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Abstract - This paper analyzes an influence of an imper- of the crosstalk from the multiple transmit antenna when the
fect symbol timing estimate on the space-time coded modu-propagation delaysnd estimatiorerrors in these particular
lation error performance. We use a concept of the self-noisebranches are mutuallynequal As a consequence a potential
to describe this influence. We derive an expression for theoriginal Nyquist orthogonality of the modulation impulses is
white self-noise approximation in slowly and fast Rayleigh damaged and intersymbol interference degrading bit error rate
flat fading MIMO channel. The self-noise is shown to cause a appears.
substantial performance degradation which is emphasized by The problem can be generally approached from the two
dimensionality of the MIMO channel. viewpoints. First, we might try to design a space-time mod-
ulation systematically taking into account possibly unequal
propagation delays or estimation errors. Second, given a
modulation designed for equal propagation delays and with
ECENTLY we could see an enormous research inter- perfect symbol timing estimation in mind, we can analyze
est in the MIMO (Multiple-input Multiple-output) type  the effect of the estimation error on the bit error rate perfor-
space-time communication systems. These systems providenance. This paper follows the second approach by analyzing
very promising potential in increasing the information capac- the influence of the symbol timing error on the detector per-

ity of the communication channel. The research effort attacksformance. We will use a concept of self-noise to describe this
the problem from various angles. The background is in the influence.

analysis of the information capacity ([7], [1]). Search for
space-time modulations exploiting the potential of the MIMO
channel mostly concentrates on linear space-time trellis codes ) ) )
([6], [5]). Also nonlinear schemes are investigated (2], [4]). The whole treatment is performed in the space of signal
However, so far most of the effort in the space-time modu- COMPlex envelopes. We consider a space-time linear coded
lation design and performance evaluation has been focused tgh0dulation in the system withi; transmit antennas. A mod-
simplifying assumption of perfect channel state information Ulated signal om-th transmit antenna is
(CSI) knowledge on the receiver. Some of the early attempts
was made to include an assumption of imperfect CSI on the s = Z Gi.nhi (t —nTs) @)
modulator design and performance ([5]). Unfortunately, a n
very important issue of the imperfect symbol timing estimate whereTs is a symbol periodhi (t) is a modulation impulse
remains almost untouched. (signal oni -th antenna is generally allowed to have a specific
The precision of the symbol timing estimate is very im- impulseh; (t)), andg; , are coded channel symbols. All mod-
portant from the following points. Currently, most com- ulation impulses have a double-sided bandwiBgh In the
munication systems are packet oriented with relatively shortubiquitous case of the Root Raised Cosine (RRC) impulse
packets. All auxiliary information for the synchronization with roll-off « this is B, = (1 + «)/Ts. Channel symbols

purposes (preamble, training sequence) must be part of tthepend on the datd, € {d(i>}_'\"_d0*1 and the state of the mod-
packet. In order to keep system efficient, this auxiliary in- M, —1 =

|

formation should be only a small portion of the packet. The ulatorop € fo )}‘=°
quality of the symbol timing estimate (based on Cramer-Rao Gin = G (dn, on) 2)
lower bound) is proportional to the length of the measure-

ment (preamble length) and effective bandwidth of the signal. and the states itself obey the modulator state equation
Unfortunately both these quantities are the bottlenecks of the

communication system. The MIMO system seems to be even ont1 = 0 (th, on). ()
more vulnerable to the symbol timing error. This is because

I. INTRODUCTION

II. SYSTEM MODEL

We denoted = [...,dn,...]1",0i =[....Gin....]" andg =
rev. 1.2.0 (27.6.2002) (A1, ..., On ]



Transmitted signal propagates through the Rayleigh flatwhereu is the useful signald is the data vectof, § andw
fading channel. We assun¥ receive antennas on the re- are channel nuisance parameters. Veatoepresents AWGN

ceiver side. The received signal onth receive antenna is with complex envelope power spectrum densifyig2 The
channel is used (observed) over a finite pefiodParameters
Xm(t) = Um(t) + wm(t) (4) g andw are finite observatioft ergodi® while § parameters

are nonergodic for a finit€ observation.

