwise restricted
scope of the small format. At maximum magniflication (X8), the range of
horizontal or vertical components Is & ENTER GRA SML CTN VTRS
=512 (8) 504 display increments,
which gives ample resolution and scope for many applications. (If 1 display | PUT 128.2"Cn
increment = 0.01 In, plotting at X8 Is similar to drawing |ines terminating LL LOOP: ?i
at. the grid intersection points of graph paper having about 12 divisions/in. READ NEXT VECTOR
Note that the fine texture of vectors is independent of MG.) FROM CORE TO DU,q_
V,L » F7,F15
Preloading Q to LL LOOP conditionally on L and the use of Ml RST;
INTRPT;LOOP are detailed under MI RST; INTRPT;LOOP. '
N COPY 128.2MG:§
INITIAL VALUES 8X,8Y = 0,0 3| PLOT VECTOR
2 7(4X,4Y)
C: |A, THE INSTRUCTION ADDRESS (ADDRESS OF GRA HEADER) T
(1A+1) IN CORE: FIRST VECTOR l F LINKED,ELL LOOP*QAA]
(1A+2) " " : SECOND VECTOR, ETC. A __
Q: RETURN ADDRESS TO GNI! ROUTINE I IF RESET, XL,Ylox,v
WU: BITS 8-15 OF GRAFN HEADER
e 12z 3 2 2 6 7 NTERRUPT SERVICE MI RST;
WU BST LF IT MG REQUESTED INTERRUPT INTRPT;
Loor
x1,Yl: DISPLAY CO-ORDINATES PRECEDING GRA MACHINE ORDER [
FINAL VALUES Y N
: MORE VECTOR RETURN TO GNI, END
C: ADDRESS OF FINAL VECTOR IN LIST .
(1A+1), ETC.: RESTORED —

© X,Y: IF RESET, INITIAL VALUES, ELSE INITIAL + IAX,ZIAY
x1,¥Yl: AS INITIAL

Lsy

SHLIA NL1O WS V49

8 ¢V

*

MICROCODE

1 GRA SML CTN VTRS:
2 LL LOOP:

3

4

5

6

DSQ
DSQ

ABA

DSQ
DMC
oMC

JINZe

INZe

JF15

Ml 128%2%*MG->N

" M|l READ SML CRD->D

N
M1 PLT SML CTN VIR D
LL LOOP
Ml RST; INTRPT; LOOP

¥

+

+

w

»w O unu

COMMENTS
puTS 128.24C
INCREMENTS 1A IN C, READS VTR CO-ORDINATES TO DU,DL,

RECORDS V,L (NOTE Ze = 1 IF aX,AY = 0,0)
IF aX,8Y # 0,0 THEN = PuT 128.2"Car
ELSE OMIT 3,4 ‘[PLOT MAGNIFIED VECTOR 2C(aX,aY)
"IF LINKED, PRELOAD Q TO LL LOOP FOR MI RST; INTRPT;LOOP

MG

IN N FOR CYCLE COUNT OF MI PLT SML CTN VTR D.

(HELD FOR
ENTIRE LIST)

RESET DISPLAY |F REQUESTED; SERVICE INTERRUPT; RETURN CONTROL TO LL

LOOP OR RETURN TO GNI & END

(INGD) SHLA NIO WS V¥9

6°¢y

DESCRIPTION OF GRAPHICS-A FUNCTION 'SMALL CARTESIAN POINTS' (GRAFN 1)

Plots a list of points coded in small Cartesian format (FORMAT

4.1, p 4.3

immediately following a GRA HEADER (FORMAT 4.2, p 4.41.

The lower byte specifies RST, IT, & MG as detailed under FORMAT 4.2, tut

LF does not apply.

MI PLT SML CTN PNT D is called even if AX,AY = 0,0 (i.e., If
AX,AY = 0,0, the point at the last X,Y position is unblanked; this is not
so for GRA SML CTN VIRS - a zero vector is bypassed and the display remains

blanked). E)

Preloading Q to LL LOOP condifiohally on L and the use of
M1 RST; INTRPT;LOOP are detailed under MI RST; INTRPT;LOOP.

INITIAL & FINAL VALUES

AS GRAFN SML CTN VTRS

* MICROCODE
1 GRAFN SML CTN PNTS: DMC X10300"
2 ABA N AW
3 LL LOOP: . . DSQ Ml READ SML CRD->D
4 ABA N
5 ' DSQ Ml PLT SML CTN PNT D
6 DMC JF15 LL LooP
7

DMC M1 RST; INTRPT; LOOP

w O nu D unu Z Z

NEEDS

CALLS NEEDS DEPTH
MI READ SML CRD-D c,b,F7,15,M NIL
MI PLT SML CTN PNT D D,E,R NIL
Ml RST; INTRPT;LOOP - Wo * 20
ADDITIONAL FOR SELF N,Q,W 1Q

TOTAL NEEDS & DEPTH C,D,E,F7,15,M,N,Q,R,W * 320

NO. OF MICRO-ORDERS 7

COMMENTS

PUT MG SELECTION FIELD IN N (MG IN W6,7)

PUT MG IN N (HELD FOR ENTIRE LIST OF POINTS)

INCREMENTS 1A IN C, READS POINT CO-ORDINATES TO DU,DL, RECORDS V,L.
PUT MG EXPONENT IN R FOR MI PLT SML CTN PNT D

PLOTS POINT AT 2"C (aX,AY) RELATIVE TO CURRENT X,Y

IF LINKED, PRELOAD Q TO LL LOOP FOR MI RPT;INTRPT;LOOP

RESET DISPLAY |F REQUESTED; SERVICE INTERRUPT; RETURN CONTROL TO LL
) LOOP OR RETURN TO GNI & END .

SINd N1O WS Wd9

ol gy

DESCRIPTION OF GRAPHICS-A FUNCTION 'SMALL POLAR VECTORS' (GRAFN 2)

Plots a list of small polar vectors (FORMAT 4.3, p 4.5
immediately following a GRA HEADER (FORMAT 4.2, p 4.4).

The polar co-ordinates are read from core, 48 updafés 0 inl A and
CO0S,SIN (8 +48) are evaluated and placed in DU,DL (LSB'S = 2-6), Distance
As is then loaded Into R (MG Is not extended to polar co-ordinate, because
errors In COS ©, SIN 6 would be magnified) to count cycles within M| PLT SML
CTN VIR D, and, If as # 0, the equivalent Cartesian vector As COS 8,As SIN 6

is plotted.

Preloading Q to the beginning of the vector plutting loop (in this
case GRA SML PLR VTRS itself) conditionally on L and the use of M| RST;INTRPT;

LOOP are detailed under MI RST; INTRPT;LOOP.

INITIAL & FINAL VALUES

AS GRA SML CTN VTRS (MG = XI)

MICROCODE

GRA SML PLR VTRS: DSQ .
DSQ

1

2

3 ABA

4 DSQ JNZe
5 DMC JF15
6 DMC

MI READ SML PLR->E,N
Ml COS,SIN(A+E)->D

N
M1 PLT SML CTN ¥TR D
GRA SML PLR VTRS
M1 RST; INTRPT; LOOP

->

->

S
S

(LS1 R

>

>

>

S

Q
S

NEEDS
CALLS : NEEDS DEPTH
M| READ SML PLR+E,N C,0,E,F7,15,M,N . 1Q
Mi COS,SIN(A+E)+D A,B,D0,E,F8 2Q
Ml PLT SML CTN ¥VTR D B8,D,R ’ NIL
M! RST; INTRPT;LOOP Wo,* 2Q
ADDITIONAL FOR SELF . Q,wWu 1Q
TOTAL NEEDS & DEPTH A,B,C,D,E,F?,B,15,M,N,Q,R,N* 3Q

NO. OF MICRO-ORDERS 6

COMMENTS

INCREMENTS IA IN C, READS A8 TO E & ALIGNS TO @ IN A, As TO N, RECORDS V,L
UPDATES © IN A, PUTS COS & + DU, SIN @ + DL (25C0S, 25SIN AS INTEGERS)

PUT 2As IN R FOR M| PLT SML CTN VIR D A
IF As # Q, PLOT YECTOR 24s.2-7.28(C0S,SIN), i.e., (As COS @, 4s SIN @)
IF LINKED, PRELOAD Q TO BEGINNING OF THIS GRAFN

RESET IF REQUESTED; SERVICE INTERRUPT; RETURN CONTROL TO ORDER 1 OR
RETURN TO GNI & END

SHIAN Hd WS V9

liegy

DESCRIPTION OF GRAPHICS-A FUNCTION 'SMALL POLAR POINTS' (GRAFN 3)

Plots a list of points coded in small polar format (FORMAT 4.3,

p 4.5) immediately following a GRA HEADER (FORMAT 4.2, p 4.4).

The polar co-ordinates are read from core;

and the point is plotted (MG = X1) unconditionally on As = 0.

Preloading Q and the use of M| RST; INTRPT;LOOP are detailed-.

under Ml RST; INTRPT;LOOP.

INITIAL & FINAL VALUES

AS GRAFN SML CTN VTRS

MICROCODE

1 GRA SML PLR PNTS: DSQ
2 DSQ
3 DSQ
4 DMC
5 . DSQ
6 OMC
7 DMC

JF15

Ml READ SML PLR->E,N

MI C0S,SIN(A+E)=>D
MI N*COS,N*SIN->D

0

MI PLT SML CTN PNT D
GRA SML PLR PNTS

MI RST; INTRPT;LOOP

A8 updates 8 In A;
COS 8, SIN 6 are formed in DU,DL and then overwritten by AsCOS 6,AsSIN 6;

+

+

¥

+

+

»”w O »u D uvu n v

NEEDS
CALLS NEEDS DEPTH
MI READ SML PLR+E,N c,D,E,F7,15,M,N 10
MI COS,SIN(A+E)~D A,B,D,E,F8 2Q
MI N*COS,N¥SIN+D B,0,E,N,R _ 1Q
MI PLT SML CTN PNT D D,E,R NIL
MI RST; INTRPT;LOOP Wo * 20
ADDITIONAL FOR SELF Q,WU ' 1Q
TOTAL NEEDS & DEPTH A,B,C,D,E,F7,8,15,M,N,Q,R,W* 30

NO OF MICRO-ORDERS 7

COMMENTS

INCREMENTS 1A IN C, READS 48 TO E & ALIGNS TO @ IN A, As TO N, RECORDSV,L
UPDATES @ IN A, PUTS COS 8 ~ DU, SIN 8 - DL (26C0S,26SIN AS INTEGERS)
MULTIPLIES As BY COS,SIN, i.e., aX + DU, AY = DL

CLEAR R (MG = X1 FOR POLAR CO-ORDINATES)

PLOTS POINT AT AsCOS 8, AsSIN 8 RELATIVE TO CURRENT X,Y

IF LINKED, PRELOAD Q TO BEGINNING OF THIS GRAFN

RESET |F REQUESTED; SERVICE INTERRUPT; RETURN CONTROL TO ORDER 1 OR
RETURN TO GNI & END

SINd ¥1d WS Vy9

2l ey

DESCRIPTION OF GRAPHICS-A FUNCTION 'LARGE CARTESIAN VECTORS' (GRAFN 4)

Plots a list of large Cartesian vectors (FORMAT 4.4, p 4.7)
immediately following a GRA HEADER (FORMAT 4.2, p 4.4).

; The vector components Xc,Yc are read from core and, if Xc,Yc # 0,0,
plotted (Ml PLT LRG CTN VTR begins with a zero-vector test).

Prgloading Q and the use of M| RST;INTRPT;LOOP are detalled under
Ml RST; INTRPT; LOOP.

INITIAL VALUES

C: IA THE INSTRUCTION ADDRESS (ADDRESS OF GRA HEADER)
(IA+1) IN CORE: FIRST HORIZ. COMPONENT Xc & V

(IA+2) " "™ : "™ VERT. " Yc & L

ETC. IN PAIRS

Q: RETURN ADDRESS TO GN! ROUTINE

WU: BITS 8-15 OF GRA HEADER

X1,Yl: DISPLAY CO-ORDINATES PRECEDING GRA MACHINE ORDER

MICROCODE

1 GRA LRG CTN VTRS: DSQ) M! READ LRG CRD->E,A + S
2 DSQ Ml PLT CTN ¥TR + S
3 DMC JF15 GRA LRG CTN ¥TRS > Q
4 S

DMC M1 RST; INTRPT;LOOP >

FINAL VALUES

C: ADDRESS OF LAST Yc,L WORD

(IA+1), ETC: RESTORED ,
X,Y: IF RESET, INITIAL VALUES, ELSE INITIAL + IXc,IYc.
X1,yl: AS INITIAL

NEEDS
CALLS - NEEDS DEPTH
Ml READ LRG CRD-E,A A,C,E,F7,15,M NiL
Ml PLT LRG CTN VTR A,B,D,E,R 1Q
Ml RST; INTRPT ; LOOP Wo * 20
ADDITIONAL FOR SELF Q,W 1Q

TOTAL NEEDS & DEPTH A,B,C,D,E,F7,15,M,Q,R,W * 3Q

NO. OF MICRO-ORDERS 4

COMMENTS

READS LARGE VECTOR Xc,Yc + E,A & V,L + F7,F15
PLOTS VECTOR Xc,Yc |F NON-ZERO
IF LlNKED; PRELOAD Q TO BEGINNING OF THIS GRAFN

RESET |IF REQUESTED; SERVICE INTERRUPT; RETURN CONTROL TO ORDER 1 OR
RETURN TO GNI & END

SYIA N1J 9471 w49,

gl°gy

DESCRIPTION OF GRAPHICS-A FUNCTION 'LARGE CARTESIAN POINTS' (GRAFN 5)

Plots a list of points in large Cartesian format (FORMAT 4.4,
p 4.7 immediately following a GRA HEADER (FORMAT 4.2, p 4.4).

The point co-ordinates (relative to the current display
co-ordinates X,Y) are read from core, added to the current X,Y position

and plotted (unconditionally on Xc,Yc = 0,0).

Preloading Q and the use of MI RST; INTRPT;LOOP are detalled under
M1 RST; INTRPT; LOOP.

INITIAL & FINAL VALUES

AS GRA LRG CTN VTRS

MICROCODE

1 GRA LRG CTN PNTS: DSQ Ml READ LRG CRD->E,A + S
2 DSQ MI PLT LRG CTN PNT + S
3 DMC JF15 GRA LRG CTN PNTS - Q
4 omMe M|l RST; INTRPT; LOOP + S

CALLS NEEDS DEPTH
Ml READ LRG CRD-E,A A,C,E,F7,15,M NIL
Ml PLT LRG CTN PNT A,D,E NIL
Ml RST; INTRPT; LOOP Wo * 2Q
ADDITIONAL FOR SELF Q,W 1Q
TOTAL NEEDS & DEPTH A,C,D,E,F7,15,M,Q,W * 3Q

NO. OF MICRO-ORDERS 4

COMMENTS

READS Xc,Yc + E,A & V,L > F7,F15
PLOTS POINT Xc,Yc RELATIVE TO CURRENT X,Y
IF LINKED, PRELOADS Q TO BEGINNING OF THIS GRAFN

RESET IF REQUESTED; SERVICE INTERRUPT; RETURN CONTROL TO ORDER 1 OR

RETURN TO GNI & END

SINd N1O 241 Vd9

plLogy

DESCRIPTION OF GRAPHICS-A FUNCTION 'LARGE POLAR VECTORS' (GRAFN 6)

Plots a list of large polar vectors (FORMAT 4.5, p 4.9)
immediately following a GRA HEADER (FORMAT 4.2, p 4.4).

The vector components R,8 are read from core, converted to

Cartesian co-ordinates and, if RCOS 6, R SIN & # 0,0, plotted.

Preloading Q and the use of MI RST; INTRPT;LOOP are detalled
under M| RST; INTRPT; LOOP,

INITIAL & FINAL VALUES

1
2
3
4
5
6
7

AS GRA LRG CTN VTRS

M1CROCODE

GRA LRG PLR VTRS:

DSQ
ABA
DSQ
pMC
DSQ
DMC

DMC

JF15

MI READ LRG CRD->E,A
A

Ml PUSH CQ

CQ LRG PLR~>CTN E,A

M| PLT LRG CTN ATR

GRA LRG PLR ¥TRS

ME RST; INTRPT;LOOP

->

->

+

->

>

->

S

(LS1 A

S

S
S
Q
s

NEEDS
CALLS NEEDS DEPTH
Ml READ LRG CRDE,A A,C,E,F7,15,M NIL
CQ LRG PLR+CTN E,A A,B,D,E,F8,9,M,N,R 3Q
M| PLT LRG CTN VIR A,B,D,E,R ' 1Q
MI RST; INTRPT;LOOP Wo * 2Q
ADDITIONAL FOR SELF Q,W 19, CQ

TOTAL NEEDS & DEPTH A,B,C,D,E,F7,8,9,15,M,N,Q,R,W,*3Q, 1CQ

NO. OF MICRO-ORDERS 7

COMMENTS

READS R,8 TO E,A (MSB 6 = -2M) & V,L TO F7,F15
ALIGN 8 IN A TO MSB = -Il

PUSH CQ FOR CQ ROUTINE FOLLOWING

CONVERTS R,@& TO Xc,Yc IN E,A

PLOTS VECTOR R COS 6, R SIN 8 |F NON-ZERO

IF LINKED, PRELOAD Q TO BEGINNING OF THIS GRAFN

RESET |F REQUESTED; SERVICE INTERRUPT; RETURN CONTROL TO ORDER 1 OR
RETURN TO GNI & END

SYIA ¥4 991 vid

Slegy

DESCRIPTION OF GRAPHICS-A FUNCT[ON_'LARGE_POLAR_POINTS' (GRAFN 7)

Plots a list of points in large polar format (FORMAT 4.5,

p 4.9) immediately following a GRA HEADER (FORMAT 4.2, p 4.4).

The point co-ordinates are read from core, added to the current
X,Y position and plotted (unconditionally on R COS 6, R SIN 8 = 0,0).

Preloading Q and the use of M| RST; INTRPT;LOOP are detailed under

Ml RST; INTRPT;LOCP.

INITIAL & FINAL VALUES

AS GRA LRG CTN VTRS

MICROCODE

1 GRA LRG PLR PNTS: DSQ
2 ABA
3 DSQ
4 ove
5 0SQ
6 oMC
7 oMC

JF15

Ml READ LRG CRD->E,A
A

M1 PUSH CQ

CQ LRG PLR->CTN E,A

Ml PLT LRG CTN PNT

GRA LRG PLR PNTS

M1 RST; INTRPT; LOOP

>

(LS)

>

¥

v O nu nu nu > un

NEEDS

DEPTH

CALLS - NEEDS

MI READ- LRG CRD+E,A A,C,E,F7,15,M NIL
CQ LRG PLR-CTN E,A A,B,D,E,F8,9,M,N,R 30

MI PLT LRG CTN PNT A,D,E NIL

MI RST;INTRPT;LOOP Wo * 2Q
ADDITIONAL FOR SELF Q,W 19, CQ
TOTAL NEEDS & DEPTH A,B,C,D,E,F7,8,9,15,M,N,Q,R,W* 30,1CQ

NO. OF MICRO-ORDERS 7

COMMENTS

READS R,8 TO E,A (MSB & = -271 & ¥,L TO F7,F15

ALIGN © IN A TO MSB = -TI

PUSH CQ FOR CQ ROUTINE FOLLOWING -

CONVERTS R, TO Xc,Yc IN E,A ,

PLOTS POINT R COS ©, R SIN 6 RELATIVE TO CURRENT X,Y
IF LINKED, PRELOAD Q TO BEGINNING OF THIS GRAFN

RESET IF REQUESTED; SERVICE INTERRUPT; RETURN CONTROM TO ORDER 1 OR
RETURN TO GNI & END

SINd H1d 941 WO

9l°gy

DESCRIPTION OF GRAPHICS-B FUNCTION "SMALL X THEN Y ¥ECTORS' (GRBFN 0) NEEDS

Small X then Y vectors are shown in FIGURE 4.5, p 4.10. Q CALLS @g - DEPTH
The two sides AX & AY of a right-angled triangle are plotted instead of the M 128%2%%¥MGaN N.,R,w, . NIL
hypotenuse, the order being aX then AY. Sequences of alternate horizontal MF READ SML CRD+D c,0,F7,15,M NIL .
and vertical lines are particularly useful when plotting Glock diagrams. Ml PLT SML CTNATR D B.,D,R NIL-
GRB HEADER fields LF, IT and MG are applicablé, and the comments on MG under Mt INTRPT ' Cx 1Q
GRA SML CTN VTRS are relevant. ‘ ADDIT|ONAL FOR SELF E 1Q

The vectors, coded in FORMAT 4.1, p 4.3 immediately TOTAL NEEDS & DEPTH 8,C,D,E,F7,15,M,N,R,W* 2Q

follow a GRB HEADER shown in FORMAT 4.6, p 4.10,

INITIAL & FINAL VALUES

AS GRA SML CTN VTRS, EXCEPT X THEN Y NTRS ARE NOT RESET NO. OF MICRO-QRDERS 14
MICROCODE S : COMMENTS
1 GRB SML XTHENY VIRS: DSQ MI 128%2%*MG->N - S PUTS 128.2CN FOR CYCLE CQUNT OF MI PLT SML CTN ATR D | CONSTANTS FOR
2 DMC(U) 0 - E CLEAR EU ENTIRE LIST
3 LL LOOP DSQ A MI READ SML CRD->D = § INCREMENTS IA IN C, READS AX,AY + DU,DL, RECORDS A,L
4 ABA(L) D -+ E PUTS aY IN EL (E NOW HOLDS Q,aY)
5 oMC(L) - 0) CLEAR DL (D NOW HOLDS 4X,Q}
6 ABA N - R puT 128.2%¢ IN R
7 ABA 4 D + NIL PREPARE Ze FOR YECTOR 4X,0 ZERO TEST
8 ' DSQ INZe MI PLT SML CTN NTRD » S IF aX # 0, PLOT AX YECTOR :
9 ABA N > R " put 128.2%C IN R
10 ABA E » D PUT 0,AY » DU,DL & PREPARE Ze
n DSQ INZe MI PLT SML CTN VIRD =+ S IF aY # 0, PLOT AY VECTOR
12 0SQ JINT MI INTRPT s S IF INTERRUPT REQUEST, INSERT MI INTRPT
13 4 OMC JF15 LL LOOP + s IF LINKED, RETURN CONTROL TO LL LOOP
14 ': DOS NIL ELSE RETURN TO GNI, END

SYLA ANHIX WS 849

Ll°gy

DESCRIPTION OF GRAPHICS-B FUNCTION 'SMALL X YECTORS RESET THEN INITIAL & FINAL VALUES
INCREMENT Y' (GRBFN 1) '

AS GRA SML CTN YTRS WITH X RESET, Y NOT RESET
FIGURE 4.6, p 4.11 shows this mode of plotting. The mode Is)

useful for plotting the horizontal lines of tables: the lines may be NEEDS

aligned on the left (AX>0) as shown in FIGURE 4.6 or on the right (AX<0Ql,

each line having a specified length and separation to the next Iine. The AS GRB SML XTHENY VTRS
comments on MG under GRA SML CTN VTRS are applicable. NO. OF MICRO-ORDERS 16

MICROCODE COMMENTS

1 GRB SML XRST 1Y VTRS: DSQ M1 128%2**MG->N + S PUTS 128.2MG->N FOR CYCLE COUNT OF MI PLT SML CTN VTR D | CONSTANT FOR
2 LL LOOP: DSQ MI READ SML CRD->D + S INCREMENTS IA IN C, READS AX,AY + DU,DL, RECORDS V,L ENTIRE LIST
3 ABA 0 E PUT AY IN EL

4 DMC (W) 0 + E CLEAR EU, E NOW HOLDS 0,AY

5 _ DMC(L) 0 + D CLEAR DL, D NOW HOLDS 4X,0

6 BBA N + R PuUT 128.2"C N R '

7 ABA D -+ NIL PREPARE Ze FOR VECTOR AX,0 ZERO TEST

8 DSQ JNZe Ml PLT SML CTN YTRD > S IF aX # 0, PLOT AX VECTOR

9 -~ TRF X1 RESET X TO X!

10 - DMC X'0300' > B PUT MG SELECTION FIELD IN B (MG IN W6,7)
11 i ABA B A W (8T) R PUT MG IN R TO MAGNIFY aY

12 ADR JNZR (RP) E (LS) E FORM ZMGAY IN E

13 ABA ‘ Y 40 E -+ Y INCREMENT Y BY 2"Cav (POINT NOT PLOTTED)
14 DbSQ JINT Ml INTRPT S IF INTERRUPT REQUEST, INSERT MI INTRPT
15 . DMC JF15 LL LOOP S IF LINKED, RETURN CONTROL TO LL LOOP

16 . DQS N

It ELSE RETURN TO GNI, END

SHLIA Al 1S¥X WS 999

8l eV

DESCRIPTION OF GRAPHICS-B FUNCTION 'SMALL Y VECTORS RESET THEN NEEDS
INCREMENT X' (GRBFN 2)

AS GRB SML XTHENY VTRS
This routine is similar to GRB SML XRST |Y VTRS with X and Y

interghanged. There are minor differences in the microcode; the code is
set out in full.

INITIAL & FINAL VALUES

AS GRA SML CTN VTRS WITH Y RESET, X NOT RESET . NO. OF MICRO-ORDERS 16

MICROCODE ‘ COMMENTS (DIFFERENCES FROM GRB SML XRST VTRS 1Y ONLY)
1 GRB SML YRST IX VTRS: DSQ Ml 128%¥2%*MG->N s s

2 LL LOOP ' DSQ MI READ SML CRD->D + S

3 ' ABA D (8T) E PUT aX IN EL

4 ‘ DMC(U) 0 + E E NOW HOLDS 0,AX

5 ‘ DMC(U) 0 : + D CLEAR DU, D NOW HOLDS 0,AY

6 ABA N + R

7 ABA D -+ NIL PREPARE FOR 0,AY ZERO VECTOR REST

8 DSQ INZe Ml PLT SML CTN VIRD =+ S IF &Y # 0, PLOT AY VECTOR

9 TRF Ylay) RESET Y TO Y1

1 oMe X'0300" > B

n ABA B A W (8DR :
12 ' ADR INZR (RP) E (LS) E ForM 2%Cax I E

13 ABA X 40-E =+ X INCREMENT X 8Y 2Cax

14 DSQ JINT M INTRPT + S

15 oMC JF15 LL LooP > S

16 , 0QS NIL

SULIA X1 L1SHA WS 839

6l°¢vY

DESCRIPTION OF GRAPHICS-B FUNCTION 'SMALL REPEATED POLAR VECTORS' (GRBFN 3)

FIGURE 4,7, p 4.12 shows a repeated A8,As vector. This GRBFN plots

‘a list of repeated vectors; i.e., for small A8 and aAs, plots a set of linked

circular arcs of different curvatures and total swept angles.

Following each small polar vector word (FORMAT 4.3, p 4.5}
is a repeat insert - a positive integer word which specifies the total number
of occurrences of the vector. These word pairs immediately follow a
GRB HEADER (FORMAT 4.6, p 4.10).

This description should be read in conjunction with GRA SML PLR
VTRS.

