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ABSTRACT 
In this paper we present a study of the performance 
of a general class of channel assignment algorithms. 
These algorithms, which we call R-algorithms, are 
completely characterized by the set of carried-traffic 
“states” which they allow. We shall see that for any 
such algorithm, there is a closed-form expression for 
the carried t r a c  function, which lends itself to  sev- 
eral kinds of asymptotic analysis. As an applica- 
tion, we shall study a particular Q-algorithm, which 
has been previously studied under the name “ m u -  
imum packing algorithm,” and which is a “greedy” 
dynamic channel assignment algorithm, and show 
that its performance is in many cases inferior to 
that of simple fixed channel assignment algorithms. 
We shall see that the cause of this unexpected phe- 
nomenon, which was first observed by Kelly [3], it 
the tendency of dynamic algorithms to get trapped 
in states that are locally, but not globally, maximal. 

INTRODUCTION 
In this paper we consider “channelized” cellular tele- 
phone systems, i.e., those systems in which the avail- 
able frequency spectrum is divided into channels in 
time, or frequency, or a combination of the two. In 
the case of FDMA systems, a “channel“ is a fre- 
quency slot, and in the case of TDMA systems, it 
is a time slot. Our results do not apply to spread 
spectrum systems - direct sequence or frequency- 
hopped. 

In our models, we assume that there are N cells, 
and that the offered traffic is uniform and indepen- 
dent from cell to cell. Thus if Xi denotes the offered 
traffic in cell i ,  the Xis are i.i.d random variables. 
Each Xi is a Poisson birth-death process with rate 
of arrival X and rate of departure p per call (see 

* A summary of a portion of this paper was 
published in the Proceedings of the 1991 IEEE 
Symposium on Information Theory, Budapest, Hun- 
gary under the title, “Asymptotic Performance of 
Fixed and Dynamic Channel Assignment in Cellu- 
lar Radio.” 

Feller [2], Chapter 17, Sections 5 and 6.). Thus the 
intensity of the offered trafEc in each cell is p = X/p 
Erlangs. We do not allow handoffs, i.e., a call may 
not leave a cell when it is in progress. 

We assume that there are a finite number C 
of channels available. When a call request arrives 
in a particular cell, it is either assigned to one of 
the C channels, or blocked, by a channei assign- 
menf algorithm. The channels assigned to  calls can- 
not be arbitrary; they must satisfy certain channel 
? e w e  Constraints. In this paper, we will consider 
only reuse constraints which can be represented by 
undirected graphs without loops or multiple edges. 
The vertices of the graph represent the cells of the 
system and pairs of cells that are forbidden from us- 
ing the same channel simultaneously are joined by 
an edge. An example of a 3-cell system is shown 
in Figure 1. (In [5], we have studied more general 
cellular systems in which the reuse constraints are 
represented by hypergraphs, and the traffic may be 
nonuniform. The results in this paper generalize rel- 
atively easily to  hypergraphs and nonuniform traffic, 
but for simplicity of exposition we will not present 
these generalizations here.) 

1 2 3 
Figure 1. A 3-cell system. 

For a cellular system as described above, a list 
6 = (nl,n2,. . . , n ~ )  of N nonnegative integers is 
said to be a permissible state if it is possible to as- 
sign ni channels to cell i, for i = 1,2,. . .N, with- 
out violating the reuse constraints. The permissible 
states thus represent the possible configurations of 
the cellular system, which might occur as the result 
of the action of some channel assignment algorithm. 
For example, in the cellular system of Figure 1, if 
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there are two channels, the state (1,1,1) is permis- 
sible, but (2,1,1) is not. If ii and ii’ are states 
such that n; 5 n: for all a, we write 6 5 ii’ and 
say that ii is a predecessor of ii’. Thus for example 

We can now , - h e  the class of channel assign- 
ment algorithms we shall consider. If R is a set of 
states with the property that all predecessors of ev- 
ery state in R are also in RI we say that C2 is a closed 
set of states. If R is a closed set of permissible states 
and ~i denotes the vector whose ith component is 
one and the rest are zeroes, we define the R channel 
assignment algorithm as follows: 

If the system is in state ii and a call departs 
from cell i, the channel used by that call is freed, 
and the system moves to state ii - E * .  If the system 
is in state ii and a call arrives in cell i, if state ii + e; 
is not in R, the call is blocked. On the other hand, 
if ii + ci is in R, the algorithm must accept the call 
and move to state ii + cj,  regardless of how many 
calls must be rearranged to do so. 

