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Abstract- This paper extends previous works in matched filter bounds [2][3][4] and
provides a theoretical calculation of detection probabilitg-afry QAM signals averaged over
the diversity reception and multipath fading I1SI channels. The matched filter bounds are the
best attainable detection performance at a given SNR, which may or may not be obtainable in
practice. While an exact analytical expression of detection performance associated with a
practical transceiver over multipath ISI channels is difficult to obtain, the matched filter bounds
provide many useful information to be compared with the simulation results.

Technical Kewords Matched filter bound, modulation, equalization and diversity

combining.
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[. INTRODUCTION

Based on the matched filter theory (see Chapter 6 of [1]), the detection SNR of any linearly
filtered receive-signal is maximized if the matched filter, which can be obtained assuming the
receiver has the perfect knowledge of the filter, is applied to the received signal perturbed by the
additive noise. In this paper, we use the matched filters to derive the symbol error probalofity of
ary QAM signals transmitted over the diversity reception and multipath fading I1SI channels; for
description of the communication channel, see Figure -1. A complete system of a transceiver
involves many different function blocks, including a channel estimation and tracking, a
synchronization, an adaptive diversity combining and equalization, and possibly an adaptive
sequence decision [8][9]. In such systems, an exact calculation of detection probability is difficult
and the approach may also dependent upon a particular selection of fading rate, detection and
estimation conditions. Thus, most of times it is considered to be better off to perform simulation to
obtain the exact detection performance of a system. Meanwhile, as a tool to calculate link-budget
requirement or as a tool to support/verify the simulation results, a fundamental capacity calculation
which can be computed relatively easily and applied regardless of any particular estimation and
detection scheme is extremely useful.

Previous works in calculating the matched filter bounds on fading channels include Mazo [2],
Clark et. al. [3], Ling [4], Proakis [6] and Jake [7]. In Jake and Proakis, the matched filter bounds
are derived for the maximal ratio combining receiver, where each of the receive diversity-antennas
in Figure -1 is assumed to be a single tap Rayleigh fading. Mazo, Clark and Ling extended the
results for multipath fading frequency-selective channels with BPSK, 4-PSK or QPSK signaling.
Summarizing their approaches, we note that there are three major steps. The first is to obtain the
bit error or symbol error probability (SEP) expression of a single and static channel. The second is
to taking theexpectatiorof the SEP oveensemblef the channel. This results in a well-known
integral form which involves an integral of error probability function oveyaanmadistribution.

The gamma distribution represents the probability density function, denoting the probability of
matched filter SNR taking a particular value. The third part is to generalize the second to diversity
reception and fading ISI channels. This part involves the use of eigenvalue decomposition to
decorrelate the matched filter SNR. The matched filter SNR is the quadratic combination of
correlated random variables, resulting from common transmit-shape filter, the matched filter

operation and diversity combining, which add up all the available SNR at each of the multipath



components and diversity antennas. Eigenvalue decomposition provides the tools to obtain
decorrelated SNR random variables. Then, the rest is repeated application of the second part to
each of the decorrelated SNR random variables.

The derivation of matched filter bounds in this paper follows the same general framework of
above three steps. The major contribution of the paper includes that the matched filter bounds are
obtained forgq -ary QAM signalling, wherge is 4, 16, and 64. In addition, the matched filter bounds
are derived for fractionally-spaced channels with the reception-diversity. Thus, with a specific
example of fractionally-spaced multipath-power delay profiles (MPDPSs), one can readily obtain
the matched filter bounds and compare with their computer-simulation results.

Organization of the paper is as follows: Section Il. provides system description. Section III.
describes the detailed derivation of matched filter bound. Section IV. discusses three cases of
interests. The three areas are 1) a single ISI channel case, 2) maximal ratio combining case, and 3)

receive diversity-channels, each of the channel being ISI. Section V. provides concluding remarks.

[I. SYSTEM DESCRIPTION

Figure -1 describes the underlying channel and matched filter sygtery.QAM symbols are
generated and pulse-shaped by the transmit ffl{ey . The transmitted signal propagates through
the wireless channel and arrive to the space-diversity antennas at the receiver. At each antenna
branch, the independent wireless channel is modelled as fi{tb'r(s), l=1,...,L} . Upon
receiving the signal, the optimal receiver performs matched filtering at each branch and samples at
the optimum sampling point. The detection performance will be evaluated on the sample of the
received signal. Before starting with the derivations, let us describe some of the important
assumptions we make in the derivation:

« Assumption 1 Matched filter bound is based on a single-shot symbol transmission and detec-
tion such that it ignores any intersymbol interference.

