
Towards efficient support of context-
awareness in mobile systems

Nikos Houssos, Athanassia Alonistioti, Lazaros Merakos
Communication Networks Laboratory, Department of Informatics & Telecommunications,

University of Athens, 157 84, Athens, Greece,
 email:{nhoussos, nancy, merakos}@di.uoa.gr

Abstract: Future mobile communication systems beyond 3rd
generation (3G) are expected to signal the transition from
inflexible, vertical infrastructures to reconfigurable, horizontally
integrated networks that will incorporate a vast, ubiquitous
space of devices and radio technologies and will be able to
deliver to end-users a previously unimaginable range of valuable
services. A fundamental characteristic for systems and services
that operate in such a pervasive, heterogeneous environment is
context-awareness that enables dynamic adaptation according to
rapidly changing situational parameters. Challenging technical
issues, however, need to be solved on the route to realization of
this feature, including the optimal representation, placement,
replication and management of the corresponding context
information. This paper discusses some of these problems and
introduces data management schemes that facilitate the seamless
incorporation of re-usable situation-awareness functionality into
a middleware platform for beyond 3G service delivery and
management.

I. INTRODUCTION

The evolution of mobile networks to 3rd generation (3G) and
beyond is expected to bring about substantial changes to the way
telecommunication services are being created, delivered and
consumed. Technological advances in various fields (e.g.,
wireless communications, embedded systems, microelectronics,
distributed systems, middleware) have enabled the research
community to start shaping a vision of future mobile systems,
commonly termed as “4G” or “beyond 3G” [1][2], comprising
ubiquitous, heterogeneous infrastructures that will support the
delivery of a plethora of functionality-rich applications, offering
end-users valuable assistance with all kinds of their everyday
activities. In such a dynamic environment, services and systems
should have the capability of being aware of the constantly
changing context. In this paper, we introduce context
management schemes that have been employed to support the
successful incorporation of context-awareness features in a
middleware platform for beyond 3G service management and
provision [4].
The rest of this document is organized as follows: In Section 2
we present basic concepts regarding context-awareness and
discuss the significance of the latter in next generation mobile

service provision, as well as the fundamental requirements of a
context management system. In Section 3, we present the
environment where the proposed context management
mechanism has been integrated, namely a software platform for
provision of services over 3G mobile networks. Furthermore, we
elaborate on the introduced schemes, including elaboration on
the design choices made and their benefits and presentation of
the interactions through which context-awareness functionality
is accomplished in our system. The last section of this paper is
dedicated to summary and conclusions.

II. CONTEXT AWARENESS – CONCEPTS AND REQUIREMENTS

A. Context awareness – Basic concepts

Context can be defined as any information that can be used to
characterize the situation of the entity [5]. This information
includes data about the entity itself (the entity’s profile, which is
typically a small subset of the context data in its entirety).
Context awareness typically refers to the capability of “sensing”
and exploiting context information. Context-awareness is
closely related and bound with adaptability, which can be
defined as the ease with which an entity can be dynamically
modified. The dynamic modification (adaptation), which can be
considered as a transition to another state of the entity and could
include an alteration in the entity’s behavior, is performed
according to the current context. In this paper, while recognizing
their interdependence, we clearly distinguish between the
notions of context-awareness and adaptability; the former is
restricted to obtaining and possibly interpreting situational data,
while the latter concerns the ability to adapt (most probably
based on context information). In general, we consider context
collection as one of the tasks comprising any adaptation
procedure [7], and therefore context-awareness can be
considered a prerequisite of adaptability.
Considering the applicability of the above definitions in the field
of mobile service provision, one could identify several types of
entities that can be subject to adaptation and thus benefit from
context-awareness. These include end-user services, protocols at
various layers of the networking protocol stacks, control plane
mechanisms (e.g., handover) as well as content that is provided
to the mobile user.

B. Requirements and issues in context management

Situation-awareness requires context management mechanisms
that can make environmental data available to systems and
services that are able to utilize it in a useful way. In the present
section we identify the basic requirements from such a system
and certain issues that important in its design. These issues,
which we try to address in our system (see Section 3), are the
following:
• Level of abstraction. An extremely tedious task in the

development of situation-conscious applications is the
collection of context data [5] from a large variety of
sources, which may support diverse interfaces and
communication mechanisms, provide low-level, raw
information that is not useful without pre-processing and
belong to different administrative domains

• Consistency. Context data should be consistent and up-to-
date; otherwise inappropriate effects to context-sensitive
applications may be incurred.

• Efficiency. Context management should be efficient, so that
the corresponding functionality does not heavily burden
network and system resources (e.g., link capacity, memory).

