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ABSTRACT

In this paper, novel structures for dynamic removal of mul-
tiuser interference are proposed. The natural gradient (NG}
is used either to compute whitening matrices in linear blind
minimum MSE or to develop new structures. Asa result, we
propose a family of centralized and non-centralized mul-
tiuser detectors {MUD’s). The NG provides the MUD’s
with the equivariant and superfficiency properties, making
them near-far resistant by construction and their convergence
optimnal. Moreovet, the complexity of these structures is sig-
nificantly reduced. These novel solutions are successfully
applied to the multiuser synchronous CDMA channel.

1. INTRODUCTION

Interference limitation due to the simultaneous access of
multiple users in Code Division Multiple Access (CDMA)
systems has been the stimulus to the development of a pow-
erful family of Signal Processing techniques, namely Mul-
tiuser Detection (MUD). In the simple memoryless synchro-
nous case where no training sequences are available, the al-
gorithms should cope with noise and the near-far problem.
In this sense, the minimum mean square error (MMSE) cri-
teria provides a good linear solution to the problem. How-
ever, due to its computational complexity, several alterna-
tive algorithms have been proposed [1],[2],[3]. On the other
hand, some algorithms have been proposed as filly blind
MUD’s, in the sense that spreading codes are unknown [4],
[51, [6}-

The natural or relative gradient {NG) has been widely
used as a steepest descent algorithm in the blind separation
of sources (BSS) [7], [8), [9]. However, these blind tech-
niques are not usually noise-robust.

We propose in this article to use the structure of the
MMSE MUD and its proven noise robustness together with
the natural gradient algorithm. Noise robustness, super-
efficient convergence and near-far resistance of these new
structures will be demonstrated.

2. PROBLEM STATEMENT

2.1. Signal Model

Let b(t) be a vector of symbols transmitted by » indepen- .
dent finite-alphabet transmitter at time £. We then denote by
x(t) the m x 1 vector corresponding to the receiver obser-
vation at time £,

x(t) = Sh(t) + n(t) )

where H is an m x n memoryless channel matrix, and
n(t) the noise. This may be identified with the narrowband
m-sensor linear-array application, the synchronous-CDMA
case with spreading factor L = m, or the general instanta-
neous BSS model.

In synchronous CDMA communications, matrix S may
be decomposed into S = AH where A is a diagonal matrix
with the amplitudes of each user and H is a matrix whose
columns are the spreading codes.

2.2, Linear Multiuser Detection

A linear multiuser detector C' gives an estimation of the
original transmitted signals

y(t) = Cz(t) = CSb(t) + Cn(t) @

The detector minimizing the mean-square-error (MSE) for
each user k, MSE; =E [lyk(f.) - bk(t)IQ], is the C,u)\,fSE

RIH* = H*HW.W H* (3)
H'R! =H'W.W, @

Cumse =

where v(t) = H*z(t). Here, as in the following, * denotes
transpose-conjugate. Detectors as in (4) are usually referred
as non-centzalized, since they do not need the whole matrix
H to receive one user k but only its column k. On the con-
trary, centralized detectors as in (3) need the whole matrix
H.

In [4] the asthors define a whitening-rotation detector
(WR) as the C r matrix that minimizes the MSE sum of

0-7803-7589-0/02/$17.00 ©2002 IEEE 1186 PIMRC 2002

Authorized licensed use limited to: Univ Rey Juan Carlos. Downloaded on June 10, 2009 at 11:30 from IEEE Xplore. Restrictions apply.



MSEg, & = 1,...,n. A posible structure for this receiver
was given as follows

Cwr=JOQW (5)

where W is a m x m whitener, Q} a 2 X m rotation ma-
trix, and J = [I 0] is n X m. In the context of the BSS,
the problem consist of computing the matrix C'p that mini-
mizes statistical dependence at the output.