« Assumption 2 The matched filter theory holds with the colored noise; however in this paper
we assume that the noise is complex-valued white Gaussian.

« Assumption 3 The channel is assumed to tmme-invariant over the duration of the overall
pulse, which includes the channel and the transmit shaping filter (the anti-aliasing receive filter
as well).

« Assumption 4 The transmit shaping filter is assumed to employ an excess bandwidth of less



than 100%, and thus the channel can be modelled as a half-symbol spaced finite impulse
response filter without loss of information.
« Assumption 5 The half-spaced fading components of the channel are mutually uncorrelated,

(i.e., the wide-sense stationary uncorrelated scattering assumption).

A. Single-shot system equation
Based on the assumptions made, we first define the basic equation for the receive signal in a
single channel case. The received signal for a single-shot transmission of a pulse modulated by the

information symbol, can be written as

X(t) = 3005 b f(t=pTe)lo+n(t) = h(t)lo+n(t), (1)
where
« |, denotes the -ary QAM symbol
* b, denotes thep -th component of the half symbol-spaced finite impulse response (FIR) filter
of the channel at a fixed instant of timp = O, 1, ..., Ngy—1 (we useNg = 3 for simulation

examples in this paper).

The half-symbol spaced multipath power delay profile (MPDP) is defined as
@.(p) = E{b,by}

2 ’ (2)
= a,d(p—0)
and thusmfJ denotes the average power optttecomponent.
« f(t) is a square root raised cosine filter, &{dv) denotes the Fourier transfo(t of ,
F(w) = J’°° f(t) exp(—jwt)dt 3)

n(t) denotes the zero-mean, complex-valued additive white Gaussian noise with two-side

power spectral density,

h(t) denotes the signal part of received sigred <t < oo due to the single-shot transmission
of the symboll, at = 0,

Now consider the Fourier transformtoft) , which is denoted as

- T
H(w) = F{h()} = F(0)Y %, byexpH-iwp=H 4)

t. A non-causal representation of transmission and reception of the signal is used for brevity.



whereTg denotes the symbol-period. Then, the complex-conjtijgte) can be written as
H* (@) = F'(0) Y%, byexpd wp%g. (5)
Based on the matched filter theory [H,(w) is the optimal filter that maximizes the detection
SNR. Now applying the matched filter resportd&( w) to the received sigmpl , we have the
matched filtered signal which can be written in the Fourier transform domain as
H* (w)X(w) = H (w)H(w)lo+H (w)N,. (6)
The inverse Fouier transform of (6) provides the time-domain response of the matched filtered

signal. Now notice that the autocorrelation function became the overall channel. It is the inverse

Fouier transform of{ H* (w)H (w)} Zier {H*(w)H(w)} exp(jwt)dw , and is Hermitian
symmetric around = 0 . Thus, by sampling the matched filtered output response ét , we

achieve the optimal matched filter output which we discussed in the next sub-section.

B. Sampled, matched filter output
Now letz, denote the receive signalsampleat O  , and then for the detectign of  the following
equation provides the sufficient statistic
Zs = Aglo+ Vs, (7)
where
« A, denotes the zeroth lag value of the Hermitian symmetric autocorrelation channel, which is
the value of autocorrelation function at time= 0 . It is a random variable and implies the
instantaneous energy of the cascade response, the channel and transmit-shaping filters, and can

be written as

A= onf HH@H@exiondw = 5 W (@

(8)
— 1 ° . Ng-1 TB Ng—1 0 - TB
- E_TJ_WF (w)F(w)Zp:o bpeXp%wp—Z—E'qu blepD—JOOQ'Z—%jOO
From the uncorrelated scattering assumptAss(mption 5, (8) can be written as
- Ng—1 Ng—1, . 1~ 2 ] TB
As = Zp=0 2a-0 bpbqé",—J_m|F((*))| expriw(q - p)igjoo o
9

Ngp—1—Ng—1

* — TB
p=0 q=0 bpbqfrc%_(q_p)7%



where f .(t) is the raised cosine filter response,

« |, denotes the transmitteg -ary QAM symbi(,l,) = 0.0 and

Var(ly) = % (10)
« V. denotes the matched filtered noise output sampled-ad which is
v, = f’ n(Oh(t-t)dt| (11)
- t=0

thusvg is zero-mean witiar(vy) = Ny DA

It is worthwhile to note that (7) provides sufficient information required to compute the
detection probability of the single-shot matched filter receiver. Also note AQat denotes the
random variable representing the instantaneous energy of the cascade of filters which are the

transmit shaping filter, the channels at all diversity branches at a specific time instant.
Ill. MATCHED FILTER BOUND CALCULATION