INITIAL & FINAL VALUES

AS GRA SML CTN VTRS REPEAT INSERT, VECTORS NOT RESET & MG = X{
ONLY

MICROCODE

1 GRB SML RPT PLR VTRS: DSQ M! READ SML PLR->E,N =+ S
2 ACC(RR) JCNB (WT) +1 C =+ C
3 LL RPT LOOP: DSQ MI COS,SIN(A+E1=>D + S
4 ABA N (LS) R
5 DSQ INZe MI PLT SML CTN¥TRD =+ S
6 ' DSQ JINT MI INTRPT - S
7 ABA JCRA 0 +0 M -+ M
8 DMC INZe LL RPT LOOP + S
9 DMC JF15 GRB SML RPT PLR ATRS + S
10 , QS ' NtL

NEEDS
CALLS NEEDS
Ml READ SML PLR+E,N C,D,E,F7,15,M,N
Ml COS,SIN(A+E)+D A,B,D,E,F8

Ml PLT SML CTN VTR D 8,0,R
M1 INTRPT ¥
ADDITIONAL "FOR SELF W

DEPTH

1Q
20
NIL
1
1

TOTAL NEEDS & DEPTH

A,8B,C,0,E,F7,15,M,N,R,W,* 30

NO. OF MICRO-ORDERS |0

COMMENTS

INCREMENTS 1A IN C, READS 46 TO E & ALIGNS TO @ IN A, aAs TO N, RECORDS V,L

n "

, READS REPEAT INSERT-TO M
UPDATES & IN A, PUTS COS 6 + DU, SIN © - DL
PUT 2as IN R FOR MI PLT SML CTN VTR

IF As # 0, PLOT VECTOR

IF INTERRUPT REQUEST, INSERT M! INTRPT
DECREMENT REPEAT BY 1 PREPARE Ze FOR ZERO TEST
IF MORE COPIES, LOOP & PLOT AGAIN

IF LINKED, RETURN TO BEGINNING OF THIS GRBFN
ELSE'RETURN TO GNI, END

SIGNIFICANCE
OF BIT WEIGHTS
AS GRAFN SML PLR VTRS

SUIA ¥ld LdY WS €99

(VAR

DESCRIPTION OF GRAPHICS~-B FUNCTION 'LARGE X OR Y VECTORS' (GRBFN 4)

By restricting a vector to be either torltzontal or vertical,
vector coding can be compressed 2:1. Many plotting applications use mostly:
horizontal or vertical lines. The data words for this routine (FORMAT
4.7, p 4.13) are individually tagged as horizontal or vertical and reset
or not; they also contain V and L bits. The vectors immediately follow a
GRB HEADER.

INITIAL VALUES

C: IA THE INSTRUCTION ADDRESS (ADDRESS QF GRB HEADER)
(1A+1) ETC. IN CORE: X OR Y YECTOR WORDS ’
Q: RETURN ADDRESS IN GNI ROUTINE

FINAL VALUES

C: ADDRESS OF LAST VECTOR IN LIST
(1A+1) ETC.: RESTORED

MI CROCODE

1 GRB LRG X/Y VTRS: DSQ MI READ X/Y CRD->E,A =+

2 DSQ Ml PLT LRG CTN ¥TR =+

3 TRF JF13 X1aX, Y1aY

4 DSQ JINT Ml INTRPT > s

5 oMC JF15 GRB LRG X/Y VTRS + s

6 QS NIL

NEEDS

CALLS NEEDS DEPTH

Ml READ XAY CRD-E,A A,C,E,F7,12,13,15,M,R NIL

Ml PLT LRG CTN ¥TR A,B,D,E,R 1Q
Ml INTRPT _ * 1Q
ADDITIONAL FOR SELF NIL 1Q

TOTAL NEEDS & DEPTH A,8,C,D,E,F7,12,13,15,M,R* 20

_NO. OF MICRO-QRDERS 6

COMMENTS

PUTS X,Y » X'Y'; X%, OR Q,Yc TO E,A: 4,%X/Y, RST,L » F7,12,13,15
PLOTS XC OR YC ¥ECTOR IF NON-ZERO _

|F RESET, RESET DISPLAY TO,X,Y VALUE IMMEDIATELY PRECEDING THIS YECTOR
IF INTERRUPT REQUESTED, INSERT M| INTRPT

tF LINKED, RETURN TO BEGINNING OF THIS GRBFN

ELSE RETURN TO GNI,_END

SHIA A/X 991 849

12-ev

DESCRIPTION OF GRAPHICS-B FUNCTION 'LARGE X OR Y POINTS' (GRBFN 5)

NEEDS
This routine is almost identical to GRB LRG X/Y VTRS, the only CALLS , . NEEDS DEPTH
difference being a call to MI PLT LRG CTN PNT rather than to MI PLT LRG CTN MI READ X/Y CRD-E,A ACLEFT,12,13,15,MR - NIL
MI PLT LRG CTN PNT A,D,E CONIL
VIR,
M1 INTRPT * 10
ADDITIONAL FOR SELF NIL 10
* FORMATS, INITIAL & FINAL VALUES TOTAL NEEDS & DEPTH A,C,D,E,F7,12,13,15,M,R *20

AS GRB LRG X/Y VTRS NO. OF MICRO-ORDERS 6 .

)
MICROCODE COMMENTS %
* —
READ POINT FOR VECTOR & REPLACE ORDER 2 OF GRB LRG X/AY NTRS BY, 3
2 © DSQ Ml PLT LRG CTN PNT - S PLOTS POINT AT XC OR YC RELATIVE TO CURRENT X,Y %E
2
e
w
DESCRIPTION OF GRAPHICS-B FUNCTION 'LARGE X OR Y CONSTANT SEPARATION POINTS' NEEDS
(GRBFN 7)
AS GRB LRG X/Y PNTS, EXCEPT ADDITIONAL NEEDS FOR SELF BECOME
This routine is almost Identical to GRB LRG X/Y CS NTRS. The reset N, NOT NIL
“Yc option enables a conventional graph, i.e., a set of ordinates at
regularly spaced abscissae, to be plotted efficiently (points P1,P2 .. of TOTAL NEEDS & DEPTH A,C,D,E,F7,12,13,15,M,N,R 2Q
FIGURE 4.8, p 4.14).
FORMATS, INITIAL & FINAL VALUES
. I}
AS GRB LRG X/Y CS VTRS NO. OF MICRO=ORDERS 13 3
-
3
2
MICROCODE COMMENTS o
w
~ READ POINT FOR VECTOR, RENAME LL Y VIR INC X TO LL Y PNT INC X, AND REPLACE ORDER 4 OF GRB LRG X/Y CS VTRS BY, 2
4 ‘ DSQ MI PLT LRG CTN PNT + S PLOTS POINT AT XC OR YC RELATIVE TO CURRENT X,Y a

2z sV

DESCRlPTION OF GRAPHICS-B FUNCTION 'LARGE X OR Y CONSTANT SEPARATION VECTORS'

(GRBFN_6)

This routine extends GRB LRG X/Y VTRS by displacing the display
beam by a constant amount (constant separation, CS) at right angles to the
direction of the plotted vector. FIGURE 4.8, p 4.14
Y vectors which are separated by a constant X displacement of CS. The sign

shows a list of

of the displacement is specified by CS; it is independent of the sign of
X or Y.
c c

INITIAL & FINAL VALUES

AS GRB LRG X/Y VTRS, EXCEPT FOR THE INSERTION OF THE 2's COMPLEMENT
- "CONSTANT SEPARATION' WORD, CS, IMMEDIATELY FOLLOWING THE GRB

HEADER.
M1 CROCODE

1 GRB LRG X/Y CS VIRS: ACC(RR) JCNB (WT) . C » C
2 ABA JCRA (WT) M o+ N

3 LL LOOP: DSQ M| READ X/Y CRD->E,A =+ S

4 0SQ MI PLT LRG CTN VIR + S

5 TRF JF13 XX, Y1y

6 ABA N »> E

7 DMC JF12 LL Y VTR INC X + S

8 ABA Y 40 E -+ Y

9 LL TAIL: DSQ JINT MI INTRPT + S
10 © pMC JF15 LL LOOP > s
" 0gS NIL
12 LL Y VIR INC X: ABA X 40 E -+ X
13 ‘ s

DMC ' LL TAIL -+

NEEDS

AS GRB LRG X/Y VTRS, EXCEPT ADDITIONAL NEEDS FOR SELF BECOME
N, NOT NIL

TOTAL NEEDS & DEPTH A,B,C,D,E,F7,12,13,15,M,N,R 2Q

NO. OF MICRO-ORDERS 13

COMMENTS

INCREMENT A IN C READ 'CONSTANT SEPARATION'-»M

STORE CS IN N FOR ENTIRE LIST

PUTS X,Y+X Y ; Xc,0 OR O0,Yc IN E,A; V,X/Y,RST,L+F7,12,13,15
PLCTS X OR Y VECTOR |F NON-ZERO

IF RESET, RESET DISPLAY TO X,Y VALUE IMMEDIATELY BEFORE THIS VECTOR
PUT CONSTANT SEPARATION + E

IF Fi2, 1.E, IF Y VECTOR, GO TO LL Y VTR INC X

X VECTOR .% INCREMENT Y BY 'CONSTANT SEPARATION' NOW IN E

IF INTERRUPT REQUESTED, INSERT M| INTRPT

IF LINKED, RETURN TO LL LOOP

ELSE RETURN TO GNI, END

Y VECTOR .'. INCREMENT X BY 'CONSTANT SEPARATION' NOW IN E
RETURN TO COMMON TAIL OF ROUTINE

SYIA SO A/X Y71 QU9

1 TSN/

DESCRIPTION OF GRAPHICS-B FUNCTIONS 'SYMBOL PAIRS' (GRBFN 10)

control, through SYMBOL TABLE, to the specific symbol execution routines
(SYM 0 to SYM 255).
is executed before the symbol
execution, control is returned to this routine (via the terminating QS
transfer of SYM) and the next symbol in the list then drives SYMBOL TABLE,

etc.

This routine read§ symbol-pair words from core and transfers

in the lower byte.

After each symbol

The symbol list is terminated by the END-OF-LIST symbol which

returns control to the GNI sequence by popping the Q stack twice:

The interrupt test is applied after each symbol is executed.

INITIAL VALUES

C: 1A, THE INSTRUCTION ADDRESS (AT GRB HEADER ADDRESS)

(1A+1), ETC. IN CORE:
BITS 9-15 OF GRB HEADER

Wi-7:

Q: RETURN ADDRESS IN GNI ROUTINE

MICROCODE

1

2
3
4
5
6
7
8
9

GRB SYMBOL PAIRS:
LL READ SYM PAIR->M:

DMC
ACC(RR)
ABA(U)
DSQ
DSQ
ABA(L)
DSQ
DSQ
DMC

JCNB (WT)
JCRA (WT)

JINT

JINT

SYMBOL-PAIR WORDS

0) >
+1 C‘-»

M (8T
SYMBOL TABLE -
MI INTRPT -
M >

SYMBOL TABLE
Ml INTRPT
LL READ SYM PAIR-+M

+

In each symbol-pair word, the symbol in the upper byte

first to
NIL (this destroys the return address to GRB SYMBOL PAIRS) and then to S

(Q holds the GNI return address on entry to the symbol execution routines).

w v n O nu unu g O o

FINAL VALUES

C: THE ADDRESS OF THE FINAL SYMBOL-PAIR WORD
(1A+1), ETC. IN CORE: AS INITIAL

NEEDS

CALLS NEEDS DEPTH
SYMBOL TABLE D, SYM 0 - SYM 255

Ml INTRPT * 19
SELF NEEDS & DEPTH C,D,M, 19
TOTAL NEEDS & DEPTH C,D,M,SYM 0-SYM 255,% 2Q

NO. OF MICRO-ORDERS 9
0 7 8 15
SYMBOL 0 SYMBOL 1

COMMENTS

CLEAR D

INCREMENT |A IN C & READ SYMBOL PAIR TO M
PUT UPPER SYMBOL TO DL

GO TO SYMBOL TABLE

ON RETURN FROM SYMBOL EXECUTION (EXCEPT END-OF-LIST SYMBOL),

PUT LOWER SYMBOL TO DL
GO TO SYMBOL TABLE

ON RETURN FROM SYMBOL EXECUTION (EXCEPT END-OF-LIST SYMBOL), TEST FOR
INTRPT

READ NEXT SYMBOL PAIR

TEST FOR
INTRPT

SYIVd 10GHAS 849

vZ-ev

DESCRIPTION OF GRAPHICS-B FUNCTION 'MODIFY X,Y,8' (GRBFN 12) EINAL VALUES

X: | AS INITIAL, CLEARED,
Y: | INCREMENTED BY,OR SET TO
A: | 2's COMPLEMENT DATA WORDS

This function is épecified by a GRB HEADER and up to three
2's-complement data words which immediately follow it. FORMAT A3.1, thls page,
detalls the header. The data words are interpreted in sequence by

scanning the header field from bits 9 to 14. The four possible outcomes for.) 0 4 9 10 11 12 13 14 15
X (bits 9 and 10) are, ' GRB troopx j Yo

0,0 X unchanged FORMAT 3.1

0,1 X incremented by following data word

1,0 X cleared IFBIT 9=1 CLEAR X

1,1 X set fo first data word, "M 10 = 1 ADD NEXT WORD TO X (16-BITS, 2's COMP.)
and similarly for Y and 6. Angle 8 is held in register A. " " 11 =1 CLEARY

" " 12 =1 ADD NEXT WORD TO Y (16-BITS, 2's COMP.)

INITIAL VALUES "M o43 =1 CLEAR @

C: A, THE INSTRUCTION ADDRESS, GRB HEADER ADDRESS) " m 14 =1 ADD NEXT WORD TO © (BITS 0-14)

(1A+1), ETC. IN CORE: A LIST OF UP TO THREE 2's COMPLEMENT WORDS TO

BE ADDED TO X,Y, OR 6 INTERPRETED IN .
CONJUNCTION WITH HEADER CALLS NIL

Q: RETURN ADDRESS TO GNI ROUTINE ' NEEDS A,C,F9-14,M DEPTH 1Q

WU: ::BITS 8-15 OF THE GRB HEADER ' NO. OF MICRO-ORDERS 14
MICROCODE COMMENTS
1 GRB MODIFY X,Y,THETA: ABA W o(8T) M PUTS HEADER BITS 9-14 IN M9=14
2 FBC(MF) M9-14>F9-14) COPY HEADER BITS 9-14 TO F9-14 (NOW AVAILABLE AS J INDICATORS)
3 DMC JF9 0 X IF HEADER BIT 9 = 1, CLEAR X
4 DMC JF11 0 Y " " "1 =1, "oy
5 DMC JF13 0 > A nooom "3 =1, " A
6 DSQ- JF10 LL READ NEXT WORD + S |F HEADER BIT 10 = 1) GO TO LL READ NEXT WORD
7 -ABA JF10 X +0 M -+ X & ADD WORD TO X
8 DSQ JF12 LL READ NEXT WORD + S IF " 12=1, "y
9 ABA JF12 Y +0 M - Y
10 ' DSQ JF14 LL READ NEXT WORD + S IF " 14 =1, " A
11 ABA JF14 A +0 M > A
12 DQS NIL RETURN TO GNI, END
13 LL READ NEXT WORD: ACC(RR) JCNB (WT) +1 C =+ C INCREMENT 1A IN C & READ NEXT DATA WORD + M
14 ’ AQS JCRA (WT) NIL

WAIT UNTIL DATA AVAILABLE IN M THEN RETURN VIA Q

VI3HL A'X A41QON Y9

SCeY

DESCRIPTION OF MICRO-ROUTINE 'READ SMALL CO-ORDINATES TQ D' FINAL VALUES

C: IA+1

(1A+1) IN CORE: RESTORED.

DU: AX OR A6 LSB = 1 DISPLAY INCREMENT OR N.278 RADIANS.
DL: AY OR As Ltsg=1 " "

F7,F15: V,L. '

This routine reads and restores a small co-ordinate patr (one
16-bit word, FORMAT 4.1, p 4.3 or FORMAT 4.3, p 4.5 from core store
location IA + 1, where IA is the initial value of the instruction address
held in register C. The core word is right shifted into D to remové the
unblanking (V) and link (L) bits from the Cartesian or polar ’
co-ordinates. Bits V & L are recorded in F7 and F15 respectively.

CALLS NIL.

INITIAL VALUES
NEEDS C,D,F7,15,M.

C: IA, THE INSTRUCTION ADDRESS

(1A+1) IN CORE: AX,V; AY,L OR 48,V; As,L NO. OF MICRO-ORDERS 4
MI CROCODE COMMENTS
1 MI READ SML CRD->D: ACC(RR) JCNB (WT) # C =+ C INCREMENT IA IN C & START RR CORE CYCLE
2 ABA(U/L) JCRA (WT) M (RS) D PUT AX,AY OR 46,8s TO D
3 FBC(MF) M7+F7,M15+F 15 RECORD V,L + F7,F15
4 - ‘

DQS NIL RETURN, END

Q+Q40 WS aV3Y W

9z" ¢V

DESCRIPTION OF MICRO-ROUTINE.'READ SMALL POLAR CO-ORDINATES TO E,N'

This routine begins with Ml READ SML CRD+D for polar co-ordinates,
then extends 1t by,

1. expanding A8 to 16 bits and aligning it ot the @ format
described In Ml SIN(D TRC 9)+D.
2. expanding As to 16-bit positive Integer format in N.

INITIAL VALUES

C: 1A, THE INSTRUCTION ADDRESS
(1A+1) IN CORE: A8,V; as,L AS FORMAT 4.3, p 4.5.

FINAL VALUES

C: IA+H1
(IA+1) IN CORE: RESTORED
E: 46, ALIGNED TO © FORMAT

0 1 2 718 9 15
T : : T

'1:}11.: 48 i} 0's Ll

-1 n/2 n/4 n.2~8 n.2-18

BITS 0,1 = BIT 2 BITS 9-15 = 0's

MI CROCODE

1 MI READ SML PLR->E,N: DSQ MI READ SML CRD~>D + 5
2 DMC X'F,F,0,0' . + N
3 ABA N A D (RS)E
4 AQS N A D -+ N

FINAL VALUES (CONT)

N: 4s POSITIVE INTEGER WORD

BITS 0-9 = 0's

LSB = 1 DISPLAY INCREMENT

F7,F15: v,L

NEEDS
CALLS NEEDS DEPTH
MI READ SML CRD D C,D,F7-15,M NIL
ADDITIONAL FOR SELF EN 1Q
TOTAL NEEDS & DEPTH C,0,E,F7-15,M,N 1Q

NO. OF MICRO-ORDERS 4

COMMENTS

PUTS 46,As TO DU,DL & V,L TO F7,F15

1's TO NU, O's TO NLTO SELECT a6

A8 EXTENDED TO 16 BITS & ALIGNED TO & (MSB = -T) : o
(IF as = 0, Ze = 1 ON EXIT)

1's OF NL SELECT As RETURN, END

NT3eMTS WS QY3 I

Lzoy

DESCRIPTION OF MICRO-ROUTINE 'READ LARGE CO-ORDINATES TO E,A!

Reads a large-format Cartesian or polar co-ordinate palr from
core store locations IA + 1 and IA + 2 (IA is the Instruction address, held
In register C), and places Xc (or R) in register E and Yc (or 6) In register
A. FORMAT 4.4, p 4,7, shows the core representation of large
Cartesian co-ordinates and FORMAT 4.5, p 4.9, shows the core

representation of large polar co-ordinates.

All co-ordinate words from core are right shifted; thus, Xc,Yc and
R are aligned in E or A to LSB = 1 display increment. Angle 8 In A, however,
after the right shift, has MSB = -2II; hence, A must be left shifted by the
calling sequence to align 8 to the 6 format of MI SIN(A)+D, etc.’

INITIAL VALUES

C: 1A, THE.INSTRUCTION ADDRESS
(1A + 1) IN CORE: Xc,V or R,V
(1A + 2) IN CORE: Ye,L or 8,L

MICROCODE

1 MI READ LRG CRD->E,A; ACC(RR) JCNB (WT) #H C + C

2 ABA JCRA (WT) M (RS) E

3 FBC(CF) 0+F7

4 FBC(SF) JBd15 1+F7

5 ACC(RR) JCNB (WT) 41 C + C

6 ABA JCRA (WT) M (RS) A

7 FBC(MF) M15+F15 -
8 DQS NIL

FINAL VALUES

C: 1A+ 2 .
(1A + I);(IA + 2) IN CORE: RESTORED
" E: Xc or R, LSB = 1 DISPLAY INCREMENT
A: Yc (LSB = 1 DISPLAY INCREMENT) or 6 (MSB = -21)
(*NOTE: © IN REGISTER A MUST BE LEFT SHIFTED TO ALIGN WITH
6 FORMAT OF M| SIN(A)+D, ETC.)
F7,F15: V,L THE UNBLANKING AND LINK BITS

CALLS NIL.

NEEDS A,C,E,F7,15,M.

NO. OF MICRO-ORDERS 8.

COMMENTS

INCREMENT 1A, READ Xc OR R & ¥ TO M
PUT Xc OR R TO E, ¥ + Bd15

CLEAR F7

IFV = 1 set F7 v TF7
INCREMENT |A, READ Yc OR @ & L TO M
PUT Yc OR 8 TO A

L+ F15

RETURN, END

¥'3 01 G20 o1 avd W

82° ¢V

DESCRIPTION OF MICRO-ROUTINE 'READ LARGE X OR Y CO-ORDINATE TO E,A'

This routine reads a large X or Y co-ordinate word (FORMAT 4.7,
p 4.13) from core location IA + 1. |f an X word is coded, i.e., If bit
12 = 0, XC is placed in E AND A is cleared; whereas If bit 12 =1, YC is
placed in A and E is cleared. A record of bit 12 Is held In F12.

RESET (bit 13) is recorded in F13, and the V & L bits are recorded
in F7 & F15 respectively. The routine begins bystoring X,Y in X1,Yl: +this
enables the reset option to be extended to each item plotted. The procedure
assumes that XC is Intended and puts the co-ordinate into E and clears A;
if the assumption is incorrect (F12 = 1) orders 10 & 11 transpose E & A.

INITIAL VALUES

C: 1A, THE INSTRUCTION ADDRESS
(1A+1) IN CORE: XC OR YC, X/Y, RST, V & L WORD

MICROCODE :

| M1 READ X/Y CRD->E,A: TRF X1, vyl

2 ACC(RR) JCNB (WT) +1 C =+ ¢
3 FBC(CF) 0+F7

4 ABA JCRA (WT) M (RS) E
5 FBC(SF) JBel5 1+F7 .

6 FBC(MF) M12,13,15+F12,13,15

7 DMC 3 + R
8 ADR INZR (RP} E RSIE
] DMC 0 - A
10 ' ABA JF12 E » A
1 ' DMC JF12 0 ' > E

12 : 0QS NIL

FINAL VALUES

C: |AH

(1A+1) "IN CORE: RESTORED

E: IF X/Y BIT = '0', THEN XC ELSE ZERO
A: " ., " ZERO " YC
F7,12,13,15: Vv, X/Y, RST, L

Q
=
o
)

NIL

NEEDS A,C,E,F7,12,13,15,M,R

NO. OF MICRO-ORDERS 12

COMMENTS

COPY X,Y TO X1,Yl SO THAT DISPLAY CAN BE RESET AFTER EACH ITEM
INCREMENT |A IN C, READ XC OR YC; X/Y, RST, ¥ & L TO M

CLEAR F7

¥ TO Bel5 V-+F7

IF Bel5, SET F7

X/Y IN F12, RST IN Fi3, L IN Fi15

PUT 3 IN R TO COUNT SHIFTS

ASSUMES XC, E NOW HOLDS XC ALIGNED LSB = 1 QISPLAY INCREMENT

" " A CLEARED
IF YC, OVERWRITE ASSUMED ZERO IN A WITH YC
o, " " XC IN E WITH ZERO
RETURN, END

v 3+0¥0 A/X QV3d Id

62°5y

DESCRIPTION OF MICRO-ROUTINE 'PLOT SMALL CARTESIAN VECTOR DU,DL'

Plots the Cartesian vector with components DU,DL each of which are
2's complement byte integers.

Plotting requires 128 cycles\of the arithmetic unit In APV (U/L)
mode, with overflows and underflows automatically incrementing and
decrementing the display registers as described in SECTION 3.2, p 3.8.
Magnification is achieved by proportionally increasing the number of cycles.
In general, the vector plotted is,

n2~7 (DU,DL) . where n Is the Initlal

value in counter R. The vector increments are added to the initial display
co-ordinates In the X,Y registers.

Approximately constant plotting rates for vectors are achieved by
normal ising vectors before plotting. A vector can be normalised if both
components can be normalised, i.e., a normalise step (double DU, double DL
and halve the count in R) is executed if the most significant two bits of
DU are identical and if the most significant two bits of DL are identical.
Indicators JNNMU and JNNML assist normalisation,

JNNMU = BeO & Bel ,» JNNML = Be8 © Be9

(J Indicator NNMU (NOT NORMALISE UPPER) is the EXCLUSIVE-OR of
Be0 and Bel, which are temporary copies of DU bits 0 and 1. Similarly for
JNNML.)

The sign bits of DU and DL are extended to the accumulators BU and
BL respectively. Thus, if DU is negative, the initial value of BU is set to
-1; this ensures exactly |DU| underflows throughout 128 accumulation cycles.
As an example, consider DU = -1; after 128 cycles this accumulates to -128
which, without an initial value of -1 in BU, would not produce the single
underflow required as a 2's complement byte accommodates -128. A DU value of
+1 however, accumulates to +128 which, with an initially cleared BU, does

produce the required single overflow.

ENTER PLT SML CTN VIR D

EXTEND SIGNS
OF DU,DL

T0 BU,BL

UL NORMAL [SE:

LL PLT NORMALISED

VTR:d,
PLOT
NORMAL I SED
YECTOR
HALVE R QS, END
DOUBLE DU’DL

INITIAL VALUES

DU: HORIZONTAL COMPONENT, 2's COMPLEMENT INTEGER BYTE
DL: VERTICAL " " " " "
R: n, NUMBER OF CYCLES, POSITIVE INTEGER WORD

CONDITION

DU,DL # 0,0

G 91A N1D WS Ld W

05" SV

FINAL VALUES

X: X+ n2” DU
Y: Y_+ n2770L
o]

CALLS NIL

MICROCODE

1 MI PLY SML CTN VIR D: ABA

2 oMC

3 oMC (W)
4 oMC(L)
5 LL NORMALISE: oMC

6 oMC

7 ABA

8 ABACU/L)
9 oMC
10 LL PLT NRMLSD VTR: APV
- 005

LL PLT NRMLSD VTR
LL PLT NRMLSD VTR

LL NORMALISE

Z @ »w O D Vv O OO

NEEDS B8,0,R

NO. OF MICRO-ORDERS 11

COMMENTS

DU+Be0, 1;0L+Be8,9 FOR SIGN & NORMALISE TESTS
CLEAR B
IF DU < 0 PROPAGATE 1's THROUGH BU EXTEND SICNS OF
IF DL < 0 " " — DU,DL TO BU,BL
IF DU CANNOT BE NORMALISED GO TO LL PLT NRMLSD VTR
ELSE IF DL CANNOT BE NORMALISED GO TO LL PLT NRMLSD VIR
ELSE HALVE CYCLES IN R
DOUBLE VECTOR DU,DL
GO TO LL NORMALISE
PLOT NORMALISED VECTOR
RETURN, END

(INOD) Q ¥1A N1J WS 11d IW

ls gy

DESCRIPTION OF MICRO-ROUTINE 'PLOT LARGE CARTESIAN VECTOR E,A'

Plots the Cartesian vector with components E,A each of which are.

"~ 2's complement integers (with the restriction that within each component word,

bits 0 & 1 are identical).

The large vector is plotted as a series of scaled sections, each of
which is within the range of MI PLT SML CTN VTR D.)

A

o

In the
illustration, vector OP Is

halved three times

(0P, ,0P,,0Pg) before it
falls within the range of
Ml PLT SML CTN VTR D.

‘RANGE OF r_—
MI PLT SML l 0 !
CTN VIR D
R

Vector OPg Is
plotted using MI PLT SML
CTN VIR D and subtracted
from OP leaving the

M e e e e e = == =

residual vector OP' which
then replaces OP in the above argument.

(The small range vector is subtracted before entry to
Ml PLT SML CTN VTR D because it could be normalised before plotting; e.g., If
E,A initially falls within the small range.) |If initially E,A = 0,0, no

points are plotted, i.e., the procedure is bypassed.

The vector B,D is within the range of MI PLT SML CTN VIR D if the
sign bits of B & D each propagate down to bit position 9.