• Context meta-data availability. Attributes of situational
information should be available to the system, in order that
improper utilization of this information is avoided [6] [16].
For example, location information may not be valid for an
application if a certain degree of accuracy is not guaranteed.

• Modularity and independence from other components.
Context management logic should be as far as possible
decoupled from other functions (e.g., context-based
adaptation intelligence [7]), so that re-usability, scalability
and extensibility are facilitated.

• Generality. A context management system should be
generic and dynamically extensible to handle a wide range
of context parameters with diverse encodings.

III. CONTEXT MANAGEMENT MECHANISMS FOR BEYOND 3G
SYSTEMS

A. Putting the context management system in context: Service
provision platform overview

The proposed context management scheme has been
incorporated in a distributed software platform (called RCSPP,
Reconfiguration Control and Service Provision Platform) for the
provision and management of value-added services over mobile
networks in 3G and beyond [4]. It is worth noting that an earlier
version of this platform has been developed in the frame of
project IST-10206 MOBIVAS. The platform aims to address
major issues regarding the deployment and management of
services offered to users of next generation mobile networks.
These applications are typically provided by third-party software
vendors, commonly termed Value-Added Service Providers
(VASPs) and can be delivered over different types of networks
in distinct administrative domains. A key innovation is the

RCSPP provides a single point of contact (a “portal” in a certain
sense) for mobile users, VASPs and network operators
The platform can be administered by a new actor in the mobile
provision value chain, the service platform operator [4].
The architecture of the platform is depicted in Figure 1.
The Reconfiguration Control and Service Provision Manager
(RCSPM) is the central platform component in that it co-
ordinates the entire service provision and management process.
The RCSPM is the place where the complete, authoritative copy
of the available context information pertaining to each user
session with the platform is maintained. It includes modules that
undertake on-line service deployment by VASPs, network
reconfiguration, maintenance of service- and user-related data in
suitable databases and repositories, as well as customized
service discovery, downloading and adaptation.
The Charging, Accounting and Billing (CAB) system [9] is
responsible for producing a single user bill for service access
and apportioning the resulting revenue between the involved
business players.
The End User Terminal Platform (EUT) [10] includes
functionality such as service downloading management, GUI
clients for service discovery and selection, capturing of event
notifications as well as service execution management. The EUT
contains a context repository, which is a subset of the primary
copy residing within the RCSPM. The EUT is able to track
context information that is communicated to the RCSPM.

 Figure 1. Architecture for flexible service provision in 3G and beyond networks

B. Context management in the RCSPP

1) Architectural overview
Context management in the RCSPP is based on the architectural
components depicted in Figure 2. It is worth noting that the
figure does not provide a complete picture of the RCSPM
architecture; a number of RCSPM components, interfaces and
repositories, which are not directly related to context
management operations, are not depicted. The main elements of
the architecture are the following:
1. The context sources, which includes every possible entity

from which context data can be retrieved, including low-
level sources (e.g., sensors) as well as higher-level
interfaces like OSA/Parlay gateways providing information

VASP
domain
VASP
domain

Application using
network functionality.

Application using
network functionality

Open interfaces (OSA/Parlay,JAIN SPA)

RCSPP

Reconfiguration Control/Service Provision Manager

Charging
Accounting
Billing

Application using
network functionality
Application using
network functionality

Service platform
client

(management
application)

Service platform interfaces

Service
management
platform
domain

Cellular DVB HANWLAN

Reconfigurable network infrastructure and capabilities

Network
operator
domain

VASP
domain
VASP
domain

Application using
network functionality.

Application using
network functionality

Open interfaces (OSA/Parlay,JAIN SPA)

RCSPP

Reconfiguration Control/Service Provision Manager

Charging
Accounting
Billing

Application using
network functionality
Application using
network functionality
Application using
network functionality
Application using
network functionality

Service platform
client

(management
application)

Service platform interfaces

Service
management
platform
domain

Cellular DVB HANWLAN

Reconfigurable network infrastructure and capabilities

Cellular DVB HANWLAN

Reconfigurable network infrastructure and capabilities

Network
operator
domain

concerning terminal capabilities as well as user location and
presence

2. Adaptable applications, whose context-awareness features
are supported by the RCSPP. Notably, the case of situation-
aware services that do not utilize the RCSPP for context
management is not precluded, e.g., direct interaction with
the context sources is perfectly valid. This has been taken
into account in our design in recognition of the fact that
occasionally ad-hoc context management performed from
within the application could be preferable for some reason
(e.g., a service needs limited context information, which can
be easily acquired with proprietary methods).