Assume that the detector decision mefrits derived with
the perfect synchronization (perfect EStnowledge) as-
sumptiorl for the 0, & parameters. In the case of AWGN

Nt channelwith thev elimination, the particular form of the met-
Un() =) amis (t — m)) (5) ricis
i=1 p(x,d, 0,8 =[x —u(d. 6,8 (7
whereami are 1ID complex Gaussian channel transfer coef- The detector performs a search over the trial dbia order

ficients with zero mean and unftywariances? = 1. Each  to obtain the data estimates
propagation path introduces a delgy. These delays are as-

wherewm(t) is AWGN 1ID® over the receiver branches with
power spectral densit$,(f) = 2Ng. The useful signal on
them-th receiver branch is

sumed to be random IID with probability densipy (). We d =argminp(x,d, 8, §). (8)
denoteam = [am, ..., 8mn ]’ andtm = [tm1, ..., TN ] d

The receiver is assumed to haperfectestimates of the At the time of receiver real operation, estimateg are
coefficientsami = ami and imperfectestimates of delays  substitutednsteadof the actual CSI value §. The detector
Tmi = Tmi + €mi suffering byen; 1ID errors with probabil- then operates with the metric
ity density pc(¢). We also denot€m = [m1, ..., Tmn]T . o
andem = [emt. .- .. emn 1T - p(x,d, 0,8 =[x —u(d, 6, &) ©)

We consider @acketoriented communication system with
the data message frame of the lengtthannel symbols. This
roughly corresponds to the time duratibiis (neglecting the
end-tails of the outer modulation impulses). We will treat two p(x,d,0,8) =[x —udd, 6, &) (10)
cases of the channel dynamics. The first case islihwly
fading channel. Here we assume that the channel coefficientgvhere . A
ami, delaysrm; and estimation errofsm,; are constant within X' '=x+u(d, 8,8 —u(d,6,E). (11)
the packet of the length. Each frame transfer realization gxpression
is considered to be a function of an independent realization . 5 A
of these variables. The second case isfés# fading (rela- £(d,0,0,€, ) =u(d,0,&) —u(d,0,8) (12)
tively to the frame length) channel. We will understand this as .

a situation where the channel parames mi and conse- 1S additive to the received signal and it is also random be-
quently also the estimation erray; develop all their random- ~ €2use of the random nature of channel nuisance parameters

ness within the channel observation period corresponding toand data._Therefore itis callgndalf-nmse .
Self-noise can be conveniently used as a tool for approxi-

one frame. That means that they can be considered as realiza- : luati f the ch | nui i
tions of the finite observation period ergodic process. mate evaluation of the channeél nuisance parameter errors on

the detector performance. This approximation is based on the
idea of replacing the actual self-noise by an equivalent (first
I11. SELF-NOISE . . . -
. ) and second moments) white Gaussian noise. This replace-

First we develop a general approach to the self-noise evalment is then equivalent to the perfectly synchronized system
uation and then subsequently we apply the procedure on ougperating under newffectivelevel of AWGN with spectral
particular case of imperfect symbol timing synchronization. densityS, (f) = S,(f) + Zo whereZo is the white power
spectrum density approximation of the self-noise. The evalu-

instead the correct one(x, d, 0, ). The metrich(x, d, 8, §)
can be easily expressed as

A. General case ation of the self-noise stochastic properties (first and second

We will use a vector signal space representation for themoments) is performed over all channel parameters which are
brevity of the explanation. Assume the received signal ergodié with respect to the channel observation peribd

i.e.overd, , &.
X=u(d, 0,§ +w (6)
Swith sufficiently small error with probability close to one.

lIndependent and Identically Distributed. 6Channel State Information.

2'ThiS can be done without the loss of generality since the required signal-  7we can also systematically derive the metric correctly considering the
noise ratio can be easily set by choosing prager stochastic properties of the channel nuisance parameters. Details can be

3This means that the parameter estimate is performed once per frame.  found in [3]. However this approach is not followed here.
4|t does not necessarily mean that the two successive channel symbols 8That means that they develop their full randomness within the observation
would undergo independent states of the channel. period and their influence can be judged through their average properties.



Strictly speaking, the above stated approximation violatesC. Application on the imperfect symbol timing synchroniza-
three principles. tion case
1) The self-noise inot StriCtly Gaussian. However self- 1) Expression for the self-noiseNow we turn our atten-
noise becomes close to the Gaussian one according tQjon to the particular system described in Section II. We de-
the central limit theorem when the received signal is rjve the expression for the self-noise white power spectrum
a function of large number of independent ergodic pa- gpproximation. The self-noise on theth receiver input is

rameters. (trial channel symbols corresponding to the trial deiaare
2) The self-noise isot strictly white. Level of violation  denoted byg; )

of this principle very much depends on particular form

of the useful signall. In most practical cases, it can be m = um(t, d, am, Tm) — Um(t, d, am, Tm)
considered as acceptable quite comfortably. Ny