The class of R channel assignment algorithms 
is quite broad, and includes as special cases all fixed 
and many dynamic  channel assignment algorithms, 
as we shall now see. 

A fixed channel  assignment algori thm (FCAA) 
allocates a fixed number of channels permanently to 
each cell under the constraint that two cells joined 
by an edge are not assigned the same channel. A 
new call in a cell is assigned one of the channels al- 
located to that cell, if such a channel is available. 
Otherwise the call is blocked. A cell is not allowed 
to borrow a channel from another cell even if the 
other cell has not assigned that channel to any call. 
Thus an FCAA is an Q algorithm in which Q con- 
sists of all the predecessors of one fixed permissi- 
ble state, say (q, cz , . .  ., CN), and we shall call such 
an algorithm a (cy, c2,. . . , CN)-FCAA. Clearly, the 
maximum number of calls that can be progress in 
such an algorithm, which we denote by MI is Ci ci. 

For example, consider the cellular system of Fig- 
ure 1 and let the total number of channels available 
in this system be C = 2. Two possible FCAAs for 
this system are the (1, 1,l)-FCAA which assigns one 
channel to each of the cells ( M  = 3) and the (2, 0, 
2)-FCAA which assigns two channels to cells 1 and 
3 and none to cell 2 ( M  = 4). 

In contrast, a dynamic channel assignment  al- 
gori thm (DCAA) is one in which, when a call arrives 
in a given cell, the algorithm may be allowed to re- 
arrange some or all of the calls already in progress in 
order to accommodate the new call. Strictly speak- 
ing, any FCAA is also a DCAA, but when we refer 
to a DCAA we shall normally be considering an al- 
gorithm which actually rearranges calls. In this pa- 
per, we shall consider only one such algorithm, the 
so-called m a x i m u m  packing algorithm introduced by 

(1, 41) I (2,1,1). 

Everitt and MacFadyen [l] and studied by Kelly [3], 
which we shall call the greedy dynamic  channel us- 
signment  algorithm (GDCAA). In our terminology, 
the GDCAA is simply the R-algorithm in which R is 
the set of all permissible states. Thus under the op- 
eration of the GDCAA, when a call request arrives, 
it is assigned a channel whenever it is possible to do 
so without violating the channel reuse constraints, 
even if this can only be done by rearranging the 
channels already assigned to the calls in progress. 
If no channel can be found in spite of this, the call 
is blocked, 

We shall measure the performance of any chan- 
nel assignment algorithm, either fixed or dymanic, 
by its carried t r u f i c  function. This function, de- 
noted by T(p), is defined to  be the expected number 
of calls in progess under the operation of the algo- 
rithm, as a function of the offered traffic p .  The 
carried traffic is related to the blocking probability 
B(P) by 

T(P) = NP(1 - B(P)). (1) 
It is natural to expect that the GDCAA would be 
better, i.e., have a larger value of T(p) ,  than any 
FCAA for the same value of p. And indeed, it can 
be shown that, except in the trivial case of no reuse 
constraints, for any cellular system, for sufficiently 
small p, the GDCAA has a higher carried traflic than 
any FCAA [3]. The same is true for all p if no chan- 
nel may be reused in the cellular system, i.e., if the 
cellular system is represented by a complete graph. 
(This phenomenon, which is basically a law of large 
numbers, is usually termed “trunking efficiency* in 
telephony.) Surprisingly, however, this is not always 
true. Indeed, it was shown in [3] that, for the infi- 
nite cellular system shown in Figure 2, when C = 2, 
the (. . . , 1,1,1,. . .)-FCAA has a higher carried traf- 
fic than the GDCAA, for large p. This was the first 
example of a cellular system where an FCAA has a 
higher carried traffic than the GDCAA. 