2.3. The Natural Gradient L&

The steepest descent method updates C' according to the di-
rection of the gradient V L of a loss function L({C). The nat-
ural [9] or relative gradient [8] proposes to use VL(C) =
VE[I(C)] = VL(C)CT €. The stochastic version uses the
intantaneous value VI(C). The Icarning law yields

C — C-avic)c'c (6

In the BSS problem it is usually assumed statistical inde-
pendence at the outputs y(t). Maximum likelihood (ML) is
an extended technique to derive a loss function for this cri-
teria 97, [8]. 1t can be shown that by forcing the estimating
function K (y) = VI(C)-CT = (y)y" — I w cancel, we
achieve independence at the output. The leaming law yields

C — C - \K(y)C (7

where in the ML approach ; () = —¢}(v:)/q:(v:), being
4; () the probability density function of source &;. However,
as source distributions are supposed unknown, each author
introduces his own activation function ;(y;). A family of
them may be found, for sources with pegative or positive
kurtoses, in [7]. By normalizing (7) the leaming law may
be written as follows

wwy' -1
Cr— C- 222 ®
1+ AT (y)yl

1n [5] the authors proposed a NG based algorithm to sep-
arate signals in digital communication, the M-EASI (Median-
Equivariant Adaptive Separation via Independence). This
method assumes zero-mean, symmetric, ‘circularly distri-
buted’ signals and introduces the sign function to reduce the
bias introduced by the noise. It estimating function yields

ysgn(y)* —1 | 1 psgnly)’ — sgnly)e’
1+Asgn(y)'y  a L+ Ajy*el

where sgn(y) = sgn(R({y)) + jsen(3(y)), v € C. With
this method we improve the stability of the algorithn [10],
provide the method with phase recovering properties and
make the method more robust against noise.

K(y)=

3. MULTIUSER DETECTORS BASED ON -
NATURAL GRADIENT

3.1. NG-MMSE Multiuser Detectors

We could use the natural gradient to compute a detector C'
by imposing some criteria such as the MSE. But we may di-
rectly exploit the MMSE estructure in {4} for the centralized
(i.e., base station, all codes available) and non-centralized
case (i.e., user equipment, only user code available).

3.1.1. Centralized MUD, the WWH detector
We propose to compute W, in

Cwwyg =H'HW,W H" (10)
by using (8) with y = v = W, H*z and activation func-

tions w(v) = v. The learning law yields the decorrelating
algorithm

I - (Wuv)(WUU)T w (”‘)

A
Wu — Wv+ 1+ /\I(WU'U)T(WUT’N v

3.1.2. Non-centralized MUD, the HWW detector
The non-centralized MMSE-MUD was given in (4) as

Caww =H'W, W, (12)

If we redefine y = W, and rewrite the natural gradient
blind source separator in (6) as we did in (11), it follows that

I- (sz)(W:I)T
W, — W_+ .\1 ™ AF(W;E)T(WIE)IWI (13)

3.2. Blind Source Separation Based Detector

Following the same structure as before, we have centralized
and non-centralized algorithms.

3.2.1. Centralized MUD, the BH detector

1t is posible to substitute the matrix product H* HW LW,
in (10} by a separating matrix B. The new detector yields

Cpy = BH® = QW H: (14)
where B is computed as a blind source separator, that is,
a whitening-rotator. Notice that in the centralized case the
dimensional reduction is carried out by the matched filter
H*, thus J = I in (5). Matrix in B (14} is computed by
using the M-EAS] algorithm

B— B-AKp(y) B 15y

1187

Authorized licensed use limited to: Univ Rey Juan Carlos. Downloaded on June 10, 2009 at 11:30 from IEEE Xplore. Restrictions apply.



where

1 psgn(y)* —sgn(y)e*
1+ Aly=

_ ysgon(y)y -1
Kol = T Xomtry &

(t6)
y = Bv = BH"=, and (1) may be chosen as described
in [7]. Thus, the MMSE structure is further enhanced by the
properties of the M-EAS] algorithm,

3.2.2. Non-centralized MUD, the B detector

It isnot possible to define an architecture for the non-centralized

MUD as in (14). Suppose the candidate now to be the de-
tector
Cyp=H'B=H"QW, (17

Here, matrix C'p = B is already a solution, as indepen-
dence is imposed at the outputs. Thus C g is not a detec-
tor as H # I. Computing matrix Cp is basically a blind
separation problem and it is out of the scope of this paper.
Notice that this detector is fully blind as it does not use the
spreading codes [5], [6], [4], but rather constructs them.

4. THEORETICAL ANALYSIS

In this section we include a discussion on some theoreti-
cal aspects of the methods above. We focus on the near-far
problem, noise, convergence and complexity.

4.1. Interference Robustness

The main point in using the natural gradient in MUD is that
it is equivariant [8], i.e., the convergence has a uniform per-
formance. Let’s define I = C'S and nght multiply (7) by
H to obtain

D+— D+AK(DB)D  (18)

Matrix § = AH is only present at the initial vatue Dy =
CoAH. Thus, the convergence does not depend on matrix
AH. It can be concluded that the methods proposed in this
paper are near-far resistance, as convergence is independent
of the user’s amplitudes.