A. Square-QAM symbol error probability
In this section, for a particular values @&, amd, the symbol error probability will be
evaluated for squarg -ary QAM signaling, i®g.= 2 whére is even. Referring to Figure -2,
we start with summary of the following relationships which become useful in later sections:
« The average energy of the square-QAM signaling set can be computed as, using (10) and the

definition given in Figure -2

£, = B0l = Aa-DoAC - 9=l 12)

O ﬁD - 3 0O ﬁD -3 s
« The minimum Euclidean distance of the square-QAM constellation is
dmin = ﬁ DA‘S' (13)
« The instantaneous signal to noise ratio is

signal power _  _ __E _@=-DA
noise =y = kb = B N,
power A N, 3 N

(14)

wherey is the instantaneous SNKx= 1og2(./q) the number of bits per symbol, is the

instantaneous SNR/bit.

Then, theq -ary square-QAM symbol error probability at a particular channel am a , can



be computed as
o dmin(d) 1 dmin(@)
Py(As=a) = 25— ﬁﬁerf b Nart D[El 5%1 Be rfc %Wﬂg (15)

(15) can be tightly upper-bounded by the first term, (16). Figure -3 provides the comparison of (15)
and (16). We note that the approximatiomgymptotically efficierdnd very tight even at low SNR

region. Thus, we will use the following approximation

1 ﬂjmin(a)D
P,a)=2Al— —=erfce——~ . 16
(@) =20 Ja%‘ D fan. (16)
Now, solving fora in (12), i.e. a = (q31)E we have

dmin(a) = ’\/éa = ’(—sTDi—)Es’ (17)
dmin(a) = ’(q l)akyb 0: (18)

Then, the approximation of the symbol error probability (16) can be written as

_ 1 O/__3 O
Py(a) = 2%[—E%rch/2(q_1)kbe, (19)

Py(a) = 201 -j‘—a%:-rchD 52 (20)

We will use this approximation to derive the averaged symbol error probability.

but using (14), (17) is

or simply

B. Average symbol error probability for square-QAM
Now, the symbol error probability, averaged over the ensemble of the channel or equivalently

that of A, , can be computed from

Py(Yo) = [oPg(a)Pr(A = a)da, (21)

wheresq(y_b) denotes the averaged symbol error probability of -ary QAM system for the average



input SNR which is defined as

Vo = Elve) = SHeay (22)

Thus, we need to know the distribution function of the random varrable
From (9), we may note that the random variable can be written as follows, djrg 3 for

simplicity of illustration:

| fel0) f(Te/2) H(Te) | Poo
As= (g by B)|F,(Te/2) £,0(0) f,o(Te/2)| Do (23)
f(Tg) fo(Te/2)  f(0) |

Denote the matrix in the middle &5, , whefg(t) denote the raised cosine function. Now, we
represent each of the fading channel tappas a;p; , multiplication of an attenuation factor and

the unit-variance, complex-valued Gaussian random varigple . Therefore, we can write the

channel vectob as

[l 0
an 0 o
b=ap=0 aq, 15, (24)
U 0
0 2
00 a,0d
where E(pp") = =y _xn,, @ 3 x 3identity matrix because;,i = 0,1, 2 are assumed to be
mutually uncorrelated.
Using (24), (23) can now be rewritten,
H
A, = b 'F.b = pHaHFrCap, (25)
= pfGp
where in the second line we have defin@d= aHF, .a . It is important to note that for a fixed

MPDP, G is fixed. Also note tha®  is Hermitian symmetric. In addition, siAge is the energy

of the cascade filter (8) it is non-negative definite. For any non-negative definite Hermitian

symmetric matrixG , there exist an orthonormal ma@ix such(ﬂﬁQH = A , or
G = Q"AQ (26)
whereA is a diagonal matrix with the diagonal elemeht=z 0 p , =0,1, 2, being the eigenvalues

of the matrixG .



Now rewriting (25) using (26) we have

N

A, = pHGp = pHQMAQp = pHAD = ST A lpl”, (27)
where we have now defingel = Qp . Note thlq,t p=012 areagain mutually independent,
complex-valued Gaussian random number with zero-mean and unit-variance, ar?q)hb}bié :
p=012, are iid x?-distributed random variables with the characteristic function
1/(1-jvA,). Thus, the characteristic function &f s the product terms of

B VA = [ ory: (28)

IV. THREE CASES OF INTERESTS

We now want to evaluate the average probability of symbol errors. For easy of illustration, we
divide the tasks based on three cases of interests. The first case is for a single, ISI channel case,
whereA, is expected to be represented wiih distinctive eigenvalues. The second case is for the
case ofL -diversity antennas, with flat-fading channel, where  can be represented with a single,
L -repeated eigenvalue. The third case is combination of the first two, whiere s represented with
L -repeated set oN; -distinct eigenvalues. With the supply of input values such as MPDPs, the
shaping filter characteristics and the averaged input SNR, the derivation in this section allows us to

obtain the averaged, square-QAM symbol error probabilities as function of averaged input SNR.