......e.. .......- 

Figure 2. An infinite cellular system. 

In this paper, we study this interesting phe- 
nomenon further. We begin by deriving an explicit, 
though unwieldy, expression for the carried traffic 
function T(p) for an arbitrary R channel assignment 
algorithm, (equation ( 6 ) ,  below). We then make 
two different asymptotic analyses of this expression. 
First, we study T(p) in the limit as p -+ CO, for a 
fixed value of C. Second, we study the limiting be- 
havior of T(p)  as p and C go to infinity at the same 
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rate. In both cases, we shall see that the GDCAA 
is, in general, far from optimal when the traffic is 
heavy. 

A FORMULA FOR T ( p )  
Recall that N is the number of cells, C the number 
of available channels, p the offered traffic per cell 
(measured in Erlangs) and, for any channel assign- 
ment algorithm, M is the maximum number of calls 
that can be in progress simultaneously in the sys- 
tem. If ni is the number of calls in progress in cell i 
under some channel assignment algorithm, we define 
ii = (nl,  . . . , n ~ )  as the state of the cellular system. 
As we have seen, all FCAAs and the GDCAA can 
be described in terms of the set of allowed states, R, 
of the system under their operation. 

Our results are all based on the following gen- 
eralization of the well-known Erlang B formula. 

Theorem 1. For any Sa-algorithm, in particular for 
ail FCAAs and for the GDCAA, the (steady-state) 
probability that the system is in state ii' is 

The proof of Theorem 1,  which is based on the 
proof of the N = 1 case, i.e., the Erlang B formula, 
given in [2], pp. 460-468, is lengthy and is omitted. 
For the special case of the GDCAA, i.e., when R 
is the set of all permissible states, it was stated by 
Kelly ([3], equation (3.1)). 

Let n k  be the probability that k calls are in 
progress in the system. Then 

where ~ ( 6 )  is as defined in Theorem 1. We define 

P k  = l / n 1 !  ... njv!. (4) 
fiEn:nl +... +n N = k 

Combining (2), (3), and (4), therefore, we have 

(5) 

The carried traffic Tn(p) for the R-algorithm 
is the expected number of calls in progress, under 
the operation of the R-algorithm, algorithm and is 
therefore given by 

M 

In general the number of states in the system is large 
and the carried traffic function (6) is difficult to com- 
pute. However, in the following two sections, we will 
see that certain asymptotic limits of (6) shed consid- 
erable light on the relative performances of FCAAs 
and the GDCAA. 

FIXED C AND LARGE p 
For a given cellular system with a fixed number C of 
available channels, we denote by a the largest num- 
ber of cells that can simultaneously use the same 
channel. (a is the independence or stability number 
of the corresponding graph [5].) Since no channel 
can be used more than a times, and since there are 
C channels, it follows that for any channel assign- 
ment algorithm, M ,  the maximum number of calls 
that can be in progress simultaneously in the sys- 
tem, must satisfy M 5 Ca. On the other hand, by 
the definition of a, there must be a set of a cells, 
all of which may use the same channel. An FCAA 
that assigns all C available channels to each cell in 
this set is therefore one example of a channel assign- 
ment algorithm that achieves M = Ca. We shall 
call a FCAA for which M = Ca a maximal FCAA. 
Since the GDCAA includes all states achieved by 
any FCAA, it follows that M = Ca for the GDCAA 
as well. The following theorem gives an approxima- 
tion to Tn(p) for large p in terms of the quantity 
M. 
Theorem 2. For any R channel assignment dg- 
rithm, 

Proof. f iom ( 5 )  we can derive the following a symp 
totic expressions for large p, using a Taylor's expan- 
sion in p-'. 

and 
1 

IIk = 0(-), k 5 M - 3. 
P3 

The theorem follows by substituting these expres- 
sions for the H k  in the expression (6) for Tn(p). 