3. The EUT software residing in the mobile terminal.
4. A subset of the components and interfaces of the RCSPM,

which are described below:
The User Interaction Management Module (UIMM) is
responsible for providing the user with a highly
personalizable, context-aware mobile portal. It manages
user sessions with the RCSPP and co-ordinates user-related
operations like service discovery, selection, adaptation and
downloading as well as user profile management (user data
is persistently stored in an appropriate database). The
UIMM is the place where dynamically updatable user
session information is maintained. This information is
accessible to clients (e.g., applications) through generic
open APIs.
The VAS Registrar Module (VASREGM) is responsible for
interacting with 3rd party service providers. Through the
VASREGM the platform operator provides VASPs with a
way to automatically deploy their services. The VASP
compiles a profile, encoded in XML, of service attributes.
Based on these attributes, the VASREGM co-ordinates
service deployment, including various actions like
reconfiguration of the underlying infrastructure and
uploading of service components to the RCSPM. The
service provider is able to manage (add/delete/update) its
services via a convenient web interface.
The Network Registrar Module (NetREGM) enables
network operators to register their network with the
platform. The network providers feed into the NetREGM a
descriptor of their infrastructure, according to a common,
extensible network information model. Based on this
descriptor attributes, the NetREGM triggers all the required
(automatically carried out) actions like storage of
appropriate data in network profile database as well as
instant deployment of the available VAS that are compatible
with the newly registered network(s). In the same way as
the VASREGM, NetREGM functionality is remotely
accessible to network operators via a convenient web
interface.
The Reconfiguration Manager (RCM) undertakes network,
platform and service reconfigurability. The RCM is
responsible for executing the appropriate reconfiguration

actions on the underlying network during VAS management
procedures (registration/de-registration/update), triggered
by the VASP. The RCM also comprises a generic
adaptation module [7] that is used for supporting adaptation
through functions like intelligent profile matching.
The Packaging and Downloading Module (PDM) is
responsible for dynamically creating, in a context-aware
manner, a single downloadable application bundle.
The RCSPM also includes database managers that provide
interoperable access to the persistent service, user and
network profile repositories hosted by the platform. In
particular, the maintenance and management of network
profile information is vital to situation-awareness support,
since it enables the instant availability of data regarding the
constantly changing infrastructure that is close to the user as
he/she moves within beyond 3G, ubiquitous/ambient
computing environments.

 Figure 2. Context management architecture.

C. Context management design – critical choices

a) Context definition, placement and update
A fundamental question that a context management system

designer faces is to what type of entity (e.g., person, application,
terminal?) context information is bound. Related issues concern:
• The location and distribution of context data, including

synchronization techniques in case replication is employed.
• The retrieval of context information from its original

sources.
In the rest of this section we describe how we addressed the
above issues in our mechanism.
Regarding the first question, we chose to relate context
information not the user, an application or their combination, but
to a user session with the RCSPP. Such a session begins with
security procedures (e.g., mutual authentication of user and
platform provider) and includes service discovery, selection,
downloading and execution by the mobile user. All the above
procedures are customized to context. It is possible for a user to
concurrently execute multiple services from one or more
terminals and over different access networks.
We did not choose to bind context solely with applications, since
in that case the characteristics of the user situation, which are

Context sources

Context
Repository

User Session State

UIMM logic
(including

context retrieval)

Adapters

UIMM

Main logic (including
Adaptation Engine)

Generic Adaptation Module

Algorithm
repository

Reconfiguration Manager

Packaging and
Downloading Module

Reconfiguration Control & Service
Provision Manager (RCSPM)

User
Database
Manager

VAS Registrar
Module

Network
Registrar Module

Network
Database
Manager

Service
Database
Manager

Context
Repository

User Session State

EUT logic
(including

context retrieval
and

management)

Adapters

Mobile Terminal

Adaptable applicationsContext sourcesContext sources

Context
Repository

User Session State

UIMM logic
(including

context retrieval)

Adapters

UIMM

Main logic (including
Adaptation Engine)

Generic Adaptation Module

Algorithm
repository

Reconfiguration Manager

Packaging and
Downloading Module

Reconfiguration Control & Service
Provision Manager (RCSPM)

User
Database
Manager

User
Database
Manager

VAS Registrar
Module

Network
Registrar Module

Network
Database
Manager

Network
Database
Manager

Service
Database
Manager

Service
Database
Manager

Context
Repository

User Session State

EUT logic
(including

context retrieval
and

management)

Adapters

Mobile Terminal

Context
Repository

User Session State

EUT logic
(including

context retrieval
and

management)