A. Distinct eigenvalues (no eigenvalues in multiplicity)

When all the eigenvalues are distinct, (28) can be expressed as

1T,

Ng-1
Elea(VA)} = 3,50 Tu (29)
where we have defined the weight of an individual random variable to be
Ng-1
T[p = |_I ; (30)
o O(l—Aq/)\p)
q#p

Finally, we can write the probability density function ff ~ which is the weighted suidofx? -

distributed random variables. That is,

Ne-1_ e P
P | ¥
p=0 P )\

Pr(A;=a) = (31)



Now substituting (31) and (20) into (21) we have

Pq(Yo) ﬁPq(a)Pr(As = a)da

a/Ap (32)

Z%L—AEZ J‘”erfc N %p)\ da
Jq

Now define
— AS
Y = N, (33)
then by change of variable (32) can be rewritten
—y/)\
O
Pu) = 4B TS S T erfel /) Syt (3

P

A
where we have defined fgr = 0, 1, ..., Ng—1 )\,p = —E  Note that the weight terms  stays

2N,
the same. Then, (34) becomes
_ Ne-t A
Pq(Yp) = 4%1 %Z I)\ %1 (35)
where the relationship between the average SNR/bits and the eigenvalues are
— _ 2(q-1DE{A} _ 2(q-1) 2(9-1)q 1 peNe-1
= = E{Y} = A Y 36
Yo T T 2N, 3 SO T T BN, > (36)

Now, the following steps describe the procedure of how to compute the matched filter symbol
error probability bounds when the input parameters are the average SNFg/bits , the constellation
sizeq and the multipath power delay profile.

- Evaluate the eigenvaluda;,i =0, 1, ..., Ng}  using given MPDP and the transmit shaping fil-
ter, which is described in (23) to (27).
« Now determine the value %@LD for the given value/_pf gnd by
N,U

1 _ 3\7b|092q

(37)
. Calculate{}\i,i =0,1...,Ng} by evaluating
: A
A, = =, (38)

P T 2N,

10



 Finally, substitute (38) into (35) to calculate the average symbol error probability.

B. Eigenvalues occurring in multiplicity

We now consider the caselotimes repeated eigenvalues, i.e.

- .1
E(exp(IVA)} = =50 (39)
This is the case when we have equal gain, independent diversity sources. Then, (27) takes the
expression
T2
A= S N (40)
Where|p'p|2 againarad Chi-square distribution with unit mean. The distribution function for this
case isPr(As=a) = (—1)#&—16_%1 . Then, the average symbol error probability is
L—1)IA;
Pq(Yp) = ﬁPq(a)Pr(AS = a)da
_ 101 .0fapg 1 L (41)
= 4=1—- —Hf, zerfc a--le  ‘da.
a JgH°2 2NoH(L —1)1AP
Then, by definingr = A/(2N,) , we have
Po(Yo) = 4 erfo(yy) ———yt-1e” My, (42)
37 Jq N (L— 1)1)\1
where we again defin@dl = A/(2N,) . Then, we obtain
1 Djl QDL -1+ kml + Q[T
Po(Vs) = 4%1 z : 5 (43)

where we define® = A/)\'l/(l+7\-1)

Now, following steps describe the procedure to compute the averaged symbol error probability
with the input parameters of the average SNR/pits , the constellation sizeL divetsity paths
of equal gaim;
« Now determine the value %{l—o for the given valug/pf  and by

1 _ 3\7b|092q
2N, 2(g—-1)DA,

. Compute)\.l = A/(2N,) andd = A/)\ll/(1+)\'1)

L-1 y/}\l - |j<
Tusungﬁzerfc(@)(L 1)')\1y e Mdy = Z =g [

(44)

11



 Finally, substituteQ into (43) to calculate the average symbol error probability

The considered situation is when each diversity branch is modelled as a single Rayleigh fading
tap channels. Then, the matched filter combiner simply becomes the maximal ratio combining of
the received signal. Figure -4 Figure -5 Figure -6 are the matched filter bounds for -QAM with
L -diversity antenna reception of the signal, tpr equal to 4, 16 and 64. As the order of diversity
increases, we note that the matched filter bound$ of -diversity channels approach the SER

performance of the AWGN channel.