INITIAL VALUES

E: HORIZONTAL COMPONENT
A: VERTICAL COMPONENT

2's COMPLEMENT INTEGERS
RESTRICTION: Eq = E; , Ay = A,

1L RESIDUAL VTR+B,D:
COPY RESIDUAL
VECTOR TO 8,0
LL TEST 1
QS, END FOR SML VTR
8,0 IN
SMALL RANGE n HALVE 8,D
HALVE BD:
Y
SUBTRACT VECTOR
SCALED TO SMALL
RANGE
A
PLOT SMALL VECTOR
AS FART OF
LARGE VECTOR
FINAL VALUES
X: XO + E
Y: Yo + A
NEEDS
CALLS NEEDS DEPTH
MI PLT SML CTN VTR O B8,0,R NIL
ADDITIONAL FOR SELF A,E 1Q
TOTAL NEEDS & DEPTH A,B,D,E,R 10

NO. OF MICRO-ORDERS 22

d1A R1D 991 1d IR

asrey

—_

VW O NOWM B W,

~N OB W N - O

N NN = =
N —-— O Vv ™

MiCROCODE

Ml PLT LRG CTN VTR:

LL RESIDUAL VTR->B,D:

LL TEST FOR SML VTR:

LL HALVE B,D:

ABA
OMC
ABA
OMC
DQS
ABA
ABA
ABA
ABA
DOMC
ABA
ABA
ABA
ABA

 ABA

ABA(L)
DMC
DSQ
bDMC
ABA
ABA
DMC

INZe

JINZe

JNZeU

JINZeU

JNZeU
JINZeU

E

LL RESIDUAL VTR->B,D
A

LL RESIDUAL VTR->B,D

£
A
B
B
LL HALVE B,D
D
]
LL HALVE B,D
B +1 E
A+ D
B
128

Ml PLT SML CTN VTR D
Ml PLT LRG CTN VTR
B
D
LL TEST FOR SML VTR

(RS)
(RS)

->

NIL

NIL

NIL

NIL

NIL

NIL
NIL

“»w O W »w »w VW O > m

COMMENTS

PUT E TO Ze FOR ZERO TEST TEST

IF E # 0 THEN GO TO LL RESIDUAL VTR-+B,D E,A =0,0
ELSE PUT A TO Ze FOR ZERO TEST

IF A # 0 THEN GO TO LL RESIDUAL VTR+8B,D

ELSE RETURN, END
COPY RESIDUAL E TO B
COPY RESIDUAL A TO D

COPY RESIDUAL E,A TO B,D FOR
REDUCTION TO SMALL VECTOR

PUT By.g + ZeU TO TEST IF O's PROPAGATE DOWN TO By (B;=B;)

IF By-g # O's THEN——

ELSE PUT Dy—g TO ZeU
IF DI-B # 0's THEN ———>

[PUT Bj-g TO ZeU TO TEST PROPAGATION OF 1's
IF Bi-g # 1's THEN GO TO LL HALVE 8,D

| ELSE PUT Dj-g TO ZeU

[PUT Di-g TO ZeU

IF Dj-g = 1's THEN GO TO LL HALVE 8B,D

ELSE -] SUBTRACT SCALED -
VECTOR
PUT HORIZONTAL COMPONENT

| ELSE-% SUBTRACT SCALED -
ﬁl VECTOR
(NOW REDUCED TO SMALL RANGE) TO DU

LOAD 128 -~ R FOR MI PLT SML CTN VTR D (NOTE: VERTICAL COMPONENT ALREADY

PLOT SMALL VECTOR AS PART OF LARGE VECTOR

RETURN TO BEGINNING
HALVE B
HALVE D

IN DL)

GO TO TEST FOR SMALL VECTOR

(INGD) ¥IA NID 94T 17d TW

cetey

DESCRIPTION OF MICRO-ROUTINES 'PLOT SMALL CARTESIAN POINT DU,DL' AND -
'PLOT LARGE CARTESIAN POINT E,A'

The first routine expands the small Cartesian components (initially
held in DU,DL) to full word lengths in registers £,0; magnifles them by
left-shifting registers E,D MG times; and adds the magnified components to
the display registers X,Y." The beam is then unblanked by an APP (arithmetic
& plot point) order which also returns control to the calilng sequence. MG
must be held in R before entering the routine.

The secdnd routine simply adds Xc (held in E) and Yc (held In A)
to X and Y respectively, D being used as an intermediate register for addition

of Yc. MG does not apply to large co-ordinates.

INITIAL VALUES

Ml BLT SML CTN PNT D

DU: aX 2's COMPLEMENT BYTE
DL . AY n” n "
R: M3, MAGNIFICATION EXPONENT

Ml PLT LRG CTN PNT

E: Xc 2's COMPLEMENT WORD

A: YC " " n
MICROCODE
1 Ml PLT SML CTN PNT D: ABA o D (8T) E
2 DMC(U) 0 + E
3 . DMC(W) 0 + D
4 DMC(U) JBe8 X'FF! : + E
5 _ DMC(U) JBeO X'FF! + D
6 ABA JNZR (FW) E (LS) E
7 ADR JNZR (BK) D (LS) D
8 ABA S+1 +1 + S
9 MI PLT LRG CTN PNT: ABA A + D
10° ' ABA X +0 E =+ X

FINAL VALUES

G
G

X: Xo + ZM AX OR Xo + Xc
Y: Yo + 2M aY OR Yo + Yc
E,A: FOR Ml PLT LRG CTN PNT, AS INITIAL

Xo, Yo

NEEDS (Ml _PLT SML CTN PNT D) D,E,R.

NEEDS (Ml PLT LRG CTN PNT) A,D,E.

NO. OF MICRO-ORDERS 13

COMMENTS

PUT AX FROM DU TO EL (SIGN AX+Be8, SIGN AY»Be0)

CLEAR EU

CLEAR DU

EXTEND SIGN BIT OF aX, E NOW HOLDS WORD aX
" moomo o may, D" " "oay

DOUBLE AX,AY MG TIMES

(INITIAL R = MG)

SKIP NEXT ORDER

PUT Yc TO D

a0 2Y€ aX (OR Xe) TO X

INITIAL X,Y

INd NLO 947 17d IW ¥

G INd NID WS 11d IW

veev

MICROCODE (CONT)

1
12
13

ABA
ABA
APP

+0

COMMENTS (CONT)

ap 26 Ay (0R Yo) TO Y

DELAY FOR BEAM SETTING
UNBLANK POINT, RETURN, END

(INOD) INd N1J3 9971 11d IW ¥

G INd N1O WS 11d IW

sEgy

DESCRIPTION OF TABLE SIN(DL)+D : FINAL VALUES

’ . 1 = - -15

A direct tabulation of the .sine function for 129 equally spaced D: SIN(DL), 2's COMPLEMENT WORD, MSB 2, ERROR 2

values of the argument (held in DL) in the first quadrant. A MSB of -2 9 1 2 15
. T T 7 T
is chosen for SIN(DL) to accommodate the range -1 to +1 inclusive which Is l! il SIN DL i1 l
needed by related microroutines. 472 i ;_1 14
- 2

Byte DL is extended to full word length in D and added to the base
address of the table (defining 'base' as the ROM address of the fap|e entry.
corresponding to argument = 0). The value of SIN(DL) overwrites the
argument In register D and control is returned via Q automatically as each
table entry 1s a DQS order. ' CALLS =~ NIL
INITIAL VALUES

DL: ARGUMENT, A POSITIVE 8-BIT ANGLE

RANGE ~ 0(N.278) m/2 RADIANS - ' NEEDS D
8 9 15
1] { : l
Z it OL e
/7 ¥ 1 -8
n/2 n/4 . n.2 NO. OF MICRO-ORDERS 131.
MICROCODE : COMMENTS
1 TABLE SIN(DL)+D: DMC(W) 0 + D CLEAR DU
2 ABA : S+1 +,0 D ~» S ADVANCE BY ARGUMENT +1 TO ENTER TABLE.
3 DQS X'0000' + D SIN 0 (=0) 7O D RETURN, END.
4 DQS . D SIN 1.2°8 - " " "
. " . n o e " " " 129 ENTRIES
N . -8

. _ . . .o " ETC . . . ocnz=*)m/2
131 ' DQS X'4000" + D SIN 1/2 (=X'4000') 7O D RETURN, END

Q+{IQINTS F1av1

9¢ ey

DESCRIPT ION_OF MICRd-ROUTINE 'SIN(D TRUNCATED TO 9 BITS)=+D' QUANDRANTS 3 & 4 (8 = 1)

This routine evaluates the sine of an angle 8 which is first SIN(-TI+x) = =SIN x

truncated to 9-bits to match the angular resolution of the flrst quadrant.: :
sine table, 'TABLE SIN(DL)+D'. R ' . Thus, for quadrants 3 & 4, the procedures for quadrants 1 & 2
respectively are followed, but the results are negated.
TRUNCAT ION
(VI 7 '8 : 15 INITIAL VALUES
o0 01 199, 05 |
VERE I o ! - D: ANGLE 8 2's COMPLEMENT WORD (FORMAT, SEE DESCRIPTION)
-z m.27 M.z RANGE - (1.2°15) [1-1.2715] RADIANS
BITS 9-15 ARE ARBITRARY

FORMAT OF ANGLE 6

FINAL VALUES
QUANDRANT 1 (84,0; = 0,0):

- D: SIN(D TRC 9); 2's COMPLEMENT WORD, MSB = -2, ERROR = #2715
The range of ©;_g is 0(N278) [N/2-1278] which ts directly within -

the range of the table. Thus, a prelimlinary alignment of ;_g to DL only

is required; a left shift followed by an 8T transpose of regtster D 2 ,] T ' J4 JS
. '
achieves this. (DU Is cleared by TABLE SIN(DL)+D). [:, | SIN(TRC 9) H .{
-2 1 2-14
QUANDRANT 2 (8,,08; = 0,1): '
60'8 =1/2 + 92-3 @s_ . <
.1.e. SIN 8g-g = SIN(II/2-8,-g) for this quadrant :
- 8 TABLE SIN(DL) D D NIL
1/2-85-g =0,1,0's + 1,1,85-g + 127)
= 0'0,55_8 + 278 ADDITIONAL FOR SELF . F8 : 1Q
which has the range . TOTAL NEEDS & DEPTH D,F8 10
n2-8(n2-8)n/2 j.e., Is within the
range of the table.
but, 0,0,85-g + 278 = 0,81 + 128 for & =1
Thus, for quadrant - 2, register D Is left-shifted, DU is
negated as an 2's complement byte, and the register bytes are transposed. NO. OF MICRO-ORDERS 8.

0+(6 J¥L QINIS W

Leev

1
2
3
4
5
6
7
8

MICROCODE

MI SIN(D TRC 9)->D:

" ABA
FBC(CF)
FBC(SF)
ABA(U)

ABA
DSQ
ABA
DS

JBdo
JBeo

JF8

0-F8
1+F8
+1

TABLE SIN(DL)->D
+1

o o]

(Ls) D

D

(87T) D

>

S
D.
NIL

COMMENTS

8¢+Bdo, €;+Beo

CLEAR F8 8q*F8 RECORDS 8 FOR QUAD 3,4
IP @q, SET F8 CORRECTION

AF 8, = 1, REPLACE 8y-g BY 8)-g + 11278

TRANSPOSE D FOR TABLE SIN(DL)+D

GO TO TABLE SIN(DL)+D

IF QUAD 3,4, REPLACE SIN 8).g BY -SIN 8¢
RETURN, END : '

(INQCD) G+(5 JdL QINIS IW

8¢ ¢V

DESCRIPTION OF MICRO-ROUTINE 'SIN(A TRUNCATED TO 9 BITS)+D'

This roufine differs from Ml SIN(D TRC 9)»D In that register A
holds angle 8 throughout the routine.

The formats of © and the result are ldentical to those of
M1 SIN(D TRC 9)-D.

A DMC, not DSQ, micro-order calls MI SIN(D TRC 9)+D; thus, the
final DQS order of Ml SIN(D TRC 9)-»D returns control to the sequence calling
M! SIN(A TRC 9)»D. This saves one nesting level and a terminating AQS
order for MI SIN(A TRC 9)-D.

INITIAL VALUES

A: AS D IN M| SIN(D TRC 9)+D

M1 CROCODE
1 Ml SIN(A TRC 9)->D: ABA A
+ S

2 _ bDMC Ml SIN(D TRC 9)->D

FINAL VALUES

A: AS INITIAL
D: AS MI SIN(D TRC 9)+D

NEEDS
CALLS NEEDS _DEPTH.
MI SIN(D TRC 9)+D D,F8 19
ADDITIONAL FOR SELF A NIL
TOTAL NEEDS & DEPTH A,D,F8 19

NO. OF MICRO-ORDERS 2.

=
2
. ' Z
COMMENTS S
>
LOAD D 3
©
¥
o

GO TO Ml SIN(D TRC 9)»D , RETURN , END

DESCRIPTION OF MICRO-ROUTINE 'SIN(A ROUNDED TO 9 BITS)+D'

Thls routine rounds, rather than truncates, angle 8; otherwise
the routine Is indentical to MI SIN(A TRC 9)-D.

@ RND 9 = (8 + 1.279) TRC 9

MI CROCQDE

1 MI SIN(A RND 9)->D: DMC X'0040" >

2 : ABA A 40 D+ D
3 DMC MI SIN(D TRC 9)->D > S

Thus, N.279 is added to register D before the call to
Ml SIN(D TRC 9)+D.

NO. OF MICRO-ORDERS 3,

COMMENTS

PUT m.279 IND
PUT © + .22 IN D

GO TO M1 SIN(D TRC 9)»D , RETURN , END

a+(6 ONY VINIS W

65 gy

DESCRIPTION OF MICRO-ROUTINE 'COS(A TRUNCATED TO 9 BITS)+D

This routine evaluates cosine, but otherwtse ks Ndentlcal to

Ml SIN(A TRC 9)+D.

Cos(8 TRC 9)

SIN(/2-(8 TRC 2)1

but - (8-TRC 9) = (8 + N.2"8) TRC 9

where 8 = Eo ,51 xx
I.e. the transformation,

8+ 1/2 + 1.2-8 +9

precedes entry to 'MI SIN(D TRC 9)-+D'.

MICROCODE

1 Ml COS(A TRC 9)->D: .DMC
ABA
DMC

X'4080"'

A 0 D =
Ml SIN(D TRC ©)->D d

NO. OF MICRO-ORDERS 3.

COMMENTS

PUT T/2 + N.2-8 IN D
PUT © + /2 + M.2-8 IND

GO TO MI SIN(D TRC 9)»D , RETURN , END

DESCRIPTION‘OF MICRO-ROUT INE 'COS(A ROUNDED

T0 9 BITS)+D'

Thts routine evaluates the cosine
Formats, initial and final values and needs
M1 SIN(A TRC 9)-D.

COS(8 RND 9)
If 89 =0, - (8 RND 9)

n

which also
If 89 = 1, -~ (6 RND 9)

8 TRC 9

of 6 rounded to 9 blits.
are identical to those gf

SIN(IV2-(6 RND 9))
-(8 TRC 9)

(6 + 28 TRC 9
(8 + m2-9) TRC 9
((8 + 112-8) TRC 9)

because, for

2's complement representation In general, the negative of a number can

z!so be found by subtraction of '1' in the least significant position

followed by bitwise complementation. For truncation, subtraction of

n278, not '1' in the L.S.B. position, !s necessary.

For 8g=1, @TRCY9 s also

(6 +12-% TRC 9

Thus, for 89 = 0 or 1,
-~(@ RND 9) = (8 + 1m279) TRC 9
I.e., the transformation,

8+ /2 + 1.27959

precedes entry to 'MI SIN(D TRC 9)+D'.

NO. OF MICRO-ORDERS 3,

g+(6 O¥1 V)S0O IW

J«(6 ONY VISO0O IW

ov°¢v

*

MICROCODE

1

Ml COS(A RND 9)->D:

DOMC
ABA
bpMC

X'4040'

A 40
MI SIN(D TRC 9)->D

&

COMMENTS

PUT N/2 + .2"% IND
PUT 8 + II/2 + M.279 IND

GO TO MI SIN(D TRC 9)D , RETURN , END

(INOCO) a+(6 ONY VISO0O INW

Iy ey

DESCRIPTION OF MICRO-ROUTINES 'SIN(A)+D' & 'COS(A)+D'

These micro-routines evaluate the sine or cosine of the 16 bit
angle 8 In register A.

COS A = SIN(I/2-8) i.e., the preliminary
transformation 1/2-6 +6 enables a common procedure to be used for SIN & Cos.
Entry to Ml COS A +D is recorded by setting indicator FQ. This allows the

original 8 to be restored in register A after the common procedure Is
comp leted.

SIN @ is evaluated by simple |Inear Interpolation between two |
values of SIN(B'TRC 9) i.e.,

SIN 8 = SIN(O TRC 9) + 4.84_;5/N.2"% where,

first difference A= SIN((6+1.2”8)TRC 9) - SIN(B TRC 91

The maximum error due to linear interpolation of S|N 8, within an
interval of argument of II.Z.8 radians, occurs near 8 = *I/2, but ‘ts smaller
in magnitude than

@m.2”H%/2 , i.e., < 12715

In the vicinity of 8 = 0 or 1, |a| Is almost 1.278%, j.e.,
278> IAlmax > 277, Thus 8, coded with LSB = 27!, may exceed the range of
a 2's complement byte by one place, and therefore, to use MI BYT MPY, must
first be right shifted one position. A/2 then, Is chosen as M'IER (LSB of
8/2 = 271,

9_0.9/“.2"8 is simply the byte pattern
0,99,910..915, a positive single byte number with .

LSB = 2-7;. it Is used directly as M'CAND in M| BYT MPY. The product,
8/2.84.15/M27°, has LB = 272*.277 = 2721, {le., the correction
8.89.15/M278 Is In register E coded with LSB = 2720, Therefore, E must be
right-shifted 6 places before addition to SIN(8 TRC 9) which has LSB = 2-1%,

As the error of SIN(8 TRC 9) is $2715, and two calls are made to
form 4, then the error In A may be 27!%; also, a further error of 2°1% may be

introduced by the loss of the LSB in right shifting A. Thts possible error

of 2713 myltiplied by the maximum value of 8g-15/1278, viz 1, gives an

error bound of #2713 for SIN or COS @. This error could be halved by
storing the LSB of A before shifting,and applying a correction; this
has not been done because, for graphical orders, XC=RSIN9 is only

required to 12 bits.
ENTRY MI COS (A)+D

|

. /2 -8~+8
ENTRY SET F9

Ml SIN(A)+D~—CLEAR Fq *_i
EVALUATE

IN((8+11278)TRC 9)

l

EVALUATE
SIN(8 TRC 9)

!

FORM A
FIRST DIFFERENCE)

!

FORM PRODUCT
A . 99_15/“.2-8

l

ADD ALIGNED
PROD TO SIN(BTRCY

IF COS 8 ENTRY
RESTORE 8 IN A

6TRCY (6+1278)TRCY

l QS END
INITIAL VALUES
‘A: ANGLE @, 2's COMPLEMENT WORD
RANGE -1t (m.271%) [m-m.2715] RADIANS
0 1 2 7,8 9 15
1 v 1 T T T T
2o 91} 97| 0l o1s
[T\ I\ T

-n 1/2 n/4 n2-8 n2-9 nz2-1s

A+(V)S00 W ?

yev

FINAL VALUES . NEEDS

PR AL RAA L

A: AS INITIAL CALLS NEEDS DEPTH
D: SIN 6 or COS 6, 2's S:OMPLEMENT wtho N SINGA TRC 9) D A/D,F8 19
MSB = -2, ERROR = 2™ SIN(D TRC 9) D D,F8 1
BYT MPY BU*EL>E B,E,R NIL
0 1 13 14 15 ‘ ADDITIONAL FOR SELF F9 - Q
! E] ir SIN, COS A : TI VEI ‘ TOTAL NEEDS & DEPTH A,B,D,E,F8-9,R 2Q
-; i 2-13p=1b
NO. OF MICRO-ORDERS 21.
MICROCODE. COMMENTS
1 MI COS(A)->D: DMC X'4000') m/2 IN D TO FORM 1/2-@
2 ABA A+ D -+ A 1/2-@ REPLACES @ IN A
3 FBC(SF) 1->F9 SET F9 TO RECORD COS(A)+D ENTRY
4 ABA St1 +1 -+ S SKIP NEXT ORDER
5 MI SIN(A)->D: FBC(CF) 0->F9 CLEAR F9 FOR SIN(A)+D ENTRY
6 oMC X'0080" + D n2-8 IN D
7 ABA A+ D -+ D PUT © + m2-8 IN D
8 DSQ Ml SIN(D TRC 9)=5D + S EVALUATE SIN((@ + n278) TRC 9)
9 . ABA D ~+ B- HOLD SIN((@ + m278) TRC 9) IN B
10 DSQ Ml SIN(A TRC 9)->D > s EVALUATE SIN(8 TRC 9) :
1 ABA B +1 D (RS)E "PUT 8/2 TO EL AS M'IER FOR MI BYT MPY BU*EL»E LSB = 271%
12 - DMC _X'007F" > R PUT SELECTION FIELD IN R FOR 8g-;5
13 o ABA A A R (8T) B 64_,5 TO BU AS M'CAND FOR MI BYT MPY BU*EL+E LSB = 277
14 DSQ MI BYT MPY BU*EL->E -+ S EVALUATE /2 . 84_,5/M2-8 , LSB = 2-21 j.e., A.84_,5/M278 IN E LSB = 2-20
15 ‘ DMC 6 + R PUT 6 R ALIGN CORRECTION
16 ADR INZR (RP) E (RS) E RIGHT SHIFT E SIX PLACES | TO LSB = 2™ 1
17 ABA E + B PUT ALIGNED PROD IN B
18 ABA B +0 D -+ D SIN 8 TO D
19 DMC JF9 X'4000" + R IF COSA+D ENTRY, PUT 1/2+ R’
20 ABA JF9 A +#1 R -+ A " RESTORE © TO ORIGINAL VALUE 1/2-(1/2-8) = ©
21 DS NIL RETURN, END.

(INOD) 0 (V)S0O IW %

3 (V) NIS IW

134417

DESCRIPTION OF MICRO-ROUTINE 'COS(A+E)+DU, SIN(A+E)+DL'

This routine updates 8 in A by A8 in E (previously aligned to 8 by
M! READ SML PLR E,N), evaluates COS 8 & SIN 6 each rounded to byte length,
and places them in DU,DL. The routine is a preliminary to plotting small
polar vectors, and, since the maximum vector length is 63 display increments,
the approximate values COS,SIN(A RND 9), subséquenfly rounded to one byte,

are sufficlently accurate.

INITIAL VALUES

A: ANGLE O, 2's COMPLEMENT WORD
E:Ae , " " "

e~ el

6 OR 48

FINAL VALUES

A: AS INITIAL
DU: (COS((8+A8) RND 9)) RND 8
DL: (SIN((8+A8) RND 9)) RND 8

M1CROCODE

1 M1 COS,SIN(A+E)-+D: ABA

2 DSQ

3 ABA

4 ABA(U) JBe8
5 ' DSQ

6 ABA

7 ABA(U) JBe8
8 AQS(U)

~ 2's COMPLEMENT BYTES

-1 (1/64) 1

A 40 E A

Ml SIN(A RND 99->D + S

D + B

B 41 B

MI COS(A RND 9)=>D + S
NIL

41 D =+ D

B (8T) D

FINAL VALUES (CONT)

0 1 718 9 15
L) . 1 T T T
' 1 i
L] o e SN
ol IR !
-2 1 276 -21 28
E: AS INITIAL
NEEDS
CALLS NEEDS NEST DEPTH
MI SIN(A RND 9)+D A,D,F8 1Q
MI COS(A RND 9)-D A,D,F8 19
ADDITIONAL FOR SELF B,E 10
&
TOTAL NEEDS & DEPTH A,B,D,E,F8 20

NO. OF MICRO-ORDERS 8.

COMMENTS

UPDATE 6 IN A BY 46 IN E

EVALUATES SIN(8 RND 9), RESULT TO D

PUT SIN(8 RND 9) TO B & COPY BIT 8 OF SIN TO Be8
INC BU TO ROUND SIN TO ONE BYTE

EVALUATES COS(8 RND 9), RESULT TO D

COPY BIT 8 OF COS TO Be8

ROUND COS TO ONE BYTE

PUT ROUNDED SIN TO DL, RETURN, END

Q+(3+VINISTS0D W

148"

DESCRIPTION OF MICRO-ROUTINE 'N COS 6+DU, N SIN 6-+0L'

COS 8, SIN O, initially in DU,DL are overwritten by the Cartesian components

ax,aY.

This routine comprises two muitiplication sequences which form

ax
AY

As COS @
As SIN 8

n

n

INITIAL VALUES

D: COS 8, SIN 8 (FINAL VALUES OF Ml COS,SIN(A+E)»D)
N: AS, POSITIVE INTEGER WORD (BITS 0-9 = 0's)

MICROCODE

1
2
3

4
5
6
7
8
9
1

MI N*COS,N*SIN->D: ABA(L)
ABA(U)
ABA
DSQ
ABA
ABA(U)
ABA
DSQ
ABA

AQS(U)

Ml BYT MPY BU*EL-E

M! BYT MPY BU*EL-E

(8T)

(s

(8T
-+

(Ls)

(LS)
(87T)

O m »mw mMm O M v M O @

FINAL VALUES

DU;' X =4As COS 6
DL: Y =As SIN 6

2's COMPLEMENT BYTES, LSB = 1
DISPLAY INCREMENT

N: AS INITIAL

NEEDS -
CALLS NEEDS DEPTH
Ml BYT MPY BU*EL+E B,E,R NIL
ADDITIONAL FOR SELF D,N 10
TOTAL NEEDS & DEPTH B,D,E,N,R 10

NO. OF MICRO-ORDERS 10

COMMENTS

PUT as IN BU

2As IN BU AS M'CAND FOR MI BYT MPY, LSB
PUT COS © IN EL AS M'IER FOR" " LSB
PUTS As COS © IN E, LSB = 277

EU NOW CONTAINS aX

PUT aX-DU

PUT SIN © IN EL AS M'IER FOR MI BYT MPY
PUTS As SIN & IN E, LSB = 277

EU NOW CONTAINS AY

PUT AY»DL RETURN, END

2-6

COMMON

AX+
DU

AY+>
DL

M'CAND -

GNISANTSOOXN 1N

sheev

DESCRIPTION OF CORE-Q ROUTINE 'LARGE POLAR TO CARTESIAN CONVERSION E,A' FINAL VALUES

This routine replaces the polar pair R,8 by the Carteslan pair, ‘ E: X, =RCOS @] 2's COMPLEMENT WORDS
: Y =RSING -[211-1] (1) [211-1] ; ERROR 1 MAX.
Xc =RCOSe , Yc =R SIN®
Angle 6 Is restricted to 15 bits, because the core-store 0 3 4 r5 : T 35
representation of large polar co-ordinates (FORMAT 4.5, p 4.9) 11 Xe OR Y¢ P
requires one blt of the A word to hold L. Also, to code a full 2I radians, I |
. BITS 0-3 -211 210 1
the least welght which the MSB of 8 can have is I radlans. Thus, with these
constraints, the finest resolution possible for A Is Nn271% radians; 1I.e., COPY BIT 4
approximately 2712 radians. This resolution Is adequate, because, when
multiplied by Rméx(=211) it gives a displacement resolution of only one half
of a dIsPIay Increment. If 6 and R are exact values, the error In Xc or Yc
is controlled by the error in COS © or SIN 6 and has a maximum value of
+211,2713 | e,, 2272 display increments. If © and R are rounded values, the
error in R cos © is increased by the variability of R and 8. R
variations have maximum effect on R cos © at & = 0 (max error = #271),
whereas © variations have maximum effect at 6 = n/2, R = 21! (max error due ﬁgggi
to xm.2715 ln‘é, at this R, is 211.m2°15, i.e., max error = #272), The CALLS NEEDS . NEST DEPTH
compound error from the three sources is less than *1 display Increment. I -
M1 SIN(A)-+D A,B,0,E,F8-9,R 20
INITIAL VALUES M1 COS(A-D " "
Ml WRD MPY BX*D-ED B,D,E,R NIL
E: RADIAL DISTANCE R, POSITIVE INTEGER WORD MI POP CQ 'M,N NIL
RANGE, Q(1) [211-1] : ADDITIONAL FOR SELF NIL ©1Q
TOTAL NEEDS & DEPTH A,B,D,E,F8-9,M,N,R 3Q .. CQ

0 3 4 5 15
N '
A}]
p % N 1 ||] R l]
|1 |
0 210 1
+A: 9, 15-BIT 2's COMPLEMENT WORD
Q 1 14 15
T T 1
i o v 1
! !
-1 /2 m2-1% g-15 NO. OF MICRO-ORDERS 10,

VI NIORI1d 9971 0D

9y gV

W ® N O bW N -

+

MICROCODE

o

CQ LRG PLR->CTN E,A: ABA
DSQ
ABA
DSQ
ABA
DSQ
ABA
DSQ
ABA
DMC

Ml SIN(A)=>D
N
Ml WRD MPY B*D->ED

M1 COS(A)->D
N

Ml WRD MPY B*D->ED

MI POP CQ

E (LSY N

E

M

(Ls)

. >

(LS)

<>
>

->

w > unu o »n T nu o u

COMMENTS

TEMP STORE 2R IN N (MI's SIN,COS(A)+D NEED E)

PUTS SIN @ IN D AS M'IER FOR MI WRD MPY B*D»ED LSB = 271%

PUT 22R TO B AS M'CAND FOR MI WRD MPY (LSB =1)

PUTS 22R SIN @ (= 22YC) IN ED (LSB OF D = 271% , LSB OF E =22 i.e,
TEMP STORE Y_ IN M E CONTAINS Y)
PUTS COS 8 IN D AS M'IER

PUT 22R TO B AS M'CAND

PUTS 22R COS @ IN ED, .e., PUTS X_ IN E (ITS FINAL POSITION)

PUT Y_ IN A (ITS FINAL POSITION) CONVERSION COMPLETED

RETURN YIA POP CQ, END

(INOD) V'3 N1O*¥1d 991 00

r gy

S

DESCRIPTION OF MICRO-ROUTINE 'PUT 128.20sN1

This routine evaluates the number of plotting cycles for
M| PLT SML CTN VTR D for magnified small Cartesian vectors. Magniflication
field MG (= X1, X2, X4 or X8) is held in W6,7 throughout the plotting of a

list of vectors.