3) The self-noise isot generally independent with the = Zami Zqi,nAhi (€mi,t — tmi —nTs) (16)
useful signal model with respect to the ergddiaram- i—1 n

eters. The mutual dependence can of course affect the
performance evaluation especially when the self-noise WV
is dommant. . . Ahi (émis t — Tmi — NTs) =
In most practical situations, the above stated problems have Rt — e — T — R (f — 7o — e — T,
only a mild influence on the results obtained from the approx- = hi(t = wmi = nTs) = hi(t = 7mi — émi —NTs)
imation. (17)

here

B. Using self-noise to assess the performance of the detectof@n be interpreted as modulation impulse error. _
: . . 2) Self-noise power spectrum density for slowly fading
The self-noise demonstrates itself (in the sense of the above ) : :
L channel: We start with the evaluation of the total mean power
approximation) on the detector error performance throughtheOf the seli-noise. In the case of slowly fading channel. the
effective increase of the AWGN power spectrum density. The ‘ y 9 '

. . . . Lo only finite observation ergodic signal parameter is the data
increase is equivalent to the white spectrum approximation of tord and di h | < | Therefore th
the self-noise power spectrum density(9, 0). It is a func- vectord and corresponding channel symbglsTherefore the

. - . . only averaging we can perform on the self-noise power is the
tion of all finite observatiom nonergodic parameteés6. y 29ing P P

We assume that we know the detection eftperformance one overg. We assume stgtior_lary channell symbols. The av-
for theperfectlysynchronized casBs(No, 8). This character- erage power of the self-noise in theth receiver branch 18
istic is unavoidably conditioned by nonergodic paramefers

5 2
In order to obtain the performance in the imperfect synchro- P = AE [Ig“m(t)l ]
nization case we repladsy by Nj = No + Zo(®, 6)/2 to 1NN
obtain . = T ; Z:lamiaf;i/ Xg: Ry, [€1ne(ATmjji’, €mi, €mir)
where . a e whereAtm iir = tmi — mmi', Ry, [¢] = E[di¢d; 5] and
Z0(0.8) =E [Zo(d, £.£.0.0)0, e] . (14)
Ne(Atmi’, €mi, €mi’) =

Very often, the required measure of the performance is _ RS Arer — 0T
theaverageerror probability over large number of successive = Rpy, (ZATmiir — £Ts)
message transfers (frames). Then the imperfect synchroniza- —Rf(—Atmiii’ + €mi — £Ts)
tion error probability approximation using the self-noise is !

P Y app g ~ R, (—Atmir — émi — £Ts)

Pe(No) = Ee,é[Pé(No,(*,G)] +Rp, (—Atmjir — €mi + emi — €Ts).  (19)

= Ee,é [Pe (No + %zo(e, é), 0)} . (15) FunctionJRﬁW is energy correlation function of the modula-
tion impulses
Itis very important to notice that the averaging over the finite
observation nonergodic parameters must be accomplished on RE (1) = /oo hi(t 4 DR (O dL (20)
the overall error probability.. The averaging over the finite i’ —c0 :
observation ergodic parameters can be accomplished inside

the function of the error probability. The bandwidth of the self-noise (16) will be given by the

modulation impulse spectrum properties. Following our as-

9Whose influence is being considered only through the average. sumptions in the system model, the double-sided bandwidth
10or any other performance characteristic we might be interested in.
11Recollect thaSy, (f) = 2No. L2A0[()] = liMT o0 2 /17 () dt



of ¢m is Bn. Then the effective value power spectrum density phenomenon is a separate problem. We will consider a case
of thewhite self-noise approximation is of all zero delaysty,i = O for the rest of the paper in the
evaluation of the error performance. This corresponds to the
Zo(@m. T, €m) = Jﬂ. (21) assumption of aII.paths having almost equal delay or a pres-
Bn ence of the equalizer.
Error performance characteristics will be parametrized by
the ratio of the mean received signal energy per symbol to
noise spectral density per one receiver branch. Itis defined as

P

We can clearly see that the self-noise is heavily influenced
by the crosstalk of the signals from different transmitter an-
tennas. A potential Nyquist orthogonality of the modulation
impulses is dissolved by the random mutual time shifts.