C. Combination of distinct and multiple poles
We now consider the case where therd.is  diversity antenna reception of the signal and each

channel is a multipath ISI channel. Now, the instantaneous channeédgain  can be written as

_ —L-1<Ng-1 T2
As = =0 piO AJpr|1 (45)

where p,',Io , P =01, .., Ng are mutually independent, complex-valued Gaussian random
number with zero-mean and unit-variance, and tb\l,!,#m p|2 imte x2 -distributed random
variables. Note that the MPDP stays the same for each of different antennas, and thus the same set
of Ny (distinct) eigenvalues should be repeatihg times. Thus, the characteristic function
becomes

Ng—1

. 1
E{exp(jvA)} = [ ——— -
on(l—ijp)L

(46)
Now, for the exampleol = 2 anbly; = 3 , by the method of partial fraction expansion (46) can
be decomposed into

2 1 2 0 [ I 0
— = 20 4P (47)
on(l—JvAp)Z pZoD(l—ijp)z 1—jvApH

wherel" values are the expansion coefficients. Then, the probability density function is

—-a/A

Pr(A. = a) 2 T, e l.r 1 a-1g¥g (48)
r =a) = — —a-"-"€ .
° pZOD PPN, PP oyl 0

12



Then, the average symbol error probability is

Py(Vp) = J‘;Pq(a)Pr(As = a)da

%1 % 2 |:| e—a/)\p 1 L1 _a/)\pDD
=22 rfc a +T at-le (Tda
Jo DJZNO%QZ O"P Ay Z2P—nnl i (49)

=0

4E,1 z [M1 pPi(Ap) + T2 pPo(A)]

where we have defined
1()\p) = (1 JA /(1+)\ ), _
Py = (1-0)/2) st Gasayy,
* Ay = A/ (2Ny)
Now, the following steps describe how to compute the average probability given the MPDP,
the number of diversity channkel |, the average SNR\QTgits and the constellatign size
« Define the average SNR/bits (note, this is not the average SNR/bits/channel),

— _ 2(q-DE{A} _ 2(q-1)
Yo T 2N, T 3k

E{V} = 2(%« Dol EL Z )\ (50)

Evaluate the eigenvaluds\;,i =0, 1, ..., Ng}  for givén , MPDP and the transmit shaping
filter, taking the same approach as (23) to (27).

Determine the value df/(2N,) for the given valuey_gf L, and by

3y,lo
1 _ Yb gqu - (51)
. Calculate{}\i,i =0,1,...,Ng} by evaluating
: A
Ap = ﬁ (52)
(0]

Finally, substitute (52) into (49) to calculate the average symbol error probability

Figure -7, Figure -8 and Figure -9 show the matched filter boundg for -QAM transmission,
g = 4, 16, and 64 respectively, over the multipath fading frequency-selective channels. The
multipath power delay profiles we used are MPDP-(10-7413 0.2343 0.0234 and MPDP-2 =
(0.6652 0.2447 0.0900). The number of diversity channels is 2Li.e. 1, 2 . The rms delay
spreads of the two are 0.2494 ~ and 0.32%7 for MPDP-1 and MPDP-2 respectively. We note

13



from the SEP curves that the detection performance of MPDP-2 i 4be@ dBbetter than that
of MPDP-1. This confirms the well known diversity property of the wireless channel that the larger
the delay spread is the better the expected detection performance, due to inherent diversity of the

delay spread channel.

V. CONCLUDING REMARKS

In this paper, we have derived analytical expressions for symbol error probability using the
matched filter SNR for the square-QAM signals transmitted over the diversity frequency-selective
channels. These theoretical bounds may not be attainable in reality due to the impractical
assumptions made in deriving the bounds. Nonetheless, they provide invaluable information in
designing the complex communication systems and serves as easy-to-compute analytical tools that
can readily be compared with the simulation results of practical transceiver schemes. Specifically,
we shall be able to observe the exact relationship between the asymptotic slopes of SER curves and
influences of different shapes of MPDPs. Future work include the extension of the matched filter
bounds for trellis-coded modulation cases, which will be useful to be compared with the simulation

results [9].
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instantaneous channel gain, combining all the channel paths and branches.
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Figure -4 Matched filter bound SEP for 4-QAM transmission olker -flat fading
diversity channels.
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Figure -5 Matched filter bound SEP for 16-QAM transmission dver -flat fading
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Figure -6 Matched filter bound SEP for 64-QAM transmission dver -flat fading
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