INITIAL VALUES

W6,7: MG the magnification exponent

M1CROCODE

1 Ml 128%2**MG->N: DMC X'0300' d
2 ABA N A W (8T)
3 DMC 128 -+
4 ADR JNZR (RP) ‘N (Ls)
5 DQS

N
R
N
N
NIL

FINAL VALUES

N: l28.2MG A POSITIVE INTEGER
W6,7: AS INITIAL

CALLS NIL

NEEDS N,R,W.

NO. OF MICRO-ORDERS 5.

 COMMENTS

PUT MG SELECTION FIELD INN (MG IN W6,7)
PUT MG IN R TO COUNT MG LEFT SHIFTS

PUT 128 IN N '

128.2"C IN N

RETURN, END

NN uZu321 W

8y eV

DESCRIPTION OF MICRO-ROUTINE 'RESET; INTERRUPT; & LOOP'

This routine Is the common tail of the eight GRA routines.
Ml RST; INTRPT;LOOP is entered. after each item is plotted: It resets the
display co-ordinates to x1,Y! for the reset option; it inserts an Inferrup+
servicing procedure if any peripheral indicator is set, i.e., if JINT = 1;
and its final order returns control to the S value held in Q. As the time
to plot a list of items under a GRA header is variable and can be long
compared to the interrupt servicing interval, then it Is necessary to
examine requests fqr service after each item is plotted.

The particular GRA routine which calls MI RST; INTRPT;LOOP does not
call via a‘DSQ order; rather, it preloads Q to a begin-loop address if the
curreaf link bit L is 1. Thus, if more display items remain in the list
under the particular GRA header, the item plotting part (loop part) of the
procedure is repeated: each linked item pushes the Q stack and the loop to
the start pops the stack. When L = 0, MI RST;INTRPT;LOOP returns control to
-an address In the GNI (Get Next Instruction) sequence. (This address Is held
in Q when GRAFN is first entered.)

INITIAL VALUES

Q: BEGIN-LOOP ADDRESS OF CALLING GRAFN IF L =1
RETURN ADDRESS IN GNI ROUTINE IF L =0
Wo: 1 IF RESET OPTION
0 IF END-TO-END OPTION
x1,Y1: ORIGINAL X,Y DISPLAY CO-ORDINATES BEFORE GRA HEADER IS

INTERPRETED
MICROCODE
1 Ml RST; INTRPT;LOOP: ABA W -+ NiL
2 TRF JBeO X1, Y1y
3 DSQ JINT Ml INTRPT - + S
4 DOS NIL

FINAL VALUES

Q: POPPED
Wo,X1,Yl: AS INITIAL
NOTE: MI RST;INTRPT;LOOP IS CALLED BY A DMC ORDER, NOT DSQ

NEEDS
CALLS , NEEDS DEPTH
Ml INTRPT * 1Q
ADDITIONAL FOR SELF “Wo 19
TOTAL NEEDS & DEPTH Wo, * : 2Q

NO. OF MICRO-ORDERS 4

COMMENTS

RESET (Wo) - Be0

|F RESET, PUT X1,Y1 + X,Y

IF INTERRUPT, INSERT MI INTRPT .

IF LINKED,LOOP TO CALLING GRAFN, ELSE RETURN TO GNI

d007 7 LddINTTLSY W

6V ¢V

DESCRIPTION OF MICRO-ROUTINE 'BYTE MULTIPLY BUXEL+E'

Multiplies a 2's complement integer byte multiplicand in BU (M'CAND)
by a 2's complement integer byte multiplier in EL (M'IER) to form a 2's
comp lement Integer word product in E (PROD).

The algorithm is conventional; i.e., PROD is the sum of partial
products, each partial product being either the M'CAND (appropriately
shifted for correct significance) or zero depending on the current M'IER bit.
Progressive significance of the partial products Is achieved by right
shifting each accumulation of partial products. The M'IER bits are pro-
gressively scanned and destroyed thereby making room for the rightwards
expaqding product in the accumulator (register E).

Except for the sign bit, the weights of all bits of the M'IER are
positive. Thus, the first seven partial products take the sign of the M'CAND.
The eighth partial product however, is either zero (positive M'IER) or the
negative of the*M!'CAND (negative M'IER). Micro-order AMY assists the
algorithm by,

1. Bringing B conditionally on Bel5, a copy of the current multiplier bit

in E15.
M1 CROCODE
1 Ml BYT MPY BU*EL->E: DMC(L) . 0 ' + 8B
2 ' DMC(U) 0 + €
3 DMC C 7 + R
4 ABA E -+ NIL
5 ' AMY JINZR (RP) B +0 E (R)E
6 ABA JBel5 S+l +1 + s
7 AQS E (RS) E
8 AMY B +0 E (RS) E
1"
9 DQS NIL

2.

3.

Copying the true sign of the sum of partial products to EO on right
shift, regardiess of overflow or underfiow.

Decrémen+ing R each cycle.

INITIAL VALUES

BU: . MTCAND, 2's COMPLEMENT INTEGER BYTE -128 (1) 127
EL: M'IER " " "

FINAL VALUES

BU: AS INITIAL
E : PROD, 2's COMPLEMENT INTEGER WORD -215(1) 215-1

CALLS - NIL

NEEDS - B,E,R

NO. OF MICRO-ORDERS 9

COMMENTS

CLEAR BL
CLEAR EU

LOAD R FOR COUNT OF 7

LOAD Be15 WITH LSB OF M'IER

FORM & ACCUMULATE FIRST 7 PARTIAL PRODUCTS

IF SIGN BIT OF M'IER (NOW IN E15 & Bel5) = 1 SKIP NEXT MICRO-ORDER
ELSE POSITIVE M'IER 7. FINAL STEP IS RIGHT SHIFT ONLY, RETURN, END
NEGATIVE M'IER, FINAL STEP IS SUBTRACT M'CAND & RIGHT SHIFT

(+0 NOT +1 BECAUSE E15 (NOW '1') IS INCLUDED IN THE SUBTRACTION)
RETURN, END

3+73xN3 AdW 1AG W

05°¢vY

DESCRIPTION OF MICRO-ROUTINE 'WORD MULTIPLY B*D+ED!'

Multiplies a2 2's complement integer word multiplicand in B (M'CAND) by
a 2's complement integer word multiplier in D (M'IER) to form a 2's
comp lement double-word product in ED (PROD).

The algorithm is similar to that of MI éYT MPY BU*EL+E except that a
32-bit double register (ED) is required to accumulate partial products. Two
orders are therefore required for right shift: the first shift order also
accumulates the M'CAND if the current M'IER bit in D15 is 1, the second
extends the shift over D (addition is not necessary). This double-word
cycle occurs 15 times. The sixteenth partial product is either zero
(positive M'IER, sign bit '0' now in D15) or the negative of the M'CAND
(negéfive M'IER, sign bit '1' now in D15) as discussed In Ml BYT MPT. Micro-
order AMY assists as in MI BYT MPY by, bringing the M'CAND conditionally,

maintaining true sign of the accumulated partial products and decrementing R.

MICROCODE

1 Ml WRD MPY B*D->ED: DMC "0 _ -+ E
2 DMC 15 + R
3 " ABA D =+ NIL
4 AMY INZR (FW) B +0 E (RS)E

5 AXS . JNZR (BK) D (RS) D
6 AXS : D (RS) D

7 DMC JBel5 LL SUBTRACT M'CAND + S

8 ABA E (RS) E
9 AXS D (RS) D
10 ' DQS NIL
11 LL SUBTRACT M'CAND: AMY B +1 E (RS)E
12 AXS D (RS) D
13 ' DQs NIL

INITIAL VALUES

B : M'CAND, 2's COMPLEMENT INTEGER WORD
D: M'IER, "

FINAL VALUES

B : AS INITIAL
ED: PROD, 2's COMPLEMENT INTEGER DOUBLE-WORD

CALLS - NIL

NEEDS - B,D,E,R

NO. OF MICRO-ORDERS 13

COMMENTS

CLEAR E

LOAD R FOR COUNT OF 15

LOAD Bel5 WITH LSB OF M'IER -

FORM & ACCUMULATE FIRST 15 PARTIAL PRODUCTS IN DBL WRD
ED (ON PASS 15 OF FW-BK PAIR, ORDER 4 1S EXECUTED, R CLEARED &
5 SKIPPED. ORDER 6 COMPLETES THE 15TH PASS).

IF M'IER NEGATIVE (D15 & Bel5 = 1) GO TO LL SUBTRACT M'CAND
ELSE M'IER IS POSITIVE & FINAL PARTIAL PRODUCT = 0, .°.
RIGHT SHIFT DBL WRD ED ONLY

RETURN, END

SUBTRACT M'CAND (AMY PRESERVES SIGN IF U'FLOW OR O'FLOW),
& SHIFT DBL WRD ED '

RETURN, -END

03+0x8 AdW QUM W

16°eV

DESCRIPTION OF MICRO-ROUTINES 'PUSH CORE-Q STACK' & 'POP CORE-Q STACK'

Routines which need to nest micro-routines three deep cannot
themselves be called via the hardware stack Q,Q',Q", for, within the deepest
microroutine, the Q stack is filled (Q" holds the return address In the
outermost calling routine, Q' the return address in the first routine
called, and Q the return address in the second routine called). To allow
routines to be nested more than three deep, a second stack of return ,
addresses Is provided in the core store. This stack "CORE-Q" or "CQ" holds
the return addresses from subroutines which either nest MI's three deep or
nest other routines which would overflow the hardware stack Q. Such
subroutines are called 'CORE-Q ROUTINES' and have the prefix CQ to
distinguish them from Ml's. Page A3.53 shows the sequence "CALLING SEQUENCE"
calling "CQ PLR*CTN.E,A" which nests "MI SIN(A)+D", "MI SIN (D TRC 9)+D"
and "TABLE SIN(DL)+D". CORE-Q stack is not an automatic extension of
Q,Q',Q";
and popped by the called CQ routine at its termination.

rather, CQ must be pushed by the sequence which calls a CQ routine
M1 PUSH CQ is

it places S+2

(where S Is the ROM address of the DSQ order calling MI' PUSH CQ) on top

designed to assist the sequence calling a CQ routine:

MI_PUSH cQ
INITIAL VALUES

(ADR CQ POINTER) THE CONTENTS OF CORE LOCATION 'ADR CQ POINTER'
= CQ POINTER = 1

FINAL VALUES

(ADR CQ POINTER) =1 + 1
(CQ POINTER, T.e., 1 + 1) = S+2 OF THE CALLING SEQUENCE

MICROCODE

1 M PUSH CQ: oMC ADR CQ POINTER + N
2 ACN(R®) JCNB (WT) NIL
3 ACN(WO) JCNB (WT) HOM o M

4 ABA M o+ N

5 ACN(CW) JCNB (WT) Q4 > M

6 0QS NIL

oi;fhe.CORE-QAsquE ang Increments the CQ POINTER (held in a fixed
locatlon "ADR CQ POINTER' In core) to this top address. Value S+2, not
S+1, is pfaced on top of CQ because S+1 [s the return address from Mi
PUSH CQ (via Q).

At S+1, a DMC order transfers control to the CQ routine being
called and, on completion of this CQ routine, CQ Is popped and control
Is returned to S+2. M| POP CQ Is designed to assist the called CQ

routine pop CQ: it puts S+2 to microprogram sequence register S and

decrements the CQ POINTER.

In summary, a cal]lng sequence requires two micro-orders to
call a CQ routine: the first, a DSQ, calls Ml PUSH CQ;
DMC, calls the CQ routine.

the second, a

No parameters are required, just the entry

locations of MI PUSH CQ and the particular CQ or, for symbollc microcode .

assembly, simply thelr names. Return of control to S+2 is not the
responsibllity of the writer of the calling sequence:
all CQ routines, via Ml POP CQ. The call to Ml POP CQ does not use the
hardware Q stack, because return of control after MI PCP CQ is to the

CALLING SEQUENCE.

CALLS - NIL.

NEEDS M,N.

NO. OF MICRO-ORDERS ~ 6.

COMMENTS

PUT ADDRESS OF CORE-Q PQINTER IN N

READ CQ POINTER TO M

INCREMENT POINTER & STORE AT ADR CQ POINTER

PUT ADDRESS OF NEW TOP OF CQ STACK IN N

PUT RETURN ADDRESS S+2 (l.e. Q+1) TO TOP OF CQ VIA M

RETURN, END

It is Included in

d0d 1IN ¥
J HSNd I

2675V

Ml POP IS CALLED BY A DMC MICRO-ORDER, NOT DSQ.
INITIAL VALUES

Aé FINAL VALUES OF MI PUSH CQ
FINAL VALUES

AS INITIAL VALUES OF M| PUSH CQ

MICROCODE

1 MI POP CQ: DMC ADR CQ POINTER
2 ACN(RO) JCNB (WT)

3 ACN(WO) JCNB (WT) 0 +0
4 ACN(RO) JCNB (WT) - +1
5 ABA

M
M
M

+

+

NEEDS

AS MI PUSH CQ

NO. OF MICRO-ORDERS 5.

COMMENTS

PUT ADDRESS OF CORE-Q POINTER IN N

READ CQ POINTER TO M

DECREMENT POINTER & STORE AT ADR CQ POINTER

RESTORE ADDRESS OF OLD TOP OF STACK IN N & READ RETURN ADDRESS TO M
RETURN CONTROL TO S+2, END

(INOO) 00 dOd IW

HSNd IW

?

Gy

CALLING SEQUENCE: .

(s)
(S+1)
—> (5+2)

’ I—:dl PUSH CQ:
/

. COMMENTS
. RAISE CQ POINTER
. PUT S+2 (i.e., CURRENT Q+1)
. ON TOP OF CORE Q STACK
QS & RETURN TO S+1

-
|
E

CQ LRG PLR->CTN E,A: .

MI SIN(A)»D:

. .

/
- | # o
L

MI SIN(D TRC 9)+D:

oso-—-’| TABLE SIN(DL) D: .

|
L _ N

oMC Qs
(HARDWARE) L
Q STACK IS .
NOT USED) — a—
MI POP CQ: .
ABA

COMMENTS _—|
READ TOP OF OORE Q STACK
(VALUE = S+2) & LOWER

CQ POINTER

RETURN TO S+2

L

" en—

CALLING A "CORE-Q' ROUTINE

(INOD) 0O d0d IW

3

HSNd IW

1714

DESCRIPTION OF 'SYMBOL TABLE' . FINAL VALUES

This table contains the starting addresses of the microprograms D: AS INITIAL

which either plot or execute the tommand coded by the various "symbols".

There are 256 possible symbols. The application of SYMBOL TABLE is described ’ NEEDS .

under GRB SYMBOL PAIRS. CALLS NEEDS DEPTH

) ' SYM 0 - SYM 255

INITIAL VALUES SELF NEEDS & DEPTH D
‘DU: CLEARED . ’ TOTAL NEEDS & DEPTH D, SYM 0 - SYM 255
DL: THE SYMBOL CODE ' NO. OF MICRO-ORDERS 257

MICROCQODE . COMMENTS

1 SYMBOL TABLE: ABA ' S#1 40 D =+ S ADVANCE D + 1 ORDERS

2) DMC ’ SYM O + S IF SYMBOL O, i.e. CONTENTS OF D = O, GO TO SYM O

1] " " L] ’ " 1 " " = ,’ n 1

257 . 255 + S ‘ . 255 255 255

378VL T0GWAS

APPENDIX A4

DETAILED COMPOSITION OF 88 GRAPHICAL SYMBOLS

Ad.1

APPENDIX A5

REPRINTS OF AUTHOR'S PAPERS RELEVANT TO THESIS

G.A. ROSE, "Economical, graphical-communication techniques for
multiple console operation", Third Australian Computer Conf. Proc.,
pp. 399-402, May, 1966.

G.A. ROSE, "Light-pen facilities for direct view storage tubes",
IEEE Trans. Electronic Computers, Vol. EC-14, No. 4, pp. 637-639.
August, 1965.

G.A. ROSE, "Intergraphic - a microprogrammed graphical-interface
computer", |EEE Trans., Electronic Computers, Vol, EC-16, No. 6,
pp. 773-784, December, 1967.

G.A. ROSE, "Computer graphics communication systems'", 1968

Edinburgh IFIP Conf. Proc., Invited Papers Section.

AS.

' Reprinted from: IFIP CONGRESS 68 preprints

North-Holland Publishing Company 1968.

COMPUTER GRAPHICS COMMUNICATION SYSTEMS *

Gordon A. ROSE

Department of Electrvonic Computation, University of New South Wales,
Kensington, N.S.W., Australia

The paper first outlines an early display coupled directly to a computer, and a buffered display with
local processor. Three recent schemes which have evolved from these are then reviewed and compared:
each aims for low-cost graphical communication within a multi-terminal system; they are the Advanced
Remote Display Station II project; the Intergraphic project; and the IBM 1500 Instructional Display Sys-
tem. The paper asserts that the techniques of these recent schemes, supplemented with wired video
broadcasting techniques, could be used to link thousands of terminals to a central computer(s) at low cost.
A possible configuration is proposed. The significance is that current planning of computer utilities
should include extensive computer graphics networks.

1. INTRODUCTION

A number of papers have reviewed the merits
and diverse applications of computer graphics
[1-3]. Some applications require exacting termi-
nal performance (high resolution, fast response,
arbitrary graphics, etc.), while others require
only modest performance. Thus, a spectrum of
graphical devices linked to either central or pe-
ripheral computers has evolved; these installa-
tions have demonstrated the versatility of graph-

| ical communication. However, despite the desir-

. ability of graphical terminals, high per-terminal

. costs have prevented their widespread use.

This paper reviews three recent economical

i graphical-communication systems applicable to

' networks of tens or hundreds of terminals. The
systems differ because they place different sig-

' nificance on transmission bandwidth, response
time, freedom of graphical form, etc.; collec-

. tively, they offer a valuable set of graphical-

' communication techniques. These advances, as
yet mostly in prototype form, show that per-
terminal costs can be reduced by at least an
order of magnitude (from $50000 to less than

5000). The significance is that extensive com-
puter graphics communication systems are now
economically feasible.

The first system, the Advanced Remote Dis-

_play Station II project, is designed for dataphone
lines (2000 baud). Its direct view storage tube
(DVST) displays eliminate the need for image
regeneration, and terminal circuitry expands
compact dataphone codes into strings of vector
and symbol increments. The approach conserves
communication bandwidth and displays arbitrary

211

graphics, but the terminal circuitry is relatively
complex and the response time is limited.

The second system, the Intergraphic project,
is designed for television distribution. A shared
graphical-interface computer generates all ter-
minal images in random point, vector or symbol
modes; scan converts them to television format;
stores the images on tracks of a video disk re-
corder; and distributes the images on a single
coaxial cable. The approach allows arbitrary
graphiés to be displayed on simple television
terminals, but requires a wide communication
bandwidth.\

The third system, the IBM 1500 Instructional
Display system, is also designed for television
distribution. It generates binary-video patterns
directly and thereby eliminates the need for scan
conversion. Although direct video generation is
only practical for restricted graphics, such
graphics have wide application.

Before reviewing the three multi-terminal
systems, the paper outlines two earlier single-
terminal systems. First, the directly-coupled
display, because it pioneered later schemes and
has set a reference for terminal performance.
Second, the buffered display (a single display
coupled to a peripheral computer), because it
introduced the concept of task division between
central and local processors and allowed remote
installation; however, one peripheral processor
per terminal is expensive.

From the review, the paper outlines a possible
configuration for a comprehensive computer
graphics communication system.

* Supported by the Australian Research Grants Committee.

212 G.A.ROSE

2. DIRECTLY-COUPLED DISPLAYS

The earliest displays were directly connected
to, and had the total resources of, a large com-
puter. Emphasis was on a working system for
graphical communication and not on efficiency or
extensive communication networks.

Fig. 1 shows a typical system comprising a
central processing unit (CPU); a short-persis-
tence cathode ray tube (CRT) with digital X,Y
coordinate registers and digital to analog (D/A)
converters; a photo-sensor light pen; and a key-
board, possibly with several overlays. The CPU
held the application program, display file and
routines for vector and symbol generation and
pen tracking. In 1963, Sketchpad [4] was imple-
mented on the TX-2 computer in this general way.

Most of the system functions were programmed
and specialized hardware was minimal; thus, the
medium was flexible for experimentation, but im-
posed restrictions on display complexity for a
given flicker rate. Display regeneration alone
could almost fully extend the computer so that
application programs were limited and time-
sharing was impossible. However, the direct
connection gave rapid access to the application
program. Also, the CRT was closely linked to

VECT
APPLICATION Ec‘_ OR

SYMBOL
GENERATION

1 !

TRACKING
PROGRAM

FILE
INTERRUPT

? } CPU

PROGRAM

DISPLAY

DISPLAY
REGISTERS

&
D/A CONVERTE

LIGHT
PEN

|
—
|
|
|
|
I
|
|
|
|
|
|
|
|
s

KEYBOARD

Fig. 1. Directly-coupled display.

the CPU so that, within the restrictions of vector
and symbol generation, a rapid new image rate
or dynamic display was possible.

The principal inefficiencies were:

1. Regeneration of the display for persistence of
vision from the machine core.

2. Software generation of vectors and symbols.

3. Software pen tracking which required multiple
probing of the pen field for each incremental
movement of the pen.

Experience with these systems pointed out the
many functional requirements of graphical com-
munication, the importance of structuring both
application and display programs, and those
areas where specialized hardware would be ad-
vantageous.

3. BUFFERED DISPLAYS WITH LOCAL PRO-
CESSORS: REMOTE INSTALLATION

Vector and symbol generation hardware en-
abled more complex displays to be presented
within a persistence of vision period. Also, the
removal of vector and symbol generation pro-
grams and tables from the core store conserved
core storage. Display core-buffers, local pro-
cessors and special display logic reduced inter-
rupts on the CPU and freed it for more extensive
application programs or other work.

Fig. 2 shows a typical buffered display with
local processor. The local buffer might comprise
two independent stores (one for the processor,
the other for the display logic) or might be a
single shared store with the display logic having
priority during regeneration (cycle-stealing).
GRAPHIC-I [5], SCHOOLER [6] and portion of a
project at the University of California, Berkeley
[7], are representative. MAGIC [8] uses a cyclic
buffer driving simple list processors for local
display processing and regeneration.

Remote installation of these buffered displays
was possible. This introduced two new design
parameters (bandwidth and reliability of the CPU-
terminal link) and raised the question of which
tasks should be done locally.

Clearly, transmission characteristics, task
division between the central and local processors,
and local processing ability are inter-related.
Relatively low rate dataphone links enable remote
stations to be installed at almost any location,
but limit the rate of information exchange and
require compact transmission codes. Also, the
speed mismatch between the CPU and dataphone
line commits the CPU either to handle repetitive
interrupts or to provide additional buffering. De-

COMPUTER GRAPHICS COMMUNICATION SYSTEMS 213

To/FROM
cpu

!

TIRANSMISSION
MATCHING

i

LOCAL

VECTOR/SYMBO|
GENERATOR

i !

DISPLAY LOGIC,

REGISTERS
PROCESSOR &

D/A CONVERTERS|

LIGHT
PEN

BUFFER

LOCAL

KEYBOARD

Fig. 2. Buffered display with local processor.

tailed tasks which occur frequently in most appli-
cation programs, e.g., vector or symbol plotting
and pen tracking, should be performed locally;
unfortunately, many tasks are not so readily

classified.
Although a buffered display with local proces-

sor and display logic is less demanding on the
CPU than a directly-coupled display and the over-
all system is more economical, the cost per dis-
play is still necessarily high. Therefore, displays
with such extensive local ability are not suitable
for the terminals of an economical graphical com-
munication system. Their main inefficiency is
that considerable hardware is used merely to
regenerate static images during delays from the
operator or the CPU.

For systems with tens or hundreds of termi-
nals, it would be expected that the total terminal
cost would be comparable with the remaining sys-
tem cost. This has motivated a number of projects
aimed at reducing terminal complexity and cost.

4, DATAPHONE LINKED DVST DISPLAYS WITH
SIMPLIFIED TERMINAL LOGIC: ARDS PRO-
JECT
The Advanced Remote Display Station II (ARDS

1I) project [10] has shown that low-cost (poten-

T0/FROM
cPU

et — — = - —=

TRANSMISSION
MATCHING
t sYMBoOL
GENERATOR,
CONTROL BRM’s
&
OPERATIONAL
AMPLIFIERS
Alo

KEYBOARD

Fig. 3. Advanced remote display station II.

tially $3000 - $5000) terminals for arbitrary
graphics can be operated over dataphone lines.
Fig. 3 outlines the terminal.

It comprises a DVST; vector and symbol gen-
erators; a keyboard; a "mouse" input device (po-
tentiometer pair); deflection circuitry; and simple
control electronics which routes incoming words
to the vector or symbol generator, and assembles
outgoing words from the keyboard or A/D con-
verters attached to the "mouse". Binary rate mul-
tipliers (BRM's) produce vector increments which
are added as current pulses to integrating opera-
tional amplifiers.

Pictorial information, apart from the trans-
ient cursor mark which the user positions by
moving the "mouse", is accumulated on receipt
of digital code from the central processor; thus,
reliable digital code transmission is essential.
New images require an initial flood erasure. As
the dataphone rate is low (up to 2000 baud), even
compactly encoded images may need more than
five seconds to build up. One side advantage of
slow image generation is that the deflection sys-
tem bandwidth need not be great; however, much
wider deflection bandwidths are readily obtained.
The DVST and simplified logic combination of
ARDS-II is cheaper than the buffered display with
local processor typified in section 3, but DVST's
are less dynamic than regenerated short-persis-
tence CRT's and cannot use conventional light-
pen techniques. Alternatives to the "mouse" input
device which are also applicable to DVST's have
been reported elsewhere [9].