4.2. Noise reduction

Algorithms in BSS usually do not cope with the noisy case
whenever the number of sources and mixtures are the same
m = n. By using the M-EASI algorithm we combat the
effect of noise in the separation process for digital commu-
nication. On the other hand if /n > n a signal subspace pro-
jection allows noise reduction. Previous BSS approaches to
fully blind MUD’s use a VD decomposition, a MPLL 4]
... However, this invelves a higher computational complex-
ity. As the spreading codes are usually available (at least at

the base station), it is straightforward to introduce them as
a subspace algorithm at a null complexity cost [3]. Besides,
the structure of the MMSE detector has been used in (10)
and (12) to cope with noise.

4.3. Superefficiency

Another important characteristic of natural gradient BSS
techniques is that of superefficiency [11]. In this sense,
provided E [p(y)] = 0 (an usual case), the covariance be-
tween two outputs decreases of the order of 1/¢2 in batch
estimation and of the order of A? in on-line learning. Futher-
more, A = 1/t gives, asymptotically, the best performance,
which is the same as the optimal batch estimator. Thus, with
A = 1/t we achieve an on-line algorithm with batch fea-
tures at every . On the other band, if adaptive features are
needed, we may use A < 1 to achieve an output covariance
decreasing as A%,

4.4, Complexity

The exact MMSE solution at every time ¢, involves comput-
ing the eigenvaiues of the autocorrelation matrix. Thus, the
computational resources needed are significant. The meth-
ods proposed in this paper allow computing, as described in
the last section devoted to superefficiency, the batch solu-
tion as an on-line algorithm at a low computational burden.

5. EXPERIMENTAL RESULTS

In this section we face the MUD in a synchronous CDMA
system. The BPSK symbols were spread using GOLD codes
with spreading factor L = m = 31. The number of users in
the simulations was K = n = 8. On the one hand, we study
in Fig. 1 the convergence of the method by computing the
signal to interference ratio (SIR) along the number of sam-
ples for a signal to noise ratio (SNR) of 15 dB and average
multiaccess interference (MAI) of 30 dB. The learning rate
was set to A = 1/t and the activation function used in the
Cpa detector was the cubic function ¢(y) = y3. On the
other hand, we simulated the same scenario to depict, in Fig.
2, the bit error rate (BER) for different signalto noise ratios
(SNR). This BER was computed at £ = 6000. The MF is in-
cluded as reference. However, as this detector is not near-far
resistance, we have computed the exact MMSE solution at
every time ¢ as described in Subsection 4.4, The PASTd {2]
algorithm is also included in Fig. 1. The methods presented
within this paper exhibit a good performance, in comparison
to the MMSE. Under these conditions, other methods such
as the PASTd have a poor behaviour [2],[3]. Besides, fora
large enough number of training samples the methods have
a similar BER compared to that of the MMSE. Notice that
although the HWW detecter converges to the MMSE solu-
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Fig. 1. Convergence for MMSE (o), BH ([0), WWH (),
HWW (4), MF (*) and PASTd (¥) for synchroncus CDMA
with n = 8 users, MA1=30dB and SNR=15dB.
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Fig. 2. Bit Error Rate for MMSE (c), BH ((0), WWH (¢},
HWW (A), MF (*} for synchronous CDMA with n = §
users and MAI=30dB.

tion, its convergence is slower due to the higher dimension
of the matrix to estimate, W .

it is interesting to notice in Fig 1 how the BH detector
exhibits better convergence than the MMSE MUD. This is
the effect of the superefficient convergence inherent to the
natural gradient.

6. CONCLUSIONS

The natural gradient exploits the matrix estructure of the pa-
rameters of a loss function in the design of steepest descent
algorithms. As a result, the algorithm is ¢quivariant and the
convergence superefficient. Thus, it should be taken into
account in narrowband m-sensor linear-array applications.
Here, we introduce it in the structure of the blind MMSE
MUD to remove the noise weakoess the NG suffers. Then
we propose a novel BSS based centralized structure where

the steering vectors are the basis of the subspace projection.
Fulty blind algorithms are presented as a particular case of
the proposed family of MUD’s. The results included here
shows a good near-far resistance performance and fast con-
vergence in synchronous CDMA.
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