I k=O 
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Example 1. To illustrate Theorem 2 we consider 
the GDCAA for the 3-cell system of Figure 1. Let 
C = 2. For this system a = 2 since cells 1 and 3 
may simultaneously use the same channel but all 
three cells may not. Therefore, M = CCY = 4. 
The only state of the system that corresponds to 
M = 4 calls in progress is (2,0,2). Hence, PM = 
p4 = 1/2!0!2! = 1/4. The states of the system that 
correspond to M = 3 calls in progress are (2,0,1), 
(1,0,2) and (l , l , l) .  Hence, p ~ - 1  = p3 = 1/2!0!1! + 
1/1!0!2! + l/l!l!l! = 2. Therefore, from Theorem 2, 
the carried traffic T ( p )  = 4-4/p+0(l /p2)  for large 
P. 

We can similarly apply Theorem 2 to compute 
the heavy traffic performance of the (1,1,1)-FCAA 
and the (2,0,2)-FCAA in this example but the fol- 
lowing corollary to Theorem 2 will save us the trou- 
ble. 
Corollary 1. A (c1, ca, . . . , CN)-FCAA satisfies 

M 1 
T ( p )  = M - - + O( -), for large p, 

P Pa 

where M = CE,q. 
Proof. The only state of the system that corre- 
sponds to M calls in progress is (cl , . .  . , CN). The 
only states of the system that correspond to M - 1 
calls in progress are those obtained by deleting one 
call from this state, i.e., (c1- 1, c2,. , . , CN), (cl, c2 - 
1 , C 3 , . .  . , CN) and (cl,.  . . , C N - ~ , C N  - l), assuming 
c; > 0 for all i. If any of the Q = 0 the corresponding 
states are absent. In either case, a straightforward 
calculation shows that PM-I JPM = Xi ci = M and 

Example 2. Again, consider the 3-cell system 
of Figure 1 and let C = 2. Since M = 3 for 
the (1, 1, 1)-FCAA, using Corollary 1, we obtain 
T(p) = 3 - 3/p + O(l/p2) for large p. But, for 
large p, the (2, 0, 2)-FCAA for which M = 4 and 
T ( p )  = 4-4/p+O(l/p2) has a higher carried traffic. 
In fact, its carried tr&c is even higher than that 
of the GDCAA (using the same number of chan- 
nels viz. C = 2) which, from Example 1, satisfies 
T(p) = 4 - 8 / p  + O( l/p2). 

Comparing Examples 1 and 2, we see that the 
3-cell system of Figure 1 with C = 2 is another ex- 
ample (the first being Kelly’s infinite system of Fig- 
ure 2) where the GDCAA has a lower carried traffic 
than an FCAA for heavy traffic - but the FCAA 
to be considered is not the (1, 1, 1)-FCAA but the 
(2, 0, 2)-FCAA. Of course, one cannot expect the 
(1, 1, 1)-FCAA to be better than the GDCAA for 
heavy traffic since it can only carry a maximum of 3 
calls whereas the GDCAA can carry 4. In general, 
any FCAA with M < Ca must be inferior to the 
GDCAA for heavy traffic. 

the result follows by applying Theorem 2. I 

Example 3. Consider the 7-cell system shown in 
Figure 3 and let C = 2. Using Corollary 1, the 
(1, 1, 1, 1, 1, 1, 0)-FCAA, the (2, 0, 2, 0, 2, 0, 
0)-FCAA and the (0, 2, 0, 2, 0, 2, 0)-FCAA satisfy 
T(p) = 6-6/p+U( l /p2) whereas the GDCAA, using 
Theorem 1, satisfies T ( p )  = 6 - 42/5p + O( l /p2) for 
large p. (We omit the details of the calculations.) 
This is another example of a cellular system where 
the GDCAA is worse than an FCAA when the traffic 
is heavy. 

4 n 

5 4 

Figure 3. A 7-cell system. 