214 G.A.ROSE

Simplifying the terminal logic reduces its
ability to interpret compact digital codes and so
increases the need for information interchange.
For example, a string of short vectors, such as
a series of segments approximating an arc, is in-
efficiently encoded in the ARDS-II vector format
(five transmitted code words, 50 bits, per vec-
tor). More complex logic could accept both short
and long vector formats, strings of simple incre-
ments and perhaps polar encoded vectors. Alter-
native coding schemes for digital transmission
to remote terminals have been proposed by Bowen
[11]. No doubt, further code and functional changes
will evolve.

Reduction in ARDS-II costs to the projected
$3000 depends upon DVST and integrated array
costs (for BRM's, symbol-detail memory, etc.).
A further per-terminal cost is introduced at the
CPU by the mismatch between the data rates of
the CPU and dataphone line as discussed in sect.
3. it is preferable to transmit the display file in
bursts at CPU speeds. Developments in integrated
electronics which will reduce terminal logic costs
will also reduce the cost of centralized logic.
Thus, the relative cost of a system having com-
plex terminals to a system having simpler ter-
minals which share centralized logic will pro-
bably remain constant. A disadvantage of install-
ing large numbers of terminals having consider-
able local logic is that transmitted codes and ter-
minal behaviour must be fixed; this would dis-
courage the development of more efficient trans-
mission codes and terminal functions.

5. TELEVISION TECHNIQUES FOR THE STOR -
AGE, DISTRIBUTION AND INPUTTING OF
GRAPHICS

Even simpler terminals are possible if picture
details are generated centrally and distributed by
television: terminal processors and terminal vec-
tor and symbol generators are eliminated; stan-
dard or monitor quality TV receivers can be used
as terminals; and some noise in picture distribu-
tion can be tolerated. Simple on-off intensity
control (binary video) is adequate for most appli-
cations. Video storage disks can store one frame
per track and economical multi-track disks are
available; grey level storage requires frequency
modulation recording, whereas binary video can
be stored simply and gives higher horizontal
resolution.

The disadvantage of TV distribution is that very
high data rates are necessary. This follows be-
cause TV coding is far less compact than computer

display file coding for most images; e.g., to send
1000 symbols or 500 vectors requires about 104
bits of compact computer code, whereas to send
a standard TV image with binary intensity re-
quires about 2 X 109 bits. Another disadvantage
of TV is that the code length is constant, regard-
less of the complexity of the image.

However, many terminals can share a com-
mon coaxial cable through frequency and/or time
multiplexing techniques. Standard TV terminals,
each tuned to a different TV channel, can be fre-
quency-multiplexed (in Australia, there are 13
standard channels). Storage TV terminals (DVST
or local video storage) can be time-multiplexed
on a single frequency channel provided each frame|
is labelled with a terminal address key [12]. With |
combined frequency and time multiplexing many
TV terminals could share a single coaxial cable;
e.g., with 10 channels and a TV frame rate of 25
frames/sec, 500 terminals could receive a new
image, on the average, every two seconds. With-
in the overall system capacity, a few terminals
could even display rapid frame sequences.

In many instances, the installation of a single
cable, or even a set of cables, is not a major
problem, particularly if terminals are grouped
as in a teaching laboratory. Already, extensive
private communication networks of various band-
widths exist in some organizations [13]. More-
over, extensive cable systems in Great Britain
serve about 7% of all television homes [14]. A
primary distribution network (video trunk route)
of grouped coaxial cables (one for each TV chan-
nel), placed in an underground duct, feeds a set
of unit areas in a town. Within each unit area a
secondary distribution network of multipair
cables (a multipair cable contains six wire-pairs
for video) serves about 1000 homes. This wired
broadcasting system uses multipair or multico-
axial cables rather than wide-band, frequency
multiplexed cables as used in community antenna
television (CATV) systems. These techniques
are not directly applicable to networks of hundreds
of independent computer graphic terminals, but
they are very relevant. The need for economical
local storage of TV images is clearly established.

The user of a TV computer graphics terminal,
which has a conventional (non-storage) CRT dis-
play, may return information to the computer as
follows. A pair of simple counters, running syn-
chronously with the TV raster, can determine the
horizontal scan line number and position within
the line of a "strike" from a simple photo-sensor
light pen ("raster-pen") [12,15,16]. The strike
pulse freezes the state of the counters; various |
methods have been used to transmit the count and |

COMPUTER GRAPHICS COMMUNICATION SYSTEMS 215

reset the counters. Raster coordinates of refer-
enced display items are invariant to terminal
display distortion. The raster-pen scheme can
be extended to a second smaller "keyboard" CRT
which displays standard symbols and a set of func-
tion key cells: pen strike coordinates rounded to
the grid size correspond to the referenced sym-
bol. Raster-pen counters may be attached to each
TV terminal or, alternatively, all terminals may
share one pair of centralized counters; these al-
ternatives will be discussed later.

Thus, many economical television techniques
already exist for the storage, distribution and
inputting of graphics; further techniques, in par-
ticular local video storage, need to be developed.

6. ARBITRARY GRAPHICS SCAN CONVERTED
TO TELEVISION: INTERGRAPHIC PROJECT

Given the practicality of a large number of
simple graphical input/output terminals linked to
a centre, it is necessary to generate and maintain
the details of all images, and interpret pen posi-
tions, at the centre. Much of this work is special-
ized and should be executed in a dedicated graphi-
cal-interface computer closely coupled to the
main machine.

This strategy has been adopted in the "Inter-
graphic" project [17] (fig. 4) * which generates
terminal images once only at high speed (10 MHz
incremental plotting rates) on a small electro-
statically-deflected CRT, scan converts these

— — — —

FURTHER GROUPS

—_———

INTERGRAPHIC
r

1]
b
c
rr=—pmmm————

SELECTION & TIMING

RECEIVING

e — — — —
FURTHER GROUPS ¢

nEnEEE— SINGLE 1
COAXIAL CABLE —

5EE

TV TERMINALS

Fig. 4. Intergraphic system.

* Reprinted from [17] by permission of the IEEE.

images, and stores them on specific tracks of a
video disk which refresh the terminals. A single
coaxial cable distributes images by frequency
multiplexing.

The graphical-interface computer is extremely
versatile (as it is microprogrammed) and fast
(3-5 nsec integrated circuits and 100 nsec read-
only memory cycle-time), so that comjlex graph-
ics can be generated well within a TV frame time.
Intergraphic has a small conventional core store
(8K bytes) and shares the large core store (10
bytes) of the main computer; the short data link
and the two stores have identical data transfer
rates (108 bytes/sec).

Vectors and symbols are produced incremen-
tally by short microcode sequences containing
several special micro-orders to facilitate plot-
ting. Thus, these functions are executed as nor-
mal machine orders and separate vector and
symbol generation hardware has been eliminated.
As Intergraphic has a powerful machine code (in-
terpreted by 100 nsec microcode sequence steps),
blocks of central computer code can be processed
before plotting; e.g., scaled, shifted, reflected,
ete.

Although the overall function of Intergraphic
is dedicated and therefore specialized, the func-
tion is complex and will change with operational
experience; hence, the approach has been to
specialize a versatile structure by micropro-
grams which can be changed from time to time
("firmware" modifications).

Once in every television frame period, each
terminal sends its "raster-pen" coordinates and

. the state of its pen switch to Intergraphic (coor-

dinates are only meaningful when accompanied
by a set input switch).

Raster coordinates are determined by a pair
of counters attached to each terminal as outlined
in sect. 5. Coordinate transmission is distributed
over the frame period: X coordinate during one
field, Y coordinate during the other. Coordinates
are returned on the single coaxial cable by fre-
quency multiplexing; low frequencies are ade-
quate, but redundant coding is necessary because
reliability is essential. The terminal pulses
which freeze the raster counters (derived from
the pen strike pulses) also brighten the CRT
beam; this spot, a few mm from the pen aper-
ture, provides true coordinate feedback and
eliminates errors due to delays in the pen photo-
sensor response.

In "drawing" mode, pen movement is detected
by coordinate differences between successive
frame samples; these increments update running
parameters of a breakpoint insertion algorithm

216 G.A.ROSE |

held in the interface and shared by all terminals.
The breakpoints so determined are sent to the
application program - this compression greatly
reduces the data flow between the interface com-
puter and the main machine.

In the simplest scan converter mode, an image
is written within one frame period and read out to
video disk in the following frame period (alternate
framing is readily synchronized from the video
disk). This gives a distribution rate of 123 new
frames/sec, which, for example, could service
25 terminals with new images on the average
every two seconds. By adding further converters,
100 new frames/sec could be distributed before
the plotting capability of Intergraphic is exceeded.

Scan conversion is the intermediary between
the interface computer and the terminals: the in-
terface computer generates display points asyn-
chronously in incremental and random point
modes; the terminals receive display points syn-
chronously in a regular scanning mode.

Direct computer generation of binary video
signals for arbitrary graphics is difficult, as
even a simple vector becomes a set of discrete
points distributed throughout the scanning se-
quence.

A disadvantage of scan conversion is that to
add or delete even a single symbol from a display
requires one complete television scan; i.e., an
item which is generated in several microseconds
commits the converter for at least 40 msec. Thus,
it is preferable to add symbols to a display in
groups (words), controlled by the space and line
return symbols or a special symbol.

Messages of up to one line of text may be dis-
played by the interface and visually checked be-
fore being sent to the application program. This,
like breakpoint determination, requires small
reserved areas in the interface core for each ter-
minal, but reduces CPU interrupts.

The Intergraphic system is economical because
the shared interface computer is well utilized,
regardless of the activity patterns at individual
terminals; only inexpensive hardware is idle
when a particular terminal is inactive.

7. RESTRICTED GRAPHICS BY PROGRAMMED
VIDEO: IBM 1500 INSTRUCTIONAL DISPLAY
SYSTEM

By restricting the graphical format, binary
video signals can be assembled as bit patterns
directly by program. This eliminates scan con-
version. The IBM 1500 Instructional Display
System [16] has a display format of 40 columns

and 16 rows: a character (8 x 12 dot matrix) oc-
cupies one column-row intersection, so that tthe
display frame comprises 192 horizontal scan: lines
each of 320 dot positions. In addition to standiard
symbols, arbitrary 8 X 12 characters may be:
defined and placed in the column-row array tco con-
stitute a graphic. It is also possible to displaice
characters vertically by half a row. Although the
scheme is not practical for arbitrary graphic:s
(each new graphic would generally require thee
detailed specification of many new component:
characters), it is possible to build a restricteed
class of graphics from a well chosen set of elle-
ments. Restricted graphics are adequate for

many applications, e.g., annotated block sche:=-
matics and flow diagrams.

Individual CRT displays are specially desitgned
TV receivers with improved positional linear:rity
(the TV raster is non-standard). Each frame of
video is buffered on one track of a standard IIBM
2314 disk store; displays are refreshed 30 tirmes
per second at 2.5 x 106 bits/sec over individwal
coaxial cable links. Further economy is achiceved
through central determination of light pen rasster
coordinates in shared hardware. Individual peen
input responses are cabled to the centre wherre
they are polled. If the selected terminal has iits
pen switch depressed, then it has access to tthe
pen locating circuitry throughout the next frarme
period. The pen strike pulse freezes the rastcer
counters and so records the pen's position. TChe
counters are then reset and run again until frcozen
in a later frame period by another terminal. 'The
cable delay from a terminal is exactly compern-
sated by sending the TV line synchronizing puilses
from the terminal along with the pen strikes: the
line pulses start the within-line count at the
centre.

In the worst case of a simultaneous requesst
for pen sampling from all 32 terminals, theree
could be a delay in excess of one second; evern
this delay is acceptable when pointing to displlayed
items (the normal use of the pen is this econco-
mical system).

In general, shared pen locating hardware ccan-
not follow simultaneous freehand graphical ingputs
from a number of terminals; rather, each pern
needs to be sampled once per frame, which ree-
quires a pair of counters per terminal, as diss-
cussed in section 6.

For direct video generation by program, ai
computer must assemble and transfer to videco
buffer the binary strings which become the TW
scan lines. Two schemes are outlined:

1. The computer first forms an image in cores of
either the whole display or one row of char--

COMPUTER GRAPHICS COMMUNICATION SYSTEMS 217

acters. To do this, the dot matrix of a
:character is read from a table and the matrix
rows are distributed individually to appropri-

.ate addresses in core. The destination address

of the first row of the matrix is determined by
the character's location in the display; subse-

‘quent rows are placed by address indexing. Af-

ter the core image is assembled, it is then
read and transferred to video buffer in an ad-
«dress sequence corresponding to the TV scan.
'Thus, this scheme separates image assembly
from image transfer,.

2. This scheme merges assembly and transfer.
‘The first row of the dot matrix of a character

is read from the table and transferred directly

to video buffer; then the first row of the next
character's matrix is read and transferred,
etc. This scheme conserves core storage and
is necessarily faster, but it requires a faster
memory to synchronize with the video buffer
(indexing and indirect addressing within the
‘video time of one dot matrix row).
Clearly, for a given flicker rate, reduced
ressolution eases both storage and speed require-

meants. In both of the above schemes the computer
is lbusy for at least the entire transfer phase (i.e.,

onee TV frame period for every new frame gener-
atezd. The transfer phase is shorter, however,
wheen only one line or character of text is modi-
fieed.

A scan converter frees the computer from the
traxnsfer phase; this is significant when the aver-
agee time between new frames (i.e., average im-
agee generation time plus supervisory overhead)
is (only a fraction of the TV frame time, as, for
exzample, it is in Intergraphic. The ratio of com-
putter to scan converter costs must also be con-
sidlered in the justification of scan conversion.
Abysolute advantages of scan conversion are the
accceptance of arbitrary graphics (which allows
commputer interpolation of compact vector codes,
or symbol stroke codes, the latter being more
effficient than dot matrix patterns) and the elimi-
nattion of the need for wordwise synchronization
bettween the computer and the video buffer.

8. PRECISION GRAPHICS

The need for low-cost terminals has intro-
ducced displays having less stringent specifica-
tioons. However, in any comprehensive computer
utiility, there will always be a need for some
dissplays of the highest quality.

Applications such as template and integrated
cirrcuit mask generation or scaled curve follow-

ing require high resolution, high precision dis-
plays. An example is the 4096 X 4096 image pro-
cessor of the DAC-I system [18]. Such displays
require more precise D/A converters, deflection
amplifiers and CRT's, but present no inherent
programming difficulties. Precision CRT's are
mostly small (3-5 " diam) and are not viewed
directly; rather, they record onto, or scan
through, photographic film. The greater preci-
sion usually requires a longer settling time for
the CRT beam.

9. A PROPOSED EXTENSIVE GRAPHICAL-
COMMUNICATION SYSTEM USING EXISTING
TECHNIQUES

The foregoing sections have outlined and com-
pared a variety of existing techniques for linking
graphical terminals to a central computer. This
section outlines a configuration for a comprehen-
sive graphical communication system based on
these existing techniques.

Per-terminal costs of multi-terminal systems
have been greatly reduced by one or more of the
following:

1. Imposing operational constraints such as re-
stricted graphics, lower resolution or preci-
sion, and slower plotting rates or response
times.

2. Introducing hardware which is shared by ter-
minals; e.g., graphical-interface computers,
centralized raster-pen circuitry and central-
ized scan converters.

3. Converting images expressed in computer
based codes to forms suitable for low-cost
distribution; e.g., scan conversion of vector
strings to video signals.

4, Storing images at each terminal.

Some applications cannot accept these con-
straints or devices. Therefore, for overall eco-
nomy of a comprehensive graphical-communica-
tion system, several classes of terminals are
necessary.

Class 1 - Dynamic Precision Terminals
Dynamic precision displays for animated
movie generation would be few in number and
each display would be connected directly to a
private graphical interface computer. These
units would be expensive and shared on an hourly
or daily basis, Some laboratory applications re-
quire this class of display, e.g., stimulus-re-
sponse experiments on the visual system which
require computer generation of visual stimuli,
and analysis of responses from many sensors.

218 G.A.ROSE

A high precision display for non-repetitive tem-
plate or mask generation could be located remote-
ly and linked to the interface by a reliable low
data rate line which transmits coded display in-
crements.

Class 2 - Television Teyminals »

Standard television terminals driven from an
interface which sends an arbitrary image to each
terminal on the average every few seconds would
be satisfactory for most applications: the resolu-
tion is adequate to detail 1000 symbols; the speed
is more than adequate for contemplative reading —
the reserve speed allows page scanning, or even
faster sequences, at a few terminals. Arbitrary
graphics are essential for some applications;
also, they can be economically generated and
converted to video by an interface which contains
a shared scan converter(s).

The following example describes an interface
serving 200 standard TV terminals with new
images on the average every two seconds. (This
is claimed for Intergraphic and an order of mag-
nitude increase is predicted [17]). Five scan con-
verters would be necessary to distribute the 100
new frames/sec. Each converter would transfer
20 new frames/sec to a specific set of 40 tracks
on a video buffer refreshing terminals at 25
frames/sec (Australian standard). As soon as a
scan converter was written (average writing time
10 msec), the read beam, scanning synchronously
with the video buffer, would be enabled and would
start transferring the image to the video buffer,
A counter would time the transfer to last for ex-
actly one frame period (40 msec), and on comple-
tion of the frame transfer, the converter's busy
indicator would be cleared. During this transfer,
the interface would generate an image on the next
converter for a terminal in the next group of 40.
This overlapping sequence, regulated by the busy
indicators, would continue.

Any set of 40 terminals which is physically
clustered would be driven directly from a video
buffer located within the cluster - one coaxial
cable or twisted wire-pair from each buffer track
to its terminal. If the cluster was remote from
the interface, one time-multiplexed cable from
the converter to the buffer would be sufficient: a
track address key would herald each video frame
transferred from the converter. Scattered termi-
nals would be frequency multiplexed on a single
coaxial cable, rather than radially fed, from the
video buffer. Isolated remote terminals have
been linked by video wire circuits [14]; however,
if this is impractical then a dataphone DVST
terminal would be necessary.

Class 3 - Dataphone DVST Terminals

Existing dataphone circuits would dictate the 2
linking of these terminals (ARDS type). A specizal
interface which absorbs the speed mismatch be-=-
tween the central processor and the dataphone
lines would be desirable.

Proposed network

A large computer graphics network (fig. 5)
would comprise say ten graphical interface comn-
puters in two groups of five, each group connectted
to one of two very large computers. The large
computers would be coupled for reliability and
load sharing. Within each group of five interfacees,
one interface would drive a Class 1 terminal,
three interfaces would drive about 600 Class 2
terminals, and the fifth interface would serve
1000 Class 3 terminals with new frames on the
average every ten seconds. With faster interfaceces
and low-cost local storage, it will become prac-=-
tical to time multiplex thousands of simple Classs
2 terminals, directly from banks of scan converr-
ters. With such large systems a careful re-
assessment of frame formats, scanning times,
etc., would be necessary.

J0. CONCLUSIONS
This review shows that many economical

graphical communication techniques exist, and

further developments promise to reduce per-

terminal costs to below $1000. Apart from re-

duced costs of micro-electronics generally, loww-
cost has been achieved by:

1. Borrowing from non-computer fields (radar, .
television, etc.) techniques such as scan cona-
version, television image transmission, fre--
quency multiplexing and video signal storage.:.

2. Classifying applications into broad classes
according to terminal performance require-
ments, and providing matching terminal typees
(high-precision, high-resolution; standard
television; and dataphone connected DVST's).).

3. Improving systems organization, e.g., intro--
ducing shared graphical-interface computers
which allow more efficient task distribution,
reduce central processor interrupts and interr-
pret more compact data codes.

4. Improving logical design, e.g., plotting vec-
tors and symbols by high-speed microcode,
which eliminates the need for special vector
‘and symbol generation hardware.

5. Replacing core-store image regeneration by
video-disk image refreshing or storage-tube
image retention.

The significance of these advances is that curr-
rent planning of computer utilities should includee

COMPUTER GRAPHICS COMMUNICATION SYSTEMS

219

To/FROM CPu 2

1,2 CLASS 1 ;

600 CLASS 2

INTERFACE
PROCESSING
UNITS

VIDEO BUFFER
DATAPHONE

(RN TMX TIME MULTIPLEX
WA N FMX FREQUENCY ®
AN

\ VopN
\\‘ N

\

\x

) \

1000 CLASS 3

Fig. 5. A large computer-graphics network.

exixtensive computer graphics networks. Television
syiystems are particularly attractive, and excellent
exxamples of economical video distribution serving
thhousands of simple terminals exist.

Further development of local image storage is
reequired to exploit time multiplexing of common
did¢istribution channels. Fortunately, advances in
griraphical communication, which ultimately re-
fledect an even greater load on the central proces-
soior, have been accompanied by advances in the
unmnderstanding and processing of complex data
stitructures [19, 20].

AQCKNOWLEDGEMENTS

The author wishes to thank Prof. M, W, Allen,
Prrof. P.D.Jones, T.Pearcey, M.Macaulay, C.J.
Balarter, G.P.Bowen and R. B. Stanton for many
helelpful discussions on systems organization, data
stitructures, computer graphics and hardware.
Th'he constant support of Prof., M. W, Allen, Head
of f the Computation Department, is greatly appre-
ciciated.

RREFERENCES

[1]1] M.D. Prince, Man-computer graphics for computer-
aided design, Proc.IEEE, vol.54, no.12, pp.1698-
1708, December 1966.

[2] E.L.Jacks, A laboratory for the study of graphi-
cal man-machine communication, 1964 Fall Joint
Computer Conf., AFIP8 Proc., vol.26, pp.343-350.

[3] M.H. Lewin, An introduction to computer graphic
terminals, Proc.IEEE, vol.55, no.9, pp.1544-
1552, September 1967.

[4] 1. E.Sutherland, SKETCHPAD, a man-machine
graphical communication system, 1963 Spring
Joint Computer Conf., AFIPS Proc., vol.23,

Pp. 329-346.

[5] W.H. Ninke, GRAPHIC-I, a remote graphical dis-
play console system, 1965 Fall Joint Computer
Conf., AFIPS Proc., vol.27, Pt.I, pp.839-846.

[6] N.A}.Ball, H.Q.Foster, W.H. Long, I.E. Suther-
land and R. L. Wigington, A shared memory com-
puter display system, IEEE Trans.Electronic
Computers, vol. EC-15, pp. 750-755, October 1966.

[7] R.W. Lichtenberger and M. W. Pirtle, A facility
for experimentation in man-machine interaction,
1965 Fall Joint Computer Conf., AFIPS Proc.,
vol.27, Pt.1I, pp.589-598. .

[8] D.E.Rippy et al., MAGIC, a machine for automatic
graphics input to a computer, ibid., pp.819-830.

[9] G.A.Rose, Light-pen facilities for direct view
storage tubes, IEEE Trans.Electronic Computers,
vol. EC-14, pp.637-639, August 1965,

[10] R.H.Stotz and T.B. Cheek, A low-cost graphic dis-
play for a computer time-sharing console, Society
for Information Display, 8th National Symposium,
Ppp.91-97, May 1967,

[11] G.P.Bowen, M. E.Thesis, 1968, Contributions to
the UNSW graphical data network, School of Elec-
trical Engineering, University of New South Wales,
Kensington, N.S.W., Australia.

[12] M. Macaulay, M.E. Thesis, 1968, Input/output ter-
minals for the computing utility, ibid.

220 G.A.ROSE

[13] J.C.McPherson, Data communication requirements
of computer systems, IEEE Spectrum, pp.42-45,
December 1967.

[14] R.P.Gabriel. Wired broadcasting in Great Britain,
IEEE Spectrum. pp.97-105, April 1967.

[15] S.B.Gray. A computer time-shared display, Infor-

mation display, January/February. 1966, pp.50-51.

[16] R.A.Aziz. An instructional display terminal. Soc-
iety for Information Display. 8th National Sympo-
sium, pp. 83-90, May 1967.

[17] G.A.Rose. Intergraphic - a microprogrammed
graphical-interface computer. IEEE Trans.. Elec-
tronic Computer, Vol. EC-16, No.6, Dec. 1967.

[18] B.Hargreaves et al., Image processing hardwarce
for a man-machine graphical communication syss-
tem, 1965 Fall Joint Computer Conf. AFIPS Prooc.,
vol. 26, pt.I, pp.363-386.

[19] J.C.Gray. Compound data structures for computiter-
aided design: A survey, Assoc. for Computing
Machinery, Proc. 22nd National Conf., 1967, ppp.
355-365.

[20] D.T.Ross, The automated engineering design
(AED) approach to generalized computer-aided
design, Proc. 22nd National Conf., 1967, pp.
367-385.

Reprinted from IEEE TRANSACTIONS
ON ELECTRONIC COMPUTERS
Volume EC-16, Number 6, December, 1967
Pp. 773-784
CopyricHT © 1967—THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
PRINTED IN THE U.S.A.

“Intergraphic,” A Microprogrammed
Graphical-Interface Computer

GORDON A. ROSE

Abstract—The paper describes a proposed microprogrammed
interface computer, “Intergraphic,” which will link many (initially
13; potentially more than 50) general-purpose graphical terminals to
a central processor. Intergraphic will generate new images once only,
at high speed (10-MHz incremental plotting rates) on one of several
small, electrostatically deflected, precision CRT’s. The images
will be generated on a 1024 by 1024 grid in incremental and random-
point display modes by fast microcode sequences which interpret
display lists from the central processor. The centrally generated
images will be scan converted to standard television video signals
and recorded on a multitrack video disk(s), each track refreshing a
low-cost standard television terminal. User feedback will be via
raster coordinates, determined by a light-pen (‘‘raster-pen’) and
simple counting circuits at each terminal.

The paper concentrates on the digital interface structure which
is versatile and fast (3-5 ns integrated circuits and 100-ns cycle-time
READ-only memory). The description centers on display generation,
although the structure is largely general purpose. The proposed
operating system is outlined only since it is in an early stage of de-
velopment. Also, the order-code accompanying data from the central
processor is incomplete. However, new orders can be readily inter-
preted by adding microprograms to the READ-only memory (i.e.,
“firmware,” not hardware extensions); thus, the interface will also
be a useful medium for experimentation in graphical structures and
communication.

Index Terms—Compact graphical codes, computer graphics,
economical displays, graphical interface, man~machine communica-
tion, microprogrammed interface.

I. INTRODUCTION
BEFORE 1964, a number of projects!—B had

shown that a computer-driven display with an
input pen was a useful and versatile terminal.

Manuscript received January 20, 1967; revised June 24, 1967.
This work was supported by the Australian.Research Grants
Committee. .

The author is with the Dept. of Electronic Computation, Uni-
Xersity] of New South Wales, Kensington, New South Wales,

ustralia.

These early systems, however, were devised to meet a
particular need or to demonstrate the potential of com-
puter graphics; system or hardware efficiency was not
of first consideration and, typically, single displays were
connected directly to a central computer.

By 1964, a multiaccess system for about 30 simulta-
neous users was being realized at Project MAC.!] Ter-
minals were electromechanical teletypes; two years
later Corbaté and Vyssotsky!® considered general-pur-
pose graphical terminals highly desirable, but still too
costly and too demanding to be multiplexed in quantity.

At the same time, other projectsi®—[8 showed that
local control computers with regeneration stores, which
generated and held display details, determined pen
coordinates, etc., could reduce demands on the central
computer. However, supporting hardware in each of
these projects was for one display only; thus, although
central computer time was saved and the display with
its local support could be moved to remote locations,
the hardware cost per display was still high. Another
single display project, SCHOOLER, ! had aims similar
to those presented in references [6] and [7], but elimi-
nated the need for a separate regeneration memory by
allowing the display unit to borrow cycles from the local
control core memory. Also in late 1966, Kennedy!'%
described an operating system for a set of three Digi-
graphic displays. Relatively static displays were
refreshed from the drum and, where necessary, highly
dynamic displays could be driven directly from the
central computer.