2
3) Self-noise power spectrum density for fast fading chan- TsAVE Uu”‘(t)l ]

nel: Inthe case of relatively fast fading channel, we can make N_o
averaging over all channel parameters. Utilizing their prop- _ TscrgNt Ps 26
erties defined in the system model (zero meanaj) and - No (26)

Atm,ii = 0) we obtain

N where:ﬁS = AVE[|s (1)|?] is mean power in one transmitted
2 it

S 0] - signal branch which is assumed to invariant ofWe used
Peem = Ts 21 ; Rai LEIF.¢ (22) zero mean and 11D property @fy;.
=
where
A. Perfect CSI
= — E A i N . ) )
IF.¢ [Ze( i émi. €mi)] In the case of perfect CSI information knowledge on the re-
= 2Ry, (={Ty) ceiver side, theneanPEP* averaged over the channel states
_E [Rﬁ“ (emi — £Ts) — ﬁﬁ“ (—emi — ZTS)] ) in the stream of frames is given By(see [6])

(23)

_ a1"';|1Qminam

Nr
- 1
Po — — | | e N d 27
Assuming the Nyquis® modulation impulse and the case of 2 2w P(@m) dam @7)

symmetrical probability densitp. (¢) = pe(—¢) we can fur-

ther manipulate the expression into where Ag = §@ — §@ for two given data messages)
e 2o~ e - 10 29 Qo = 8 -
The white noise approximation is again and6
_ vH
P, Amin = arg mindet( Aq AqQ). (29)
Zro = éFhm (25) AG#0 ( )

¢ That is, AGmin is a codeword difference between the two

The fast fading channel, unlike the slow one, does not su e
codewords most vulnerable to the pairwise error.

fer from the crosstalk (in a statistical sense) between different
transmitter branches. However the potential Nyquist orthog-
onality of the modulation impulse is again dissolved by the - .
averaging oveem. B. Imperfect symbol timing estimate

Now we apply previously derived procedure using the self-

IV. PAIRWISE ERROR PROBABILITY noise approximation for the case of imperfect symbol timing

Now we apply the previously gained results for the self- estimate. We assume, = 0. For _aslowlyfadmg channel,
noise properties to evaluation of its influence on the Pairwise W€ g€t for mean (over all successive frames) PEP
Error Probability (PEP) of the space-time trellis coded modu- H
lation. Space-time trellis modulation design in the spirit of [6] , 1 N ,SNaszi Qi'fa',lacrﬂm
does not count with the possibility of nonzero unequal delays lf’z('emp) = 5= l_[ //e ( o )
Tmi Or estimation errors. These delays generally cause loss of v m=1
modulation impulse Nyquist orthogonality and substantially X P(@m) Pe (€m) damdem. (30)
damage space-time code performance especially the diversity

gain. The issue of the space-time code design resistant to this #Actually this is an exponential approximation of the PEP.
15with a minor modification reflecting our definition of parameters.
13129 h(t + €Tg)h* (1) dt = 8[¢] 16\e assume space-time code with full diversity.



Utilizing the 11D property ofa, andem we get

Poe
aHQ in&:
_ 1 Cmind1 0.1
. Zp(a1,0.€ t = * : =
F‘,z(lmp) _ 1 //e 8(N0+—°ilz—1)> %g imperfect symbol timing
e 27 N }
0.01 \}“\ —— 0. = 0.31Ts 1
N, \\ 7\iL
0.001 _ 0c =02Ts
x p(ar) pe(e1) dagder | (31) N
0.0001 A\'
This integral can be numerically evaluated for given probabil- \{\\"6 =0.1Ts-
ity densities ofay, anden,. 0.00001 AN\
perfect CSI ‘\\‘
V. EXAMPLE APPLICATION 1.-10° \ \\
As an example application, we evaluate the mean PEP \ ~
performance of the Tarokh [6] 2-space 4-state 4PSK code \

(Mg =4, My, = 4, Nt = Ny = 2) in the slowly fading

channel. The state and output equations of this simple code

are
Jin = Q(on), (32)
Qon = @(dn), (33)
ont1 = On (34)
where@(k) = exp(j2rk/Mg), dy € {0,1,..., Mg — 1},
on €1{0,1,..., M, —1}. In this particular case we easily find
that
Rg; [€] = 8[€ +i —i’l. (35)

The matrixQmin can be easily found to be

Qmin=|: g gi| (36)

Symbol timing errors are assumed to be 1ID Gaussian zero

mean random variables with variangg. Numerical results
for this code are shown on Figure 1.

VI. CONCLUSIONS

We have evaluated influence of the imperfect symbol tim-

Fig. 1. Mean pairwise error probability of the Tarokh 2-space
4-state 4PSK code in the slowly fading Rayleigh channel.
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