Examples 2 and 3 raise the question: Does 
there always exist an FCAA that is better than the 
GDCAA when p is sufficiently large for every cellu- 
lar system? The following example shows that the 
answer to this question is no. 
Example 4. Consider the 4cell system shown in 
Figure 4 and let C = 2. The (1, 1, 1, 1)-FCAA sat- 
isfies T(p) = 4-4/p+4/p2+O(l/p3) and the (2,0,2,  
0)-FCAA satisfies T(p) = 4 - 4/p+ O( l/p3) whereas 
the GDCAA satisfies T(p) = 4 - 4 / p  + 16/3p2 + 
O(l/p3) for large p. Therefore, the GDCAA is bet- 
ter than both the (1, 1, 1, 1)-FCAA and the (2, 0, 
2,O)-FCAA, which are the only FCAAs (up to sym- 
metry) with M = 4, for heavy traffic. 

A more complete calculation yields that the car- 
ried tr&c for the (l,l,l,l)-FCAA is 

4p + 1pp2 + 12p3 + 4p4 

2p + 4p2 + 3p3 + p4 

1 + 4p+ 6p2 + 4p3 + p4’ T ( P )  = 

for the (2,0,2,0)-FCAA is 

‘ ( p )  = 1 + 2p+ 2p2 +.p3 + ap4’ 
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1 2 

4 3 

Figure 4. A 4-cell system. 

and for the GDCAA is 

4p + 16p2 + 18p3 + Sp' 
= 1 + 4p+ 8 2  + 6p3 + i p 4 *  

Using these expressions, we can show that, in this 
example, the GDCAA is better than all FCAAs for 
all values of p. 

WHEN C AND p ARE BOTH LARGE 
In many cases of practical interest, the number of 
available channels is quite large (about 400 in cur- 
rent FDMA cellular systems and about 1200 in the 
next generation hybrid FDMA/TDMA systems). In 
such a situation, the analysis of the previous section 
will not be applicable, and another type of asymp 
totic expansion, valid for large values of C, may be 
needed. In this section we will present such an ex- 
pansion. 

Consider a fixed cellular system. Let R1 be the 
set of permissible states when onlyone channel is 
available, i.e., when C = 1, and let Q1 be the convex 
hull of 01. For a given value of pI let w = w(p)  be 
an element of that maximizes the function 

asymptotic analysis of a routing problem in circuit- 
switched networks, the results can be extended to 
any application, such as ours, where the state prob- 
abilities (of the underlying multidimensional Markov 
process) are given by (2). 

Example 5. To illustrate Theorem 3, we consider 
the 3-cell system of Figure 1 and the GDCAA. For 
this system, 

E 
2 - 1.5 

2 
B .- 
L 

1.0 .- 
c 
c 0 a 5 0.5 
2 

- GDCAA 
- - - Upper bound 

0.0 F' " ' " ' " ' " ' " ' ' ' ' I ' ' - I* ' ' " ' " " ' ' ' ' ' " ' ' I ,  " ' " ' ' 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 
Offered traffic per cell, p 

Figure 5. The asymptotic performance 
of the GDCAA for the 3-cell system. 

and let Iw(p)I denote the sum of the components of 

Theorem 3. For any R channel assignment algo- 
rithm, 

4 P ) ,  i.e., l+)I = W ( P )  +...+U N ( P ) .  

1 
lim cTc(Cp)  = Iw(p)I, for all p 2 0. 

C-CO 

The proof of Theorem 3 is similar to  the proof 
of Corollary 3.3 in [4]. Although [4] deals with the 

Using this formula for Iw(p)I, we have plotted the 
asymptotic carried traffic for the GDCAA for this 
example in Figure 5, along with an upper bound on 
the carried traffic for any channel assignment algo- 
rithm that we have proved in [5]. We also show in [5] 
that for each value of p ,  this upper bound is achiev- 
able by a FCAA. Therefore, we have the interesting 
result that, for every cellular system and for every 
fixed p 2 0, there exists a FCAA whose asymptotic 
carried traffic is no worse than the asymptotic car- 
ried traffic of the GDCAA. Indeed, in our 3-cell ex- 
ample, there exists a FCAA that is strictly better 
(has a higher carried traffic) than the GDCAA for 
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all p > 1/2. The following example shows that this 
is not always the case. 
Example 6. Consider the 4-cell system of Figure 4 
and the GDCAA. s21 consists of the maximal states 
(1,0,1,0) and (0,1,0,  l), and their predecessors, so 
that 
- 
01 = ((~1, ~ 2 ~ 2 3 ,  24)I~1,52,23, 2 4  2 O,real, 

1 1 4 - 2 2  5 1 , 2 2 + Z 3  5 1, 
1 3  + 1 4  5 1, 2 4  + 21 _< l} 

and it can be shown that 

I4P) I  = min{4p, 21. 