A typical specification for the general-purpose dis-
plays cited would be a magnetically deflected, large
CRT with X, Y deflection resolutions of 1 in 1024, a
random position settling time of 30 us, and an incremen-
tal plotting rate of 1.5 us per visible point or 300 ns per

774

blanked point. A symbol generator (20 us per symbol)
and vector generator (150 us/in) would usually accom-
pany each display.!

Plotting rates an order faster (2.5 us per random
point or symbol; 4 us/in vector rate) are possible using
electrostatically deflected CRT’s with vector and sym-
bol generators which are part analog.?

Costs of such displays (electromagnetic or electro-
static deflection) with vector, symbol and regeneration
devices are high (typically in excess of $50 000); in
contrast, per terminal costs not exceeding $2000 would
be expected before large numbers (say, more than 50)
of graphical terminals are multiplexed.

A previous paper on economical graphical communi-
cation!'!! discussed a number of inefficiencies in the
encoding, displaying, and inputting of arbitrary graph-
ics. It stressed the need for an interface computer,
shared between graphical terminals, which removed
the tasks of detailed generation, simple graphical manip-
ulation, and pen tracking from the central computer,
and proposed a microprogrammed interface computer,
“Intergraphic.”

This paper details the structure and performance
specifications of Intergraphic, planned for operation by
the end of 1967. Initially, Intergraphic will link 13
graphical terminals to a central computer (IBM
360/50) via a large capacity core store (LCS). Fig. 1
shows the proposed system.

Intergraphic will generate all user images once only
(i.e., regeneration for persistence of vision is regarded as
a low-order task which should be external even to the
interface computer) at high speed on a single, small,
electrostatically deflected CRT in conventional com-
puter-driven display modes.

Each image will be scan converted to a standard TV
frame and stored on a video disk (one track refreshing
one active terminal). An economical TV distribution
system, described by Macaulay,*?! will then continually
distribute the images to corresponding standard TV
receiver terminals on a single coaxial cable. Macaulay
also describes simple digital circuits attached to each
terminal which will return pen raster coordinates to
Intergraphic on the same cable once in every TV frame
period (Australian standard, 40 ms).

The present paper concentrates on the digital inter-
face structure which is extremely versatile (being se-
quenced from microprograms held in a READ-only
memory, ROM) and fast (3-5 ns integrated circuits and
100-ns ROM cycle time).

The paper gives examples of the code which will
accompany compactly encoded data between LCS and
Intergraphic (Section IV), and the interpretation of this

1 DEC Type 338 Display, Digital Equipment Corp., Maynard,
Mass., and Elliott Type 4100 Display, Elliott-Automation Com-
puters Ltd., Borehamwood, Herts, England, are representative.

2 CDC Type 250 Display, Control Data Corp., Minneapolis,
Minn.

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, DECEMBER 1967

code by microprogram sequences (Section V). The
flexibility and speed of Intergraphic will enable many
functions to be performed within it; e.g., Cartesian and
polar vector strings will be interpreted and plotted by
microcode. The paper describes two micro-orders which
assist vector and symbol generation; through these
orders, the incremental plotting rate of vectors and
symbols will be 10 MHz.

Compact image encodings will be buffered in Inter-
graphic core store at a data rate matching that of
LCS; viz., 1 byte (8 bits) per us. For example, a page of
text of 1000 symbols or a line drawing comprising 500
short vectors (short Cartesian vectors have X, ¥ com-
ponent magnitudes less than 64 increments) will occupy
1000 bytes and require a core-to-core transfer time of 1
ms. The generation time of such displays will be approxi-
mately 5 ms; thus, the elapsed time from LCS to gen-
eration on the central CRT will be only a fraction of a
scan conversion period (40 ms), thereby leaving the
interface considerable free time for other functions.
Later, further scan converters will be added. It will be
possible for Intergraphic to generate 100 new frames
per second. However, operational experience with the
initial 13 terminals will be necessary to assess the overall
system capability before deciding on the final number of
terminals. Highly dynamic displays have a high new
image rate; thus, they require direct coupling to Inter-
graphic rather than to a video track. Such displays will
be driven identically to, but in place of, the writing
section of a scan converter.

A detailed description of the proposed operating sys-
tem is not within the scope of this paper. Many opera-
tional details will remain experimental; others will
follow established multiprogramming procedures. How-
ever, to complete an outline of the overall scheme, a
brief description follows.

User programs will be expressed in PL/1 with em-
bedded graphical orders. PL/1 orders will be executed
in the central processor (CP); graphical orders, however,
will be interpreted partly by CP subroutines and partly
by Intergraphic (IG). For example, “plot rectangle
aXb, bottom left corner x, yo” would be expanded into
a list header and four vectors by CP subroutine and the
list executed (in this case, plotted) by IG.

Communication between the CP and IG will be
buffered by two queues in LCS: one, the CP/IG queue,
will queue tasks to be executed by IG (EXIG's); the
other, the IG/CP queue, will queue data resulting from
the execution of EXIG's. The CP/IG queue will be
built up by the component of the operating system
resident in the central processor (OS/CP) and serviced
by the component of the operating system resident in
Intergraphic (OS/IG). Examples of EXIG’s are “dis-
play an output graphic,” “post-process, then display a
graphic,” and “track an input graphic and encode as a
vector string.” The IG/CP queue will be built up by
0S/1G and serviced by OS/CP; examples of data in this

ROSE: MICROPROGRAMMED, GRAPHICAL-INTERFACE COMPUTER

775

o — —
INTERGRAPHIC FURTHER GROUPS
———
IBM SCAN CONVERSION
LARGE
CAPACITY 0 ViDEO
STORE DISK .
SELECTION & TIMING
I 1BM/1G —
INTERFACE I |
RECEIVING
18M 360/50 = —— =
FURTHER GROUPS
e —— —— SINGLE |
COAXIAL CABLE —-ll
)
i-—— @-4& g——/
TV TERMINALS
Fig. 1. Proposed graphical-communication system.

queue are “a string of symbols from a terminal,” “a
string of vectors encoding an input graphic,” and “an
item pointed to by the user.” Only one EXIG will be
resident in the Intergraphic core at any one time.

In summary, apart from an initial request for service,
all terminal activity will be initiated by user programs
resident in the central computer; i.e., Intergraphic and
the terminals are regarded as a flexible input-output de-
vice, the inputs coming from any one user being in
modes prescribed by his program.

II. JUSTIFICATION OF SYSTEM AND
INTERFACE STRUCTURE

An interface which multiplexes graphical terminals
must be capable of a variety of processing and super-
visory tasks. Some of the tasks planned for Intergraphic
have been mentioned in Section I.

Many interface tasks are purely digital. Others, e.g.,
symbol, vector, or special curve generation, may be
digital or analog.[1®.114] The extent of analog techniques
is an important engineering decision; other major deci-
sion areas are local or central generation devices, storage
or regenerated displays, and, if regenerated, digital or
video storage.

For a multiple terminal system to be economical, the
cost of a terminal must be low. The cost of a standard
TV receiver refreshed from a single track on a multi-
track video disk is currently lower than that of a direct
view storage tube (DVST) display. Moreover, a group
of TV receivers can be readily multiplexed on a single
coaxial cable.l12]

Although it is possible to compute video patterns di-
rectly for some restricted display formats, e.g., type-
writer mode, direct video construction of arbitrary
graphics is generally difficult. It is simpler to construct
video patterns indirectly by scan converting a display
previously generated in vector or random point modes.

Many terminals can share a single scan converter, pro-
vided the average new frame rate per terminal is ade-
quate. A converter frame rate of 12.5 per second, for ex-
ample, could support 25 terminals with new frames, on
the average, every 2 seconds. Video refreshed TV receiv-
ers have a constant display frame rate. Thus, flicker is
independent of the new frame rate and is negligible.

Alternatives to scan conversion and video regenera-
tion are

1) DVST terminals with no intermediate storage be-
tween the interface and terminals.

a) Scheme 1: Common analog deflection signals to
all terminals with terminal selection by intensity
gating—the image generation rates of the interface
would be limited by the bandwidth of the deflection
system for the large DVST'’s.

b) Scheme 2: Common digital image codes sent to
all terminals with terminal selection by coding keys—
compact codes would require elaborate vector and sym-
bol generators at each terminal; expanded codes, gen-
erated by the interface, could reduce terminal decoding
complexity. Reliability of code transmission is impor-
tant. As in Scheme 1, the image generation rate of the
interface would be limited by deflection bandwidth.

2) DVST terminals written in TV mode from a scan
converter. The intermediate storage of the scan con-
verter allows the standard TV deflection bandwidth to
be used. Intensity signals need be transmitted once
only, thereby eliminating the high information rates
necessary for refreshing even static images on short
persistence displays.

3) Digital regeneration, i.e., the interface generates
and routes digital codes once to core or synchronous
(drum, disk, or delay line) stores, which are cycled to
regenerate displays. Compact digital codes are pre-
ferred for storage, but, as in Scheme 2, compact codes
increase terminal decoding complexity. A central regen-

776

eration store causes a high total digital transmission
rate from store to terminals which complicates trans-
mission; individual terminal regeneration stores reduce
the central to terminal transmission requirements, but
the cost of scattered storage is greater. Core regenera-
tion stores can be filled at a rate matching the interface,
but cycled more slowly to match terminal performance.
This is not possible with synchronous storage, although
several intermediate core buffer areas, written at the
interface rates but read more slowly into synchronous
regeneration stores once only, could absorb this mis-
match.

Recent work on meshless DVST’sl!8! and bistable
plasma arrayst offers local storage devices at poten-
tially low cost. At the moment, however, the chosen
scheme is cheaper than the alternatives listed.

Central generation of images in the chosen scheme
eliminates the need for multiple copies of vector and
symbol generators. Thus, detailed vector and symbol
generation become tasks within the interface. From the
variety of tasks expected of the interface, it was decided
to control a general-purpose digital structure by micro-
programming.['"):[181 This reduces the amount of spe-
cial-purpose hardware, and allows the system to be
readily extended or modified. It has been possible to
generate vectors efficiently within the interface entirely
by microprogram with the assistance of a special
micro-order; the additional logic required to execute
this order is trivial. Symbol generation also fits well into
the microprogram structure, but a small amount of
logic to generate standard strokes has been necessary.
Apart from the ROM and core store, Intergraphic is
being constructed entirely of integrated-circuit OR-NOR
gates, analog signals first appearing at the outputs of the
digital-to-analog (D/A) converters.

Microprogramming a structure of OR—NOR elements is
a unified approach which has been preferred to the con-
struction of a number of special-purpose devices using
a variety of techniques. Moreover, the paper shows that
high speeds are possible with the chosen structure and
techniques. Using the same codes and logical structure,
speeds an order of magnitude greater (100 MHz incre-
ment rates) are feasible. This is so because subnanosec-
ond gates are becoming available, the ROM and the
D/A converters use nonsaturating techniques which
can be extended to high frequencies, and very high
frequency CRT electrostatic deflection structures
already exist.

III. INTERFACE LOGICAL STRUCTURE
AND MICROCODE

A. General Description

Figs. 2 through 4 show the interface logical structure,
and Table I sets out the controlling microcode. Through-
out the description, “register” implies a set of flip-flops.

The general-purpose processing section (Fig. 2) com-
prises a core store, addressed from N with READ/WRITE
register M; a set of general registers (4, B, - - -, E);

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, DECEMBER 1967

register selection gates; a pair of eight bit arithmetic
units (AU’s) with elementary shifting, circulating, and
transposing facilities; and an internal distribution
bus e.

The control section (Fig. 3) comprises an ROM
(holding microprograms), addressed from .S with READ
register G; a microroutine link register Q; decoding and
timing logic; a general-purpose counter R; and a bitwise
programmable register F.

The special-purpose section (Fig. 4) comprises X, ¥V
display registers and D/A converters; X', Y’ origin
registers for resetting X, ¥ in absolute vector mode (see
Section IV); X.., Y, matching registers for detecting a
particular X,V pair; line-form (i.e., continuous, dotted,
or broken lines) and intensity-control circuits; and
symbol-stroke generation logic.

The core store is conventional; 4096, 16-bit words,
cycle time 1.5 us. It buffers compact display codes and
instructions to and from the central computer. The
ROM, however, is fifteen times faster; during its cycle
time (100 ns) one micro-order is executed. This speed
allows compact core codes to be interpreted by micro-
code sequences, often without slowing the core store.

B. Microcodes (Outline)

The microcode will be outlined only here; details are
contained in the Appendix.

There are six micro-order types (five are shown in
Table I).

1) The arithmetic/logical orders (ABA-APV, or
briefly, A-orders). These others add, or perform a logi-
cal operation on, the contents of two nominated regis-
ters and send the result to a third nominated register.
Two’s complement representation is implied through-
out the paper. Most of the machine registers are in-
cluded, so that many functions can be performed with
these orders; two examples are the core address being
indexed by the contents of another register, and the
ROM address being set to a computed jump. A single
bit shift or circulate, or a 4-bit or 8-bit transpose of the
result, are optional. Operations may be performed on
lower significant bytes of registers only, on upper bytes
only, or on both bytes considered either isolated or
concatenated. As well as the conventional execute and
advance mode, the execution of an A-order may be de-
layed or repeated until a nominated event occurs, or the
next order may be taken from ROM address S—1, not
S4-1 (this backstep option allows alternations of two
orders until a nominated event occurs). ADR, AMY,

-« -, APV are variants of the basic A-order, ABA;
they are detailed in the Appendix.

2) The distribute microprogram constant orders
(DMC, DQS). These orders place 8- or 16-bit constants
in a nominated destination register.

3) The register transfer order (TRF). This order
executes register-to-register transfers which are not
possible via the arithmetic unit.

4) The F register bitwise conirol order (FBC). The

ROSE: MICROPROGRAMMED, GRAPHICAL-INTERFACE COMPUTER

~Ny7 A

CORE STORE
CORE 4096; 16+1 BITS, 1-5.S. CORE

CORE ADDRESS
20-1 M /F'W 24-13 N Ls-1s M
R — N
Lo-1 ¢ Le-15 4 B-15 o
=
0 0. o
Qo7 o GENERAL Ls-s g -5 p

REGISTERS

L]

~7 3 NI

1at 1t
Q47 0'es Oj-1s O4g-1s
A, C . A (-
B . Dy REGISTER B Do
Neo E SELECTION Now E
X L] L] " X " L] "
You Pl Yo Piu
S . Hy S . Hia
Q. Ryr Q, R,
oF, OF,
OVERFLOW + O +
UF, oA UF, *oan
0 L] -
UNDERFLOW i Vb feeC1 ARITHMETIC UNITS O s vV 5 le—Sss
® UPPER (A.Us) LOWER @ CARRY
€O, €O, IN
CARRY OUT . (m
‘0-11; —i‘c-u
CIRCULATE LC,RC
SHIFT LS ,RS
TRANSPOSE 4T, 8T Gya-1p Gao-21
..
DISTRIBUTION Cor 8-
Fig. 2. General-purpose processing section.
S4-1s

MICROROUTINE LINK
1s,DS
R.O. MEMORY ADDRESS

READ—- ONLY MEMORY
4098/ 3242 BITS, 100 nS.

el

b —

[GATE SELECTION
[TIMING PULSES
[“—J INDICATORS

MICROPROGRAM DECODING & CONTROL TIMING.

Qa-1s R DR Xm Ym
SF,RF,MF
o] | |

3

Fig. 3. Intergraphic control section.

77

778

®o0-7 w Iw
ARS LeNGTH
MODULO 64
gun
1-17
Gug-24
Su-n o SYMBOL STROKE .
%) GENERATION IX,0X
1v,0Y

STROKE FORMAT

UNBLANKING
&

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, DECEMBER 1967

DISPLAY
ENERATION

TV SCANNING,
REGENERATION,

&
DISTRIBUTION

INTENSITY
CONTROL COORDINATE
(X,¥) = (Xm, Y,
MATCHING
SET F’ F,
Fig. 4. Special-purpose display section.
TABLE I
MicroPROGRAM CODE
0 4 6 12 14 S 718 21 2425 28 3t
‘o' ‘o' d e
A c e |
ABA) wl +.0| o re |- W
ADR N +11 s |A €
amy [u , wr| o |a|+co| y Rs | B D
ADV 1yl re| v |5| A | e |6l aT |N E
AAD v X M
uL BK| S Hi STy »
APV Q [CRI - °
4 ' }Is Ho
a b e Q R
DMC " MICROPROGRAM
DQs n 0 CONSTANTS B
X (Y [X! ¥ (Y pe v | F Wi /
TRE | v " X|¥x |y N [R[R|MIM
0 F 15
RE MM
SF VM
FBC " c|c v L|ojojojo0
mF MM s
4 1 18 25
(s [TTe Lo T

flip-flops of register F may be individually set, reset, or
copied from corresponding bits of M. The last option
allows nominated code bits from core words to be
buffered.

5) The core store control order (CSC), not shown
in Table I, places the READ and WRITE phases of the
core store under microprogram control.

6) The stroke formats order (SFS). This order holds
four identical code fields, each of which defines an ele-
mentary symbol stroke; a string of these strokes con-
stitutes a symbol.

Each order takes 100 ns, except for the wait option of
A-orders, and the SFS order which persists until the
four strokes are generated. Micro-orders, except SFS,
are executed conditionally on the state of a binary indi-
cator nominated from a set of 64 by field J. The indica-
tor state also conditions the sequencing of micropro-
grams (see Appendix).

C. Display Logic

The special-purpose display hardware (Fig. 4) is also
controlled by microcode as follows: the display registers
X, Y may be nominated operands or destinations. As
will be detailed later, X, ¥ may be incremented/dec-
remented either from an arithmetic overflow/under-
flow during the plot vector micro-order APV, or from
pulse streams generated by the stroke generation logic.

Origin registers X’, ¥’ may be copied from X, ¥ and
later returned to X, ¥ by TRF micro-orders. Coordi-
nate-matching registers X,, Y, may be copied from
X, Y and, if necessary, placed in core via R during a
program interrupt.

The display registers each contain 12 bits; this ca-
pacity allows images to be accumulated beyond the
boundaries of a 10241024 display, or, alternatively,
allows a high resolution (4096X4096) display to be
driven.

ROSE: MICROPROGRAMMED, GRAPHICAL-INTERFACE COMPUTER

Coordinate-matching hardware assists display item
dentification. Pen coordinates are stored in X,,, ¥, and
the display reconstructed once until coincidence within
a nominated tolerance. For exact coincidence, all X, ¥V
bits must agree with X,,, Y, before an indicator is set
(Fs is reserved for this purpose). For relaxed coinci-
dence, /%, is set when the match extends to all but the
least significant three bits. Display reconstruction dur-
ing matching need not be visible. The referenced item
may be a point, vector, or set of vectors, depending on
the particular micro-order(s) which is match condi-
tioned.

The generation of vector and symbol stroke incre-
ments is discussed in Section V.

D. Peripheral Connection and Interrupts

The connection of peripheral devices to Intergraphic
will be via input buses P; and H;, which may be nomi-
nated as operands to the arithmetic unit, and output
buses P, and H, which may be nominated as destina-
tions.

All peripheral transfers will be executed by microcode
sequences within Intergraphic, the particular sequence
being entered from OS/IG (see Section I). Status
changes in peripheral devices set a J indicator(s) which,
in turn, conditions the execution of various jumps dis-
tributed within microcode sequences. These traps re-
turn control to OS/1G which identifies the status change
in detail and branches control accordingly.

The flexibility and speed of the microprogram struc-
ture will allow complex peripheral controlling tasks to be
implemented efficiently.

IV. EXAMPLES OF INTERGRAPHIC ORDERS
AND DATA FORMATS

This section outlines some of the orders and data
formats executed by Intergraphic. The code is executed
from the Intergraphic core store interpretively by micro-
program. Orders and data are mostly display file ori-
ented, but not necessarily so; i.e., Intergraphic can be
used as a specialized processor {or the central computer.

A. Plotting a List of Vectors or Points

Fig. 5 shows the list header order which plots the
list of vectors or points following the header, and Fig. 6
shows several vector or point formats.

The header nominates both the data format and the
operation to be performed throughout the list. Linking
bits in the data (L) define list length; a zero link bit in-
dicates that the next word is a new Intergraphic order
which may be an isolated order or another list header.

In the following, we refer to the header of Fig. 5, from
left to right:

Line-Form (LF, bits 0-2): This specifies a periodic
on—off, intensity pattern along a vector string according
to the logical expression

Unblank = WoLF, 4+ W1LF, 4+ WsLF, + LF,LF,LF,,

779

[3 6 8 15
Cer 7w Imef [(T ITT11

0-2 Line Form.

3-5 Intensity.

6,7 Magnification.

8 Single or Repeat?

8 Absolute or Relative?

10-12 0,0,1.

13 Small or Large Format ?

14 Cartesian or Polar?

15 Points or Vectors?

Fig. 5. List header for point or vector strings.

0 78 15
[ax VI av___ [

SMALL CARTESIAN. FORMAT

0 78 15

[As v] A0 L]

SMALL POLAR FORMAT
0 15
| AX 1v]
0 15
L AY 1]
LARGE CARTESIAN FORMAT
0 7 15
| RPT |]

REPEAT — INSERT

Fig. 6. Data formats for points or vectors.

where W is a 6-bit register (Fig. 4) which accumulates
length, modulo 64, along a graphic from increments
IW added to the least significant position W;s. Thus,
for 0.01 inch display increments, bits W, Wi, and W,
represent 0.32, 0.16, and 0.08 inch, respectively. LF
code 001, then, gives

Unblank = W,

i.e., a broken line of alternate visible and blanked sec-
tions each 0.08 inch.

LF code 101 gives the periodic center-line pattern;
long visible 0.40 inch, gap 0.08 inch, short visible 0.08
inch, and gap 0.08 inch.

Intensity (IT, bits 3-5): This specifies one. of eight
brightness levels for visible points or vectors (V' =“1").

Magnification (MG, bits 6, 7): This specifies that all
vector or point coordinates in the list are to be magni-
fied by X1, X2, X4, or X8. The vector-plotting micro-
program maintains a constant incremental plotting rate:
for a given vector regardless of magnification; magnifi-
cation extends the total number of increments and,
therefore, the plotting time. This technique is preferred
to magnification by adding a fixed number of plotting;
increments to more significant bit positions of the X, ¥~
display registers. The latter technique is faster, but also
magnifies the fine step structure of lines and demands
a correspondingly greater bandwidth of the display de--
vice. The procedure adopted, therefore, preserves line:
texture within a magnified grid structure.

780

Single or Repeat (bit 8, “1” =repeat): This specifies
whether points or vectors are to be plotted once or a
number of times. In repeat mode, each coordinate pair
is followed by a repeat-insert word which contains the
number of repeats, RPT; the number of executions is
RPT+1.

Absolute or Relative (bit 9, “1” =relative): “Plot rela-
tive” accumulates data values, i.e., vectors or point
coordinates are added end to end. “Plot absolute” draws
vectors, or measures point coordinates, from an origin
X', YV’ (point 0, Fig. 7); thus, after each point or vector
is plotted, the X, Y registers are jam-set to X’, ¥’ by
the TRF micro-order X'—X, V'— 7.

Small or Large Format (bit 13, “1” =large). The small
Cartesian data format encodes a AX, AY coordinate
pair plus an unblanking bit (V) and a linking bit (L)
in one 16-bit core store word. For 2’s complement repre-
sentation, therefore, the range of coordinates is

—64 < AX or AY < 64 increments.

This small format gives compact encoding and is ade-
quate for many line drawings, especially in conjunction
with magnification. The large Cartesian format occu-
pies two core words and can readily accommodate the
full display range.

Cartesian or Polar (bit 14, “1” = polar): Polar coordi-
nates are specified as a vector length As, and an angular
difference Af, from the orientation of the previous vec-
tor. This incremental polar code has three advantages:
it allows graphics to be rotated by modifying the initial
value of 6 only, it allows circular arcs to be compactly
encoded by repeating a As, A@ pair in relative mode
(Fig. 7), and it allows greater angular resolution to be
encoded in a given field length because a Af specifica-
tion need not cover 27 radians. The range of As is iden-
tical to the range of positive AX or AY, and the range
ot Af (also encoded in 7 bits) has been selected as

T ™ .
— — < Af < — radians;
4 4

this gives a resolution of /256 radians. Two reasons for
this selection are 1) that the tangential displacement of
a polar vector of maximum length, As =64, rotated by
x/256 is approximately one display increment, and 2)
that one revolution comprises an integral number (512)
of least significant increments. Initially, only small
polar coordinates will be implemented.

Points or Vectors (bit 15, “1” =vectors): A point is re-
garded as the visible terminus of an otherwise blanked
vector. In execution, however, a point is plotted by
jam-setting the X, Y display registers, whereas a vector
is generated by a sequence of increment pulses to X, Y.

B. Plotting a List of Symbols

A list of symbols is preceded by a list header order
with an intensity and magnification field. A symbol

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, DECEMBER 1967

4

ABSOLUTE RELATIVE

3

2 (:)
\ as /

Fig. 7. Repeated polar vectors—absolute and relative plots.

0 8 15
[_Symbol | Symbol 1

Fig. 8. Symbol format.

occupies one 8-bit byte, i.e., two symbols per core store
word (Fig. 8). Through byte codes for “begin new line”
etc., typewriter formats can be readily defined.

C. Isolated Orders

Isolated orders do not announce a following data list;
they are used for setting parameter values, nesting dis-
play subpictures, etc. Examples are

™
Setf = n—
4

™
Increment 6 by » ”y

Clear X, ¥V
Define Origin 0/ < X, V.

Since orders are interpreted by fast microprogram se-
quences, there is considerable scope for development of
either list-oriented or isolated graphical orders.

V. MICROPROGRAM INTERPRETATION OF
INTERGRAPHIC ORDERS

This section outlines the principal microprogram
plotting sequences within Intergraphic; it gives exam-
ples of operating times, plotting rates, and microcode
lengths.

A. Small Cartesian Vectors

The micro-order APV (A-order, plot vector) has been
designed for vector plotting. Small format Cartesian
vector plotting uses the U/L option of APV. This
micro-order augments the basic arithmetic operation
ABA by

1) incrementing X (IX) if the upper AU overflows
(upper overflow of, is the logical function debece, where
@, bo are the sign digits (“0” = positive) of the operands,
and ¢, is the carry into the most significant stage of the
adder; OF, is the buffered version ofo);

2) decrementing X (DX) if the upper AU under-
flows (underflow uf is aobofo);

ROSE: MICROPROGRAMMED, GRAPHICAL-INTERFACE COMPUTER

3) incrementing Y (I'Y) if ofs;
4) decrementing Y(DY) if ufs; and
5) decrementing R on every execution.

Also, APV preserves the sign of an addition on over-
flow or underflow, i.e., do remains “0” after two positive
numbers overflow the adder—normally, overflow re-
sults in a negative representation for the “sum”
(d() = 1)

Thus, the upper and lower AU’s add positive operands
modulo 128 for micro-order APV, U/L, and the number
of whole multiples of 128 are accumulated in the display
registers.

In execution, Co_¢ contains AX, and Cs_;4 contains

. AY (bits Cs, Ci5 are cleared after unblanking and link
bits (V, L) have been removed and stored in Fy, Fys).
Let register A be zero initially, and consider the re-
peated accumulation of C into 4

APV, U/L, RP, A+ C— A.

For positive AX and AY, overflows ofy and ofs will be
generated at rates proportional to AX and AY, respec-
tively; i.e., X and ¥ will be incremented proportionally
to AX and AY. After 64 cycles there would be exactly
AX overflows from the upper AU and exactly AY over-
flows from the lower AU. Thus, X would be incre-
mented to X +AX and Y to Y4AY, as required. Setting
R initially to 64, and nominating J as nonzero R
(NZR) automatically controls the number of cycles.
The micro-order would not be executed in cycle 65
(NZR =“0"), and the microprogram would advance to
the following order. For magnified vectors, R is set ini-
tially to 64 multiplied by the magnification.

The plotting time for vectors having AX and AV less
than 32 is reduced by prenormalization. If AX and AY
can be simultaneously normalized, then C is left-shifted
and R correspondingly right-shifted. This tends to main-
tain a constant incremental plotting rate regardless of
the size of vectors.

The greater normalized vector component will always
generate an increment in the second addition cycle,
provided the vector is nonzero. Both components gen-
erate increments in the last addition cycle (provided the
lesser component is also nonzero). This bias, which
aligns the increment streams to coincide on the last
cycle, appears as a small differential delay between the
two streams. It is eliminated by setting the initial
values in the upper and lower halves of register 4 to 32
increments for positive AX, AY. (The actual values
would be 464, since one display increment aligns with
bit positions 6 and 14, not 7 and 15.) A component of
one unit will then generate its increment in cycle 32,
rather than in the last cycle. After 64 cycles, the values
in register 4 are identical to their initial values. Thus,
repeating a vector does not require resetting of 4; like-
wise, magnification and normalization sequences need
be executed only once.

781

Actual Cartesian plotting rates vary between 5X10¢
and 14X10* in/s for 0.01 inch X and Y increments. An
example of the slowest rate is (AX, AY) =(32, 0), which
generates an X increment every second cycle, i.e., §
MHz, and an example of the fastest rate is (AX, AY)
= (63, 63), which generates both X and Y increments
practically every cycle, i.e., X and Y rates both ap-
proach 10 MHz.

The overhead (including magnification and repeat
facilities) for plotting a Cartesian vector in small format
is approximately 2.0 us. To this must be added the ac-
tual plotting time which is

6.4 MG
T HuS

where MG is the magnification, and N the number of
shifts during normalization. The overhead for repeating
a small Cartesian vector is 0.6 us. The initial interpreta-
tion of the block header is executed within a core cycle
time; thus, there is negligible block header overhead to
be added to vector plot times, even for blocks containing
only a few vectors. The small Cartesian vector micro-
program (including absolute/relative option) has a
total of 28 micro-orders.

B. Small Polar Vectors

Polar vector plotting requires the preliminary up-
dating of 6 by Af, and the evaluation of cos 6, sin 6.
Rapid table lookup for cos 6, sin § in the ROM has re-
duced evaluation time to a minimum. A polar vector is
plotted as a Cartesian vector with AX =cosf, AY =sin 8,
except that the number of APV cycles is As, not 64.
Normalization is not required for cos 6, sin 6, and the
plotting rate is exactly 10% in/s for 0.01-inch increments.
Repeated polar vectors, including magnification, have
an overhead of 2.6 us. This is necessarily greater than
the Cartesian case because each repeat must update 6.
The small polar vector microprogram has a total of 50
micro-orders, and the cos 6, sin 6 table contains 65
micro-orders.

As a summary example of small polar vector perfor-
mance, a circle comprising 16 vectors, As=40 incre-
ments, A§=32/64 of w/4 (approximately 2 inches in
diameter for display increments of 0.01 inch) would
require three core words—block header, (As, Af) vector,
and repeat insert. It would be executed in approxi-
mately 100 us, i.e., an average plotting rate, allowing
for all overheads, of 6 X10* in/s.

C. Symbol Plotting

Symbols, each nominated by a one-byte core code,
are plotted in detail by short microprogram sequences,
mostly SFS micro-orders. Each SFS order specifies a se-
quence of four, or fewer, standard strokes. Six standard
strokes, on the average, constitute an uppercase sym-
bol. Thus, two SFS orders, i.e., 64 ROM bits including

782

the SFS labels, are sufficient for most uppercase sym-
bols; completed uppercase symbols appear as elemental
vectors linking adjacent nodes of a 17 by 9 rectangular
grid. The speed of symbol plotting is limited by the
adopted maximum incremental X or YV plotting rates
of 10 MHz, not by microprogram rates. Half-scale
plotting of uppercase symbols reduces the node matrix
to 9X5, and almost halves the average plotting time
(3 us per symbol).

Symbols, however, may be arbitrary and extend over
any number of grid increments by linking sufficient
strokes. Moreover, symbols need not be composed en-
tirely of standard strokes; micro-orders which plot vec-
tors or points may be mixed with SFS orders.

Each standard stroke field within SFS comprises an
unblanking bit »; a bit » which distinguishes between
curved and straight stroke elements; a two-bit field p
which specifies one of four standard curved strokes or
one of four standard straight strokes; a two-bit field ¢
nominating which quadrant version of standard stroke;
and a link bit / which, when “0,” marks the completion
of a symbol.

VI. CONCLUSIONS

Detailed planning of Intergraphic has shown that a
medium sized, microprogrammed structure which is
largely general purpose, but with some special-purpose
hardware and microcode, will be able to interface many
(more than 50) graphical terminals to a central pro-
cessor. The proposed structure:

1) eliminates many of the trivial, but frequent,
interrupts on a central processor which occur in un-
buffered systems;

2) replaces special-purpose vector and symbol gen-
eration hardware, often required for each terminal, by
fast microprogram sequences which generate vectors
and symbols for all terminals;

3) removes many tasks specific to graphical com-
munication from the central processor by allowing post-
processing of compact central processor codes and pre-
processing of graphical inputs;

4) provides an extremely flexible medium both for
performing the variety of processing and supervisory
tasks required and for experimentation through new
microcode sequences, not hardware extensions;

5) has simplified and unified hardware design, as it
comprises only OR-NOR gates and an ROM ; analog sig-
nals first appear at the D/A converters driving the cen-
tral display(s). This fully digital approach to the gen-
eration of graphics is in antithesis to the analog, or part
analog, generation of specific classes of display curves.

The projected number of terminals is large because
the “new-image” generation rate is rapid and will not
be dissipated by regenerating short persistence displays
merely for persistence of vision. Moreover, the cost per

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, DECEMBER 1967

terminal will be low, because the shared scan converter(s)
and multitrack video disk(s) allow low cost, standard
TV terminals to be used. '

A limitation of the system will be an average “new-
image” rate per terminal of about one per second; this is
believed adequate because many terminals will be
static for seconds. Highly dynamic or synchronous dis-
plays will be limited to one or two in number; they will
be large, electrostatically deflected CRT’s, not TV re-
ceivers, connected directly to Intergraphic.

It is expected that the system will become central
processor limited, not peripheral limited, as graphical
terminals greatly increase the access to, and therefore
the demand on, the central processor.

The significance of a system supporting many gen-
eral-purpose, graphical terminals at low cost is that
many display-dependent applications, e.g., computer-
aided teaching or design, will become more widely used.

APPENDIX
MIicrRoCODE DETAILS

‘Reference is made to Table I.

Order Type

The first field, Go_3, is common to all micro-orders; it
nominates the order type.

Upper and Lower Bytes

Field G4,5 is common to A-orders, DMC, DQS, and
TRF. Option L indicates lower significant bytes (bits
8-15) of registers, i.e., L indicates that only the lower
arithmetic unit (LAU) is to be used for A-orders, and
that microprogram constants or register-to-register
transfers apply to bits 8-15 only. Option U nominates
upper significant bytes only (bits 0-7 for 16-bit regis-
ters, or bits 4-7 for 12-bit registers). U/L specifies si-
multaneous execution of the L and U options, i.e., UAU
(the upper arithmetic unit) and LAU operate indepen-
dently without carry, shift, or circulate linkages between
bit positions 7 and 8. UL, however, specifies operations
on full registers. Options U/L and UL are identical for
logical operations, microprogram constants, and regis-
ter transfers.

J Indicators and Sequencing

Field Gs_11 (J) applies to all orders except SFS; it
nominates one of 64 binary indicators to condition the
execution of the micro-order. Two examples of J indi-
cators are A, (the sign digit of register 4), and NZR
(nonzero R). If the nominated J indicator is binary
“1”, the micro-order is executed; if not, the order is
inhibited. J, is the constant “1”; thus, J, specifies un-
conditional execution. For the forward (FW, field Giz,13)
option of A-orders and for all other orders, regardless of
the state of the J indicator, the next micro-order is read
from address S+1. However, for A-order options wait

] ROSE: MICROPROGRAMMED, GRAPHICAL-INTERFACE COMPUTER

(WT), repeat (RP), and back (BK), sequencing depends
« on the state of the J indicator.
The execution of the wait option is delayed until the
- nominated indicator becomes “1”; an example being an
addition micro-order waiting for the arrival of an
operand on completion of the READ phase of the core
store (indicator “core-READ complete”).

For the repeat option, the order is repeatedly exe-
cuted until the nominated indicator clears. When
cleared, execution is inhibited and the next micro-order
is taken from S41. Two examples of repeated arith-
metic/logical operations are vector plotting (Section V)
and multiplication. For the back sequence option, if the
J indicator is “1”, the order is executed and S decre-
mented to S—1; otherwise, the order is inhibited and S
advanced to S+1. An FIWW-BK order pair enables two
micro-orders to be alternated repeatedly until the J
indicator clears (both orders would nominate the same
J). An example of a two-order repeat is vector nor-
malization; the components of a vector are doubled
(one order) and the number of plotting cycles halved
(the other order) until the vector is normalized.

Sequencing may also be controlled by nominating S
as the destination for either the result of an A-order
(computed jump) or a microprogram constant (absolute
jump). These jumps override the normal sequencing.

The DQS order augments DMC (DMC sends a micro-
program constant to a register) by transferring Q to S.
This variant is useful for the construction of tables in
ROM; e.g., the table of cos 6 ,sin 6, used for polar vector
plotting, consists entirely of DQS orders which send
cos 8, sin 8 to register C and return control to address Q.
Without the Q to S variant, each table entry would need
to be followed by a jump order.

A-Orders

ABA, the basic arithmetic/logical order, combines
operands ¢ and b (nominated by fields Gy and
Ga1-23) by addition, or by the digitwise logical operations
of AND, OR, or EXCLUSIVE OR. Operand complements d
and b, may also be used. Addition may include an input
carry ¢ of 0, 1, or the carry out (CO) of the previous
operation (shown as “+, 0,” “4, 1,” and “+, CO” in
Gis 90). Field Gys_p7 allows the AU output d to be di-
rectly connected, circulated, or shifted one position, or
transposed in 4- or 8-bit bytes before being distributed
as e.

Right shift RS preserves sign, and left shift LS clears
the least significant digit. Circulate and shift are inter-
preted in conjunction with U, L, etc. For example,

U/L, RC: ey_15 < di, do—s, d15, ds—14
UL, RC: €0—1p5 € dlﬁ, do_14.

Transpose mappings are

4T eo—15 < a3, do—3, d12—15, ds—11

8T: eo—15 ds-ls, do_s.

783

For the L, 8T combination, L applies to the operands
and d (bit positions 8—15). After the 87T transpose, these
relevant bits become ¢¢_r, i.e., the U byte of the destina-
tion register is clocked for the L, 8T combination, and
vice versa. The destination for e is specified by field
G28—3l-

ADR (A-order, decrement R) augments ABA by also
decrementing R on each execution. Inclusion of “repeat”
and “decrement R” in one micro-order gives a threefold
speed advantage over the 3-loop consisting of an arith-
metic order, a decrement counter order, and a test jump.

AMY (A-order, multiply) is a variant of ADR which
assists multiplication; the nominated a operand or “0”
is selected depending upon whether Dys5 is “1” or “0.”
Consider an 8-bit multiplicand in 4,_7, 0's in 4_15, and
initially 0’s in Dq_7, an 8-bit multiplier in Dg_35, and 103
in R. Then the 16-bit product appears in Dq_;5 in 0.8 us
by executing

RS
AMY, UL, NZR, RP, A + D—> D (¢ = 0).

ADV (A-order, divide) assists division by selecting
the “b” operand or its negative according to By, the sign
digit of B, register B being used as the nulling register
in nonrestoring division.

AAD (A-order, analog to digital) assists analog-to-
digital conversion. This variant is similar to ADV, ex-
cept that the sign of the output of an analog com-
parator replaces B,.

APV is detailed in Section V=A.

Dastribute Microprogram Constant Orders

These orders use bits G411 and Gyg_n identically to
A-orders. The microprogram constant field Gi—27 be-
comes e via a path in the d—e logic. The DQS variant
has been previously defined under sequencing.

Transfer Register Order

This order executes register-to-register transfers ac-
cording to 1's in the field Gi2_5n. A number of simultane-
ous transfers are possible, provided they are indepen-
dent. Options L, U, or UL (or U/L), and conditional
indicator J apply.

F Register Bitwise Control Order

Sixteen flip-flops may be reset individually (option
RF, G45=0, 0) by placing 1’s in the F field (Gis—27).
Option SF sets nominated flip-flops; option M F copies
register M onto F through the mask pattern nominated
in Gia—27. The state of F may be stored in core via an
F— M transfer order. Some F bits have a special pur-
pose; e.g., F; indicates matching mode. F bits are also
available as J indicators.

Stroke Formats Order

The formats are covered in Section V-C.

784

ACKNOWLEDGMENTS

The author is indebted to Prof. M. W. Allen, Prof.
P. D. Jones, M. Macaulay, G. P. Bowen, and R. B.
Stanton for their many discussions, and to R. B. Chor-
ley and K. W. Titmuss for laboratory assistance.

REFERENCES

11 1. E. Sutherland, “SKETCHPAD, a man-machine graphical com-
munication system,” 1963 Spring Joint Computer Conf., AFIPS
Proc., vol. 23. Baltlmore, Md.: Spartan, 1963, pp. 329-346.

o] T. Marill et al., Cyclops I, a second generation recognition
scheme,” 1963 Fall Jomt Computer Conf., AFIPS Proc., vol. 24.
Baltimore, Md.: Spartan, 1963, pp. 27-33.

Bl G. J. Culler and B. D. F ried, “An on-line computing centre
for scientific problems,” TRW Computer Division, Canonga Park,
Calif., Rept. M19-3U3, June 1963.

[l R. M. Fano, “The MAC system: the computer utility ap-
proach,” IEEE Spectrum, vol. 2, pp. 5664, January 1965.

5] F. J. Corbat6 and V. A. Vyssotsky, “Introductlon and over-
view of the Multics system,” 1965 Fall Joint Computer Conf., AFIPS
Proc., vol. 27, pt. I. Washington, D.C.: Spartan, 1965, pp. 185-196.

€ D.E. Rlppy et al “MAGIC, a machine for automatic graphics
mput to a computer,” zbzd PP 819—830

W H. Ninke, “Graphlc I—a remote graphical display console
system, ibid., pp. 839-846.

8 R. W. Lichtenberger and M. W. Pirtle, “A facility for experi-

mentation in man-machine interaction,” ¢b4d., pp. 589-598.

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, VOL. EC-16, NO. 6, DECEMBER 1967

91 N. A. Ball, H. Q. Foster, W. H. Long, I. E. Sutherland, and
R. L. Wigington, “A shared memory computer display system,”
IgEEE%ngns Electronic Computers, vol. EC-15, pp. 750-755, Octo-

er 1966.

19] J. R. Kennedy, “A system for time-sharing graphic consoles,”
1966 Fall Joint Computer Conf., A FIPS Proc. vol. 29. Washington,
D. C.: Spartan, 1966, pp. 211-222.

11} G. A. Rose, “Economical, graphical-communication tech-
niques for multiple console operation,” Third Australian Computer
Conf. Proc., pp. 399-402, May 1966.

(2] M. Macaulay, “Low-cost terminals using television tech-
niques,” Nat'l Radio & Electronics Engrg. Conv. Abstracts, IREE
(Australia), p. 222, May 1967.

3] T. E. Johnson, “Analog generator for real-time display of
curves,” M.I.T. Lincoln Laboratory, Lexington, Mass., Tech. Rept.
398, July 1965.

4] M. L. Dertouzos and H. L. Graham, “A parametric graphical
display technique for on-line use,” 1966 Fall Joint Computer Conf.,
AFIPS Proc., vol. 29. Washington, D. C.: Spartan, 1966, pp. 201-

9.

18] N. H. Lehrer and R. D. Ketchpel, “Recent progress on a high
resolution, meshless, direct-view storage tube,” ibid., pp. 531-540.

€] D. L. Bitzer and H. G. Slottow, “The plasma dlsplay panel—
g digsit?lly addressable display with inherent memory,” #bid., pp.

41-54

171 M. W. Allen, T. Pearcey, J. P. Penny, G. A. Rose, and J. G.
Sanderson, “CIRRUS, an economical multiprogram computer with
microprogram control,” IEEE Trans. Electronic Computers, vol.
EC-12, pp. 663-671, December 1963.

18] P, Fagg et al., “IBM System/360 engineering,” 1964 Fall
Joint Computer Conf., AFIPS Proc., vol. 26, pt. I, pp. 205-231.

“Light-Pen” Facilities for Direct View Storage Tubes—
An Economical Solution for Multiple
Man-Machine Communication

GORDON A. ROSE

ABSTRACT

Techniques are presented which enable conventional “light-pen”
tracking and pointing functions to be extended to the direct view
storage tube (DVST). The schemes eliminate the high data transfer
rates or considerable buffer storage required even for static displays
when short persistence cathode ray tubes (CRTs) are used.

Two solutions, a “quadruple photo-sensor pen” and the “potenti-
ometer pen” (a transparent resistive sheet and stylus combination
which covers the display), are described and compared.

INTRODUCTION

A versatile CRT display with “light-pen” tracking and pointing
facilities is well recognized as a creative tool for on-line machine-
aided design [1], [2], problem solving [3], text and program editing,
etc. In many instances, the extension of pen displays to a number of
independent stations is desirable (e.g., a teaching machine labora-
tory).

Continual regeneration of a short persistence CRT for flicker-free
viewing demands high data transfer rates, or considerable buffer
storage; but in return for this outlay comes ready communication by
single photo-sensor pens and a medium for highly dynamic displays.
However, the attendant costs are related to regeneration rates estab-
lished by persistence of vision criteria and are disproportionate to the
dynamic content of the majority of displays where static text and dia-
grams prevail for seconds.

The DVST eliminates the need for continual regeneration and can
provide excellent displays. Often, the retention of past events en-
hances a display by portraying trends or envelopes. Flood erasure
followed by display regeneration at infrequent intervals is adequate
for most presentations. Developments in short erase times, fast
writing speeds and selective erasure techniques have produced an
attractive display medium. In a large time-shared installation, a
small number of highly dynamic problems could be accommodated
with short persistence displays.

Unfortunately, conventional “light-pen” techniques are inapplica-
ble to DVSTs, both in the tracking mode (which senses and follows
pen movement by probing the visual field of the pen), and in the
pointing mode (which associates the instant of pen response with an
item in the display file), for the following reasons:

1) Tracking pen movement by beam perturbations within the
pen field would result in a thick stored trail—the complete
history of local probing.

2) Any exploratory scan designed to locate the pen and initiate
the trail would overwrite the stored image.

3) Pointing to a stored image on the DVST, subsequent to writ-
ing, cannot generate any dynamic signals synchronized with
the display file.

SoruTioN I. THE QUADRUPLE PHOTO-SENSOR PEN

Objection 1) has been overcome by using a set of four photo-
sensors arranged in horizontal and vertical pairs which sense the
local (X, Y) displacement of the display spot relative to the pen
axis (Fig. 1). The pen has been assembled from miniature silicon

photo transistor sensors and silicon chip difference amplifiers housed
in the pen. The sign of a difference signal will gate either increment-
ing or decrementing pulses to the corresponding display register.
An alternative and elegant solution would be to employ a partitioned
set of fiber optics.

Objection 2) is avoided by starting a track initially from an “ink-
well” and subsequently from the current beam position, which ap-
pears brighter than the stored image.

It is necessary to distinguish between hand drawn track segments
to be filed by the computer, and incidental tracking trails linking such
segments. The distinction is made by a pressure operated pen tip
switch. Wanted track coordinates are filed by interrupting the com-
puter either at regular intervals (20 ms), or, when the track is started
or terminated, or crosses grid lines of preselected spacing.

The need to transport the beam to every track start and the
attendant unwanted image trails are disadvantages of the photo-
sensor method. The clutter of incidental trails (particularly noticeable
when building up a complex freehand sketch of symbols or diagrams
involving frequent “pen lifts” and return referencing), may be re-
moved by flood erasure and redisplay; but this can be demanding on
computer time if repeated each time a wanted track is commenced,
at any of a number of stations.

The quadruple photo-sensor pen loses control if rotated around
its longitudinal axis in excess of +30°. Shaping the pen grip is suffi-
cient to constrain this rotation.

Objection 3) has been overcome in several ways. A single flood-
erase and redisplay cycle initiated each time a feature is pointed to
enables the conventional photo-sensor pointing mode to be used.
Alternatively, the tracking mode may be used to transport the dis-
play spot to a feature (cursor mode), followed by an interrupt. Fea-
ture identification by coordinates is discussed under Solution II.

SoLuTION II. THE TRANSPARENT TwO-DIMENSIONAL
POTENTIOMETER

A. Outline of the System

This technique does not employ photo-sensors, and thereby
avoids unwanted transport trail generation on the DVST screen.

The (X, Y) position of a hand-held stylus is detected from uni-
form potential gradients, switched alternately between the X and ¥
directions on a transparent conductive sheet placed over the display.

Digital versions of the analog stylus coordinates are generated
using the existing digital registers, D/A converters, and deflection
amplifiers of the display console in a feedback loop, which equates the
deflection signals to the analog stylus coordinates (Fig. 2). A suitable
choice of scale factors brings the display spot almost directly beneath
the stylus tip. Thus, the “true” position of the stylus (i.e., the posi-
tion corresponding to the digital coordinates accepted by the com-
puter on interrupt), is seen by the operator and becomes his focal
point for tracking. Misalignment of the controlled spot and the stylus
does not appear as an error in the system, but rather as an annoyance
to the operator. There is some tolerance here, as in conventional
light-pen operation, because manual inputs cannot be controlled with
the precision implied by the display resolution (typically 10* points
per inch?).

“On-off” intensity control of the beam has been readily achieved
by detecting stylus contact electrically, and gives the impression of
the stylus drawing the track. In the tracking mode the computer is

Manuscript received January 4, 1965; revised April 27, 1965.
The author is with the University of Adelaide, Adelaide, South Australia.

0.26"
DIFF. AMPS.

6 WIRE CABLE

EXIT

Fig. 1. The quadruple photo-sensor pen.
COMPUTER 1/0 BUS
-
X REGISTER Y REGISTER
INC. DEC.
PULSES
D/A CONVERTER D/A CONVERTER
DEFLECTION
X,Y ANALOG
ILNC‘DEC' LoGic L—I CWITCHING e t(.v FLIP FLOP
! TRANSPARENT FEED
SHEET |
o DIFF. T
AMP,
|
ON=~OFF INTENSITY EMITTER STYLUS
CONTROL FOLLOWER
| - I | symsotL
L 1 CELLS
Fig. 2. The “potentiometer-pen” system.
f——0.5d —— 0
A 8 p OF
Py Pty Piidd o7
g - w L - g - A 4 j' - v o 4
- d A Baddd
e———=—-
| AN | A
UNIFORM RESIST -8 | EFFECTIVE
RESISTIVE MATERIAL h=5d -Arit AREA -
A .A‘Av
w—ig L N
-0.75d
VSV § -
S A A A R A A BEE
A '
(a) (b) (c)

Fig. 3. The transparent two-dimensional potentiometer.

interrupted during stylus contact with the same options as in
Solution I.

In the pointing mode, a feature is indexed by pointing directly to
it. The corresponding digital coordinates are sent to the computer
when the stylus is lifted from the sheet. (Thus, before lifting the
stylus, the display spot may be placed precisely on the feature.)

Identification of a feature from its digital coordinates may not be
possible in some cases (e.g., if a line generator is used, the intermedi-
ate line points will not be directly recognized by the computer). In
this case, the feature coordinates are stored locally in the display
console and the display is regenerated once (blanked), until coinci-
dence of the display and stored coordinates interrupts the computer.

B. Two-Dimensional Potentiometer Details

Consider an infinite strip of uniform resistive material fed with
equal direct current magnitudes [Fig. 3(a)]. The contacts are identi-
cally shaped and equally spaced along the top and bottom edges-
The top edge feed contacts will be equal in potential (Vz), and the
bottom edge contacts will be equal in potential (V3). For contact
separations (d) that are small compared with the strip height (k)
there will be a uniform potential gradient between the top and bottom
edges, except for local deformations in the vicinity of these edges.

By symmetry, there will be zero transverse component of current
across vertical lines midway between the feed points. Lines 44’ and
BB’ are in this category and therefore cuts could be made along 44’
and BB’ without changing the flow within the finite section between
them. Also, from symmetry, the field plot consists of a number of
replications and reflections of the section shown [Fig. 3(b)]. A margin
of 0.75d has been found adequate to avoid potential deformations.

Choosing #=>5d, a square section has been formed with five feed
points along the top and bottom edges. A similar set of contacts are
now placed along 44’ and BB’ [Fig. 3(c)], and provided they are
open circuited, will adjust in potential between Vr and Vg and not
significantly effect the flow, except in their own vicinity (again a
margin of 0.75d has been adequate).

Switching the roles of the horizontal and vertical contact sets
establishes a uniform horizontal current flow. Thus, alternate analog
samples of the X and Y coordinates of a high impedance stylus are
generated.

Automatic feed switching has been achieved using diodes and
a standard flip-flop. For the “1” state of the flip-flop, (F=0V,
F=-3.0 V), only the top and bottom sets of diodes conduct. For
the “0” state only for the side diodes conduct. A durable, highly trans-
parent stannic oxide coating (approximately 200 ohms per square),
has shown no physical or chemical deterioration after several months
of use. The stylus used is simply a good quality ha.d pencil lead
which moves freely over the coating, and feeds a 5-megohm input
impedance emitter follower. The slight film deposited by the pencil
lead has negligible conductance compared with the oxide coating
(an exaggerated film on glass measured many megohms per square),
and is readily removed every few days. Contact of the coating by
the operator’s hand does not produce any visible misalignment of
the display spot and stylus. Differences in contact shape and diode
drops have been compensated for by setting the feed flip-flop to a
particular state, and adjusting resistances in series with the conduct-
ing diodes until the near boundary of the effective area of the sheet

is an equipotential. This adjustment is carried out at construction
time only.

Misalignment errors of one per cent of the sheet side are attrib-
uted to nonuniformity of the oxide coating (produced commercially
at low cost, by a hot spraying process). Controlled coatings deposited
by sputtering would result in very low misalignment.

Although no sheet feed or stylus details are described, an appar-
ently parallel development has been briefly reported by Hargreaves,
et al. [4], in conjunction with nonstorage CRTs. The input device
forms part of the comprehensive DAC-1 system. Tracking is effected
by program.

C. Further Applications of the Potentiometer-Pen

A “keyless” typewriter has been formed as follows. The effective

.area of the conductive glass is extended beyond the useful area of the

DVST and one of a set of replaceable alphabet cards is inserted be-
neath the conductive glass. Symbols are arranged in a matrix of cells
(0.5 cm X 0.5 cm cell size) and, when pointed to by the stylus, digital
coordinates (most significant bytes) corresponding to the cell, and
therefore the symbol, are sent to the computer. The method incor-
porates the typewriter facility with the display without sacrificing
valuable display area.

Handwriting can be separated into X, ¥ component waveforms
for dynamic analysis or transmission using the analog or digital
versions of stylus position.

CONCLUSIONS

1) Man-machine communications based on short persistence
CRT displays and single photo-sensors are unnecessarily de-
manding on a computer system.

2) Saving in average data rates associated with DVST displays
make multiple pen-displays economically feasible.

3) Low-cost “light-pen” facilities for DVST displays have been
simply constructed and are extremely effective.

4) The potentiometer-pen method is preferred:

a) Tracks may be initiated or features indexed at random
without storing unwanted transport trails on the DVST
screen.

b) A “keyless” typewriter is readily implemented at virtually
no extra cost. The compact symbol set and pencil-like
stylus has resulted in higher input symbol rates for non-
typists.