In this example, Iu(p)I coincides with the upper 
bound of [5] for all p > 0. Therefore, the GDCAA is 
asymptotically optimal for the 4-cell system for all 
values of p > 0. 

CONCLUSIONS 
The most important results in this paper concern the 
performance of the “greedy” dynamic channel as- 
signment algorithm. This algorithm is worth study- 
ing because its implementation, like that of many 
dynamic channel assignment algorithms, is indepen- 
dent of the offered t r a c  p ,  whereas the asymptot- 
ically optimal FCAAs of [5] have the disadvantage 
that p must be known. Thus dynamic channel as- 
signment algorithms (unlike FCAAs) have the capa- 
bility of adapting to changes in the offered traffic. 

However, we have seen that under some circum- 
stances, the GDCAA can be inferior t o  a FCAA 
when the traffic is sufficiently heavy. Initially this 
seems paradoxical, but on closer study it becomes 
clear that it is the tendency of the GDCAA to be- 
come trapped in states that are locally but not glob- 
ally maximal that causes the problem. We first con- 
sider the case where C is fixed and p is large. For ex- 
ample, consider the 3-cell system of Examples 1 and 
2 (C = 2). If the system gets into the state (l,l,l), 
no new call can be accepted but the number of calls 
in progress is only 3 while Ccr = 4. The (2,0,2)- 
FCAA avoids getting into this state since it never 
accepts a call in cell 2 (the central cell) whereas the 
GDCAA, being a greedy algorithm, accepts a call 
in the central cell if it is possible to do so and then 
pays for it in terms of a reduction in the carried traf- 
fic. The explanation is similar in the case of the 7- 
cell system of Example 2. The (l,l,l,l,l,l,O)-FCAA 
avoids states like (2,0,1,1,1,0,0) where no new calls 
can be accepted but the GDCAA does not. In the 
4-cell system of Example 3 there are no such “bad” 
states and hence, the GDCAA outperforms all the 
FCAAs. 

The explanation is similar for the case when 
both C and p are large. Consider the 3-cell system of 

Example 5. Using the results in [5], we can show that 
the (C/2, C/2, C/2)-FCAA is asymptotically opti- 
mal for p 5 1/2, the (pC, (1 - p)C, pC)-FCAA is 
optimal for 1/2 < p < 1, and the (C,O,C)-FCAA 
is asymptotically optimal for p 2 1. What this sug- 
gests is that, for p 5 1/2, there is enough “capacity” 
to accept all the offered calls and a greedy algorithm 
like the GDCAA is asymptotically optimal. But for 
p > 1/2 an asymptotically optimal algorithm must 
avoid getting into “bad” states where it has accepted 
too many calls in the central cell but the GDCAA 
does not do this. For p > 1, the asymptotically o p  
timal algorithm must block all the calls in the cen- 
tral cell and hence, the (C, 0, C)-FCAA is optimal. 
Now consider the 4-cell system of Example 6. Again 
using the results in [5], the (C/2, C/2, C/2, C/2)- 
FCAA is asymptotically optimal for all p > 0 and, 
we have seen in Example 6, that the GDCAA has 
the same performance. This is again because there 
are no “bad” states in the 4-cell system. 

What all of this suggests is that the perfor- 
mance of the GDCAA could be improved by mod- 
ifying it so as to avoid certain bad states. Indeed, 
we can prove that a modified R-algorithm, where R 
consists of all globally maximal permissible states, 
and their descendants, is up to terms in p-’, at 
least as good as any FCAA, for fixed C and large 
p .  Possibly further study of “bad” states may lead 
to further improvements in the design of improved 
dynamic channel assignment algorithms. 
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