ACKNOWLEDGMENT

The work of this paper was motivated from discussions held
during the opening phase of M.I.T.’s Project MAC, August 1963.
The author is grateful to Prof. R. M. Fano for enabling him to par-
ticipate.

REFERENCES

{1] R. Stotz, “Man machine console facilities for computer-aided design,” 1963
Am. Fed. of Information Processing Societies Conf, Proc., vol. 23, pp. 323-328.

{2] I. E. Sutherland, “Sketchpad, a man-machine graphical communication sys-
tem,” 1963 Am. Fed. of Information Processing Societies Conf. Proc., vol. 23,

pD. 329-346.

[3] G. J. Culler and B. D. Fried, “An on-line computing centre for scientific prob-
lems,” Rept. M19-3U3, T.R.W. Computer Division, Thompson Ramo Woold-
ridge, Inc., Canoga Park, Calif., June 1963.

[4] B. Hargreaves, et al., “Image processing hardware for a man-machine graphical
communication system,” 1964 Am. Fed. of Information Processing Socielies
Conf. Proc., vol. 26, pt. I, pp. 363-386.

Reprinted from IEEE TRANSACTIONS
ON ELECTRONIC COMPUTERS
Volume EC-14, Number 4, August, 1965

Pp. 637-639
Copyright 1965, and reprinted by permission of the copyright owner
PRINTED IN THE U.S.A.

Economical, Graphical

- Gommunication

Techniques For Multiple
Gonsole Operation

By GORDON A. ROSE
Department of Electronic Computation
University of New South Wales
P.O. Box 1, Kensington, N.S.W.

SUMMARY

The paper outlines the output and input sequences of an
.on-line, graphical communication system which links many
-users to a central processor via an intertace computer. Output
“inciudes arbitrery graphics and symbols; input includes real-
‘time freehand skeiches and ‘symbois, referenced symbol celis
- and image po:nting.

The poper cites a number of inefficiencies in the encoding,
plotting and input tracking of grapnics. It presents a compact
“incremental peolar encoding which specifies a graphic either
by a piecewise linear approximation or by linked sections of
constant curvature,)

The paper specifies the logical structure of a graphical
intertace compurer, INTERGRAPHIC, which is responsibie for
detailed image generation, input graphic encoding and vector
string manipuiation. The interface operates mainly in two
‘high speed incremental modes — rectangular and circular,
and is capable of incremental plotting rates of several Mc/s.

The symbol generator shares the intertace read-only micro-
program control store and generates symbols from standasd
straight lines, quarter circles and quarter eilipses at a poiat
plotting rate of 10 Mc/s. ’

The paper emphasises the need for simple, unifying concepts
for graphical communication, and proposes that the flow of
direction and curvature of a graphic with arc length is a
useful basis for both recognition and display..

SECTION I. INTRODUCTION

GRAPHICAL COMMUNICATION is, for the purposes of
this paper, on-line, man-machine communication through line
drawings and symbols. Such communication exploits the
user’s visual perception and his ability to point, sketch, print
and write. It requires the machine display and recognition of
arbitrary shapes at rates matched to the user.

A number of notable systemsl23 have proved the utility of
graphical communication, and time-sharing can extend it to
many users. However, such networks are rare, mainly because
many of the techniques require excessive computer time. or
storage. The work outlined in this paper attempts to climinate
or reduce these inefficiencies.

The paper regards graphical communication as consisting of
an output path, from machine to user, and an input path trom
user to machine. The paths convey graphical forms, or simply
graphics. :

" The output path converts the highest machine language des-
cription of a graphic, e.g., its name and parameters, into its
visual form., The sequence is:— : o

(i) Highest machine description, e.g., field plot TM,,.

(ii). Expansion of (i) into its elements, e.g., every field line

and every boundary. Each element being defined by;

~a set of incremental relations, or the flow of direction -

or curvature with arc length, or a set of sample points.

- (iif) Efficient encoding from (ii) into forms accepted by dis-
play generation hardware, e.g., strings of line segments,
expressed in Cartesian or polar form.

(iv) Generation of individual display points by vector and

symbol generators..

Graphics may be modified at the highest machine level, €g.,
change parameter, or at the display generation level—the inter-
face level, eg., rotate graphic. For simple graphics, (ii) may
be trivial. Commonly used graphics, once encoded at (iii),
may be stored in a dictionary under a nanie in (i).

The input path accepts a freechand graphic and classifies it as
an object or operation in the highest machine language. The
sequence is:— . ‘

1. Detection of the flow of input co-ordinates (tracking).

2. Encoding the flow in the interface language.

3. Determination of the geometrical attributes of the graphic,

eg., its curvature flow, orientation, or total arc length.

4. Classification or recognition of the graphic.

This sequence is bypassed when the user touches a symbol
key or points to a displayed item. .

‘The paper centres mainly on the interface problem [items

(iii), (iv), (1), () and (3)] which requires high-performance hard-

ware of low cost per user for its solution.

SECTION 1I of the paper presents a number of observations
on graphical communication. SECTION III is more specific; it
describes the system structure of the graphical interface com-

‘ puter, INTERGRAPHIC.

SEC’I‘ION II. BACKGROUND OBSERVATIONS

" The observations of this section are general; often, compari-
sons are mide between techniques or devices, but the argument
is' not continued to a statement of preference,

1. Inefficiency of Independent Point Plotting . .
A typical display system presents an image as a set of intensi-

_fied points on a 1024 x 1024 square grid. Thus, for a 10” x 10”

screen, the grid line separation is approximately 0.010”, and
good quality line drawings are possibic.
To specify a display by its constituent points, i.e., to con-

“sider ‘each point independently of the others, requires 20 bits

per point. Such encoding is inefficient; it does not exploit the
continuity of lines, or the often simple incremental relations
which define them.

2. Incremental Generation of Straight Lines and Circles
For a straight line from point A, (Xo, Yo), to point B, (X +
X, Yo + Y), the incremental relations are;
d) .

y Y .
—_— = —
dx X
or, in terms of the parameter t,
dx y .
— = kX, — = kY (k constant)
dt dt o

Thus, two streams of unit grid increments, having time
rates proportional to X and Y respectively, are required to

generate the line. A pair of 10-bit binary counters, set initially

to (X5, Yo), may integrate the increment streams (physically,
pulse trains) to form the display co-ordinates (x, y). At most,
40 bits are required to define AB. If lines are plotted end to
end, from a specified origin, then the co-ordinates of A exist.
If, also, the ranges of X and Y are less than the total display
size, then an even shorter code is required, e.g., 12 bits.

For a circle, centre (Xo, Yo), tge incremental relations are;
— = —w (y¥%),— = (xx) (v constant)
dt dt
Two increment streams are again required; here the stream
rates are not constant, because the rate controlling registers
containing x-X, and y-y, must also be updated by the increment
streams.

Two increment streams are also sufficient to generate right
parabolas, hyperbolas and exponentials,

3. Increment Rate Generators)

Several techniquest exist for generating pulse rates propor-
tional to the contents, X, of a register.

Repeated addition of X into an accumulator generates over-
flows at the required rate—a digital differential analyser (DDA)
technique (bit parallel operation.implied).

Alternatively, a binary rate multiplier (BRM), which gates
and rggrges binary weighted pulse streams according to X, may
be used. ‘ o S -

1672/1

4. Specific versus Universal Curve Generation

Both algorithms and special purpose hardware are common
for straight line generation (vector generators). Sutherlandl
has proposed DDA techniques for the general conic. Obviously,
a compiromise arises betwecn the extent and utilisation of
special hardware for the generation of specific curve families.

It is unlikely that there is a universal procedure, or a single
set of hardware, for the efficient incremental generation of all
curves—rather, the flexibility of the central processor should be
available for this purpose. Regardless of the particular genera-
tion scheme, it is feasible that there are universal curve en-
"coding schemes which are purticularly efficient for storage and
interface operations.

5. Efficient Facoding of Arbitrary Curves

Frecmand 6 has encoded arbitrary continuous curves using
strings of three bit groups, each group specifying one of the
eight incremcntal veciors, (1, 0), (1, 1), (0, 1), (—1, 1), é—l, 0),
(—1, —1), (0, —1) and (1, —1) in units of one grid division.
Similar coding strings have been used to control mecchanical
plotting devices. Although general, this coding is inefficient
for curve storage and unsuitable for curve processing: inefficient,
because it encodes unnccessary detail for sections of low curva-
ture; unsuitable for processing, bec.use it cannot be casily
changed to accommodate the simple operations of rotation
and scaling. .

A string of piccewise lincar sections (vectors) may represent
an arbitrary curve. Curve rotation and scaling are simply per-
" formed 'by applying these operations to the constituent vectors,
The method auiomatically provides greater detail with increas-
ing curvature, and higher directional resolution over the rela-
tively long straight portions of a curve. This adaption is not
inherent n the Freem.n coding, and the dectermination of
direction requires averaging over a variable number of incre-
ments.

In summary, the encoding of graphics must be universal,
cfficient, and operable; so that arbitrary curves may be com-
pactlr encoded and stored in a form suitable for, at least,
transl.tion, rotation and scaling.

6. Symbol Generation
~ Displays of printed text or programs form a large part of
graphical communication; thus, comprehensive symbol sets
which may be cxtended are desirable. Small dot matrices, say
7 x 5, although modest in storage requirements, restrict the
character set. Large dot matrices r.pidly become inefficient in
storage, since the method does not exploit the continuity of
symbol strokes. Special-purpose symbol generation devices in-
corporated in each display unit, e.g., beam shaping symbol
templates in display CRTs cannot be shared and are therefor
gencrally not economical.)
Some displays use the system’s vector generator to construct
symbols. This technique, although unifying, leads to ineflicient
coding, because most symbol sections are short relative to the
maximum vector length. Also, the scheme is not well matched
to the numerous small arcs of symbols.

7. Graphical Input Devices —
The Light Pen, The Potentiometer Pen and the Rand Tablet

The user may input, in real time, freehand sketches, hand
printed” symbols, and, to a lesser extent, cursive script. He
may also point to a displayed item, or press a key.

The “light pen,”t a pen tipped with a single photo sensor,
has been used extensively for pointing to a displayed item, or, in
conjunction with a tracking program, for drawing an input
graphic. With multiple stations such tracking programs become
demanding. Starting a light pen track (“inking") requires
either an exploratory scan, or the return of the pen to an
“inkwell” or an existing light spot; the former requires the
display of many points, the latter is inconvenient for the user.
When the user points to a displayed item, the pen responds
at the instant the display spot comes within its field of view.
This response immediately interrupts the display program at
the particular item. Thus, an interrupt may require one
regeneration cycle—this presents no problem when short per-
sistence CRTs are regenerated at 30 c/s.

The “potentiometer pen”37 is a transparent, resistive coat-
ing of stannic oxide on glass, placed directly over the display,
which is contacted by a pen stylus. It is not an optical device
and therefore the preliminary of “‘inking” is eliminated. Also,
mechanical keysets may be eliminated, without sacrificing

valuable display area, by defining symbol cells on an area of:
the coated glass sheet beyond the display. These cells are:
defined by replaceable alphabet cards placed under the sheet..
The user may readily mix graphical strokes and *“keyboard”’
requests using the one input pen.

The Rand Tablet8, a graphical input surface, encodes the:
position of a stylus from digital signals on orthogonal sets of:
printed conductors under a tough mylar surface. This opaque:
device cannot be used directly over the display; the user refer-.
ences an item by homing a displayed copy of the stylus position:
onto it. A transparent version of this digital device is feasible:
and would make sketching easier. Unfortunately, the tablet:
is much more complex than the light pen or potentiometer-
pen and therefore more difficult to multiplex.

The Rand Tablet generates the co-ordinates of its stylus:
directly; the potentiometer pen, indirectly. Thus, item identifi-
cation by pointing, using either of these techniques, requires:
a comparison of the stylus co-ordinates with the co-ordinates:
of every display point. Again, one display cycle may be re-
quired, but, unlike the optically dependent light pen, the cycle:
need only extend to the shared digit.l display registers. Hence,
the dependence of pointing on visual image regeneration is
eliminated. .

8. Imput Graphic Encoding

The techniques discussed in the previous section ultimately
determine a sequence of unit x and y grid increments. Section
5 discussed the inefficiency of encoding a graphic at, or near,
this elementary level (Freeman coding), and outlined the advan-
tages of piecewise line.r encoding for curve storage and pro-
cessing. The following comments discuss the construction of
piecewise linear codes trom unit grid input sequences. Identical
considerations apply to the encoding of output graphics gener-
ated from incremental expressions,

Static and dynamic schemes will be outlined. :

A static scheme stores a number of successive input points.
It then approximates this section of graphic with a minimum
of straight line segments, consistent with some criterion of fit.
The scheme requires considersble computation and storage. It
is called static because the set of input points are regarded as
unordered with respect to time. A problem arises as to the
number of points to be stored prior to analysis. Storing an
entire graphic, from pen down to pen up, is undesirable; it
prevents the real-time detection of specific geometrical features,
e.g., cusps or inflexions, which may be required by the central
processor to initiite intermediate responses. Storing a variable
length of graphic according to local geometry is difficult, be-
cause this geometry is itself the object of the analysis.

A dynamic scheme does not store individuil points; rather it
updates a set of descriptors on receipt of each input increment,
and declares breakpoints from these running quantities, After
each breakpoint, the descriptors are reset and the procedure
repeated. A relatively small amount of computation, mostly
simple addition, is required for each input increment.
Although dynamic encoding may not produce as good a fit as
a static analysis, it does enable the geometrical properties to
be readily determined almost in step with the generation of
the graphic—this allows a lively interaction between the user
and machine. :

9. Determination of Geometrical Properties

Piecewise linear encoding generates a string of vectors. In
olar form, the magnitude of a vector is an element of arc
ength, As; thus, total distance along the curve, s, follows by
accumulation of As. The direction of a vector is the locail
curve orientation, 6; thus, the flow of curve direction with arc
length, 6(s), is available. An estimate of the derivative of 6(s)
with respect to s, i.e., curvature, K(s), follows by dividing the
differences of successive values of 6, viz., A8, by the local As.
Checks on the continuity of 6(s) and K(s) must be maintained.

Moments, area, and centroids of various regions bounded by
a graphic, and centroids of graphics, considered as lines of
uniform density, are readily determined from either the piece-
wise linear encoding or the elementary input increments. The
choice of methods, and the distribution of these tasks between-
the interface and the central processor are important consider-
ations in the interface order structure.

Recognition or classification schemes require access to -the
central processor; they are beyond the scope of an interface,
and will not be discussed further in this paper.

16/2/2

10. Some Simplifying Concepts

A diversity of approaches to graphical communication have
been recordedl 239 10—each approach emphasises a particular
aspect, e.g., “Sketchpad” is directed towards machine aided
design; another? emphasises the recognition of cursive script.
The merging of these schemes into a general-purpose graphical
communication system raises many problems. However, any
simple concepts which have broad application are valuable.

This paper has illustrated that piecewise linear encoding is
applicable to both output and input of arbitrary graphics. The
central processor encodes an output graphic which it generates
incrementally; the interface encodes an input graphic which it
receives incrementally—in both cases an. identical algorithm
can be used. . : .

The determination of the flow of direction and curvature
along an input graphic, from its encoding, has been discussed.
The reverse process, i.e., the display of a graphic from a
specification of 6(s) or K(s) would further unify input and
output. This is facilitiated by the inclusion of an order which
is a variant of the plot polar vector order, viz., plot (As, A#6)
which specifies the increase in 6 from the previous vector;
repetition of this order automatically generates a regular poly-
gon approximation to a graphic of constant curvature.

Piecewise linear encoding is applicable to line drawings of
any complexity. Each intensified (inked) section of a line
drawing is encoded; the line drawing is then considered either
as a set of such sections with specified initial points, or as a
concatenation of the sections linked with blanked vectors. The
linking vectors can be readily included in any particular form
of the encoding. A complex drawing can therefore be reduced
to a one dimensional expression of the form 6(s).

A. recognition program might well start with a set of graphic
sections, each described in terms of its global position, its
directional and curvature flow, etc. Furthermore, it is possible
to modify, or preprocess, a graphic so described by algorithms,
e.g., delete a region of excessive curvature. Such algorithms
ofter simple solutions to some spatial filtering operations which
are useful in recognition.

SECTION III. INTERGRAPHIC —
t A GRAPHICAL INTERFACE COMPUTER

This section specifies - the system structure of a graphical
interface computer, INTERGRAPHIC. Many of the decisions
have been b.sed on the observations of SECTION II

Efficient communication at.reasonable cost (less than several
thousand dollars per user) has influenced many of the decisions,
Time-sharing the interface will considerably reduce the cost
per user station, but it demands high-speéd circuitry for accep-
table response times.

INTERGRAPHIC is being constructed of high-speed (nomin-
ally, 5 n.inosecond) integrated micro-logic. It will link eight
comsoles to the central processing unit (CPU) via a 4096 word,
16-bit core store. INTERGRAPHIC will be responsible for
detailed display generation and distribution, and will service
all console requests, including the encoding of freehand graphi-
cal inputs.

Interface generated points will be plotted at several mega-
cycles, i.e., a writing rate of 2-4 x 104 inches per second, on a
display grid of 210 x 210, Arbitrary graphics will be repre-
sented by piecewise linear approximations, or, alternatively, by
linked sections of constant curvature (specified by compact
repeat (AS, A6) orders as discussed in SECTION II, 10). Radii
of curvature from approximately 1/100”, As = I div., A§ =
I radian), to 407, (As = 64 div., A0 = 1/64 radian), will be
possible. Vectors will be restricted to the range (+ 64 div., =+
64 div.) in either Cartesian, (X, Y), or incremental polar (AS,
A6) form. The interface will specify A6 in preterence to
6, because it allows greater angular resolution for a given byte
lemgth—whereas 6§ must be encompass 2= radians, A6 need not;
its range will be + 1 radian. Values of A6 in excess of 1
radian will be accomodated by including the order—add a

kg
multiple of — to 4.
2

It will be possible to set 6 directly to any value by including .
™

the order—set 6 to a multiple of —. Error growth in 6, due
2

to long strings of ¢ can usually be avoided at the encoding

phase; otherwise a string can be controlled by punctuation with
set 6 orders.

Other interface orders will allow conversion between Carte-
sian and polar vectors, random point plotting (Cartesian co-
ordinates only), and symbol plotting. - Symbols, sclected from
a set of 128, may be either isolated or linked (typewriter mode).

INTERGRAPHIC will consist of a set of general-purpose
registers under high-speed microprogram control in a manner
similar to the CIRRUS11 computer. It will generate increment
rates by repeated addition and overflow detection (SECTION 1II,
3), because the process may share arithmetic hardware required
for other operations; special-purpose BRM hardware has no
significant speed advantage.

The 14-bit arithmetic unit (AU) will add, subtract, increment,
and decrement and will execute the logical operations of AND,
OR and EQUIVALENCE.

- The AU will also operate as two separate 7-bit units—the
cosine arithmetic unit (CAU) and the sine arithmetic unit
(SAU). Thus, two independent rate streams will be available
simultaneously. SECTION 1I, 2, has discussed the potential
of two rate generators. However, the limited precision of 7-bit
(including sign) accumulators would restrict the size of any
circles, parabolas or exponentials generated directly in this way.
Rather, the 7-bit accumulators wiil be used to manipulate and
display piecewise linear approximations.

There will be two high-speed incremental modes within the
interface—rectangular and circular.

The rectangular mode will plot a straight line by continued
addition of X in the CAU and Y in the SAU. The additions
will be synchronised by common timing pulses and repeated
64 times. There will ¥:e X overflows trom the CAU and Y
from the SAU. These overflows will increment the x and y
display registers respectively, in a sequence which generates
the line. 1t will be possible to plot smail vectors more rapidly
by magnifying their X and Y components by 2%, and reducing
the number of addition cycles to 26N,

The circular mode will generate cos and sin §; it will not
generate any display points. Initially, cos 6 will be set to 1 and
sin ‘6 'to 0 corresponding to § = 0. For each unit of A6, (1/64
radian), cos § will be added into the CAU and sin 6 will be
added into the SAU. Any overflow from the CAU will incre-
ment sin 6 at its least significant end; any overflow from the
SAU will decrement cos 6 at its least significant end. This pro-
cess will be similar to the circle generator of SECTION 1I, 2;
except that the x, y display registers will not be incremented,
The circular mode will thus update cos ¢ and sin 6 on receipt
of each A6 value by repeating the cycle A¢ times.

The order, plot (As, A#6), will update cos 6 and sin 6 in the
circular mode, (A6 cycles), then display the vector in the
rectangular mode with X == cos § and Y == sin 6 (As cycles);
thereby plotting the vector (As cos 6, As sin 6). Usually, the
direction of a graphic will be a continuous function; thus most
A0 values, and therefore the number of circular mode cycles,
will be small. Conversions between Cartesian and polar forms
will be executed in the circular mode.

The remainder held in the accumulator of an overflow rate

"generator must be preserved when hardware is shared, because

any spurious additions will cause irregular overflow generation,
The interface will provide separate remainder registers for
both circular and rectangular modes, so that these modes may
be interleaved without reference to core store,

INTERGRAPHIC will form symbols from a set of standard
straight lines, quarter circles and quarter ellipses in any of
four quadrant variants. Each standard section will require 7
bits for its specification including a blanking and a continue
bit. An upper case letter will require an average of 6 sections
or 42 bits, and will have a quality equivalent to a 16 x 8 dot
matrix. Constituent points will {:e plotted at 10 Mc/s and
the average symbol rate will be 105/sec. The microprogram
read only store will contain the string codes for each symbol,
and very little additional micrologic will be necessary for
standard section gencration.

There will be no restrictions on the extent or complexity of
a symbol—the sections will be joined end to end, blanked
where necessary, and terminated by a zero continue bit. Con-
straining the terminal point to coincide with the starting point
will simplify the typewriter mode. A mixed mode option
will allow the inclusion of a general vector string for symbols
of unusual extent.

16/2/3 -

INTERGRAPHIC will use analogue potentiometer pens,
since they are simple and inexpensive, have adequate precision,
do not depend on visual image regeneration .nd allow oft-
screen symbol cell indexing. 1he tollowing binary decision
sequence (outlined for x only, in the range —I1<< x <l1) will

dciermine the stylus position on initial contact — is the pen
to the left or nght or x = 0? If right then repeat for x =
0.5, 1t left then 1epeat for x = —0.5, etc. After initial contact,

the pen position will change only incrementally at rates of less
than one grid division per millisecond. Thus, simple counting
techniques will be adequate to tollow the stylus. 1hne x register
will be mcremented or decremented according to the sign ot the
differience between the stylus posidon voltage and the anaiogue
converted version of X. A common tracking program will service
all consoles within a millisecond; hence the intertace will up-
date, in real ume, the posiuon of any pen in contact from the
flow ot its x and y grid increments,

Graphic inputs will be encoded as piccewise lincar strings.
Breakpoints on the graphic will be inscrited dynamically by
a sumple algorithm operaung on the How of pen increments.
It will detexmine the enclosed area betwceen the curve and the
chord jownting the l.st breakpoint (or initial point) to the
present position, and declare a new bieakpoint when the ratio
of this aica to the choid length exceeds a preset value. Incre-
mental area determination will require simple addition only;
chord length determination will require an interface Cartesian
to polar conversion; ratio determination will require a short
interface sequence equivalent to division. Thus, each tracked
point will be rapidly assessed as a possible breakpoint. The
preset value will control the tineness of the chordwise approxi-
mation and will be a useful parameter for recognition.

Each chord will be available within the interface in Carte-
sian «nd polar forms. The compact incremental polar angle
A0, to be used for polar co-ordinate transmission, will be
derived by subtracting the accumulation of previous A6 values
fiom the present 6; this will prevent error growth in the A#
string.

The flexibility of the INTERGRAPHIC structure under high-
speed microprogram control will be adequate for geometric
determinations and spatial filtering. However, any procedure
requiring many multiplicitions or divisions, or other extensive
computation, will be executed in the CPU.

CONCLUSIONS

A simple low-cost, graphical interface computer can consider-
ably improve the overall efficiency of a graphical communica-
tion system by off-loading from the central processor the tasks

of detailed image generation, vector string co-ordinate con-
version, simple graphic manipulation, input pen tracking and
input graphic preprocessing.

The choice of graphic code(s) is of utmost importance; they
must be universal, efficient, and operable, so that arbitrary
curves may be compactly encoded for transmission and storage
in a form suitable for, at least, translation, rotation and scaling.
The incremental polar code presented satisfies these require-
ments. Also, it enables an input graphic to be readily reduced
to a one dimensional flow of curve direction or curvature with
arc length. Operations on this flow can perform the equivalent
of spatial filtering, which is useful for recognition.

Time-sharing an interface demands high performance; this
is possible using high-speed micrologic in a structure which is
well matched to the graphic code(s). The rectangular and
circular modes described have rates which are independent of
either core or read only store cycle times, so that megacycle
plotting rates are possible.

The potentiometer pen can be easily multiplexed and it
unifies tracking, pointing and keying.

REFERENCES

1. 1. E. Sutherland. ‘‘Sketchpad, A Man-Machine Graphical Communica-
tion System’’, 1963, Am. Fed. of Information Processing Societies Conf.
Proc., 23, 329-346.

2. G. J. Culler and B. D. Fried, ‘“An On-Line Computing Centre for
Scientific Problems’’, June, 1963, Report M19-3U3, T.R.W. Computer
Division, Thompson Ramo Wooldridge Inc., Canonga Park, California.

3. B. Hargreaves, et al., “‘Image Processing Hardware for a Man-Machine
Graphical Communication System’’, 1964, Am. Fed. of Information
Processing Societies Conf. Proc., 26, pt. I, 363-386.

4. R. Stotz, ‘““‘Man-Machine Console Facilities for Computer-Aided De-
sign'’, 1963, Am. Fed. of Information Processing Societies Conf. Proc.,
23, 323-328.

5. H. Freeman, ‘‘On the Encoding of Arbitrary Geometric Configura-
gg(;nz'sé June, 1961, IEEE Trans. on Electronic Computers, EC-10,

6. H. Freeman, ‘‘Techniques for the Digital Computer Analysis of Chain-
Encoded Arbitrary Plane Curves’’, 1961, National Electronics Conf.
Proc., 17, 421-432.

7. G. A. Rose, ‘“Light-Pen Facilities for Direct View Storage Tubes—
An Economical Solution for Multiple Man-Machine Communication’’,
August, 1965, IEEE Trans. on Electronic Computers, EC-14, 637-639.

8. M. R. Davis and T. O. Ellis, ‘“The Rand Tablet, A Man-Machine
Graphical Communication Device’’, 1964, Am. Fed. of Information
Processing Societies Conf. Proc., 26, pt. I, 325-331.

9. M. Eden, ‘‘Handwriting and Pattern Recognition’’, Feb., 1962, IEEE
Trans. on Information Theory, IT8, 160-166.

10. T. Marril et al,, “CYCLOPS I A Second Generation Recognition
Scheme'’, 1963, Am. Fed. of Information Processing Societies Conf.
Proc., 24, 27-33.

11. M. W. Allen, T. Pearcey, J. P. Penny, G. A. Rose and J. G. Sander-
son, ‘“‘CIRRUS, An Economical Multiprogram Computer with Micro-
program Control’’, Dec., 1963, IEEE Trans. on Electronic Computers,
EC-12, No. 6, 663-671.

16/2/4

	Title Page : INTERGRAPHIC - A MICROPROGRAMMED, GRAPHICAL-INTERFACE COMPUTER
	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS

	CHAPTER 1 : INTRODUCTION
	CHAPTER 2 : LOGICAL STRUCTURE OF THE INTERFACE
	CHAPTER 3 : DEFINITION OF THE MICROCODE
	CHAPTER 4 : VECTOR GENERATION
	CHAPTER 5 : SYMBOL GENERATION
	CHAPTER 6 : GRAPHICAL INPUT
	CHAPTER 7 : CONCLUSIONS
	BIBLIOGRAPHY
	APPENDICES