Adapters

Mobile Terminal

Adaptable applications

usually valuable for adaptation, would be ignored. A combination
of user and application (an obviously good choice when the
context management logic resides within the application) would
not allow the re-use of context management features by multiple
services and would create heavy overlapping and duplication of
context data. Finally, the end-user himself is a serious candidate;
however, multiple user sessions from different contexts like
different terminals, locations (note that non-interactive services
can continue to be executed without the user presence) and
connectivity networks are possible.
As far as the location, distribution and update of context data is
concerned, our approach was to maintain only a single complete
and authoritative copy of the environmental information
concerning each user session; this copy is kept in the internal of
the RCSPM and in particular within the UIMM. The context
information maintained by the UIMM is accessible to RCSPP
components and external services through generic, open APIs. It
is worth noting that this is not persistent storage; user session
context data is assembled as a unit from the context sources (e.g.,
databases, sensors, network infrastructures) only for the lifetime
of a user session (persistence can of course be useful for fault
tolerance and recovery purposes, e.g., through periodic
“dumping” or the UIMM non-persistent context repository but
this feature has not yet been implemented in our prototype). The
choice to place the authoritative copy of context data on the
server-side (unlike other approaches [11] that are oriented
towards terminal devices as hosts of the “master” copy of
environmental information) has been made for the following
reasons:
• The majority of context sources are more efficiently

accessible from the RCSPM than by the terminal. Notably, a
large part of context data is immediately available inside the
RCSPM (user, service and network infrastructure profiles),
while other information (e.g., terminal hardware capabilities)
is easily retrievable from fixed network servers. Transferring
and keeping all this data to the terminal would be largely
inefficient.

• Placing the context repository on the server-side makes it
available (via open interfaces) to server-side parts of
applications, which usually contain the core of the service
business logic. If context was kept in the terminal, this open
access would be impractical due to the limited capacity of
the radio link.

• In contrast with the typically restricted capabilities of mobile
terminals and the limitations of the wireless links, on the
server-side there are typically plenty of computational and
communication resources for easily accomplishing the tasks
of retrieving and processing (e.g., dynamically enrich
through inference techniques) situational data.

The UIMM is responsible for retrieving context from all possible
sources. The latter mainly include persistent repositories (like the
databases maintained within the RCSPM), as well as (registered
with the RCSPP) network infrastructures accessible through open
interfaces (e.g., OSA/Parlay, JAIN SPA). The UIMM retrieves
data from the latter not only in a “pull” approach, but also is able
to receive event notifications form the corresponding open API

gateways. The contact information of the latter (e.g., network
addresses, access terms of use) is included in the network profile
information provided by the network operator at the time of
registration of the corresponding network with the RCSPP.
An interesting issue relates to the fact the UIMM constantly
attempts to collect every piece of user session context
information that can be possibly retrieved. This “greedy”
approach results to faster response times in context retrieval
requests made towards the UIMM and simplifies management of
situational data at the UIMM, coming at the price of an one-off
overhead at the beginning of the session when the bulk of
available context is retrieved. Alternative schemes and their
implications are subject to ongoing work.
In certain cases, the retrieval of some parts of the user session
context data is feasible only from the EUT (or more efficiently
performed that way). In such a case, the EUT retrieves the data,
keeps it in its local context repository (which has the same form
as the one kept in the UIMM, but contains only a subset of the
information) and updates the UIMM with it. If the update is
valid, the UIMM commits it and acknowledges it to the EUT,
which keeps it locally; in case that the UIMM has a more
accurate or more recent copy of this information (e.g., originating
from another context source), the EUT discards it from its local
cache and optionally retrieves from the RCSPM the up-to-date
copy of this specific parameter.

b) Context representation
In our implementation (that was performed in Java), we defined
generic, data type-independent containers for profiles. The class
diagram of Figure 3 depicts the common internal representation
of profiles that we have used. All the context information
reaching the UIMM is transformed to this form. For that reason,
appropriate adapters [12] can be dynamically “plugged-in” our
system. In our current implementation we have incorporated
adapters for XML-encoded RDF [13] (using the open source
DELI and JENA tools [14][15]), plain XML as well as relational
database data. The Composite design pattern [12] has been
applied for profile representation. We have defined the classes
ProfileAttribute (for single attributes) and Profile (for compound
profiles). Both classes inherit from the ProfileElement abstract
base class, while Profile objects also aggregate ProfileElement
objects. ProfileElement objects are identified their name and fully
qualified type (e.g., gr.uoa.di.cnl.TerminalCapabilities) and
essentially act as generic containers of arbitrary data structures
that can be retrieved and iterated (in case of compound profiles)
using generic logic. Thus, introducing new types of profiles and
profile parameters does not require the creation of new classes
(e.g., subclassing) and can be performed at runtime, without any
changes in the profile processing code of the adaptation engine.
Each ProfileElement contains a single reserved attribute called
“metadata”. This is a generic container (thus, it is itself a
ProfileElement) that integrates all the available metadata related
to a specific context profile. It is worth stressing that this
information does not pertain to the entity represented by the
profile, but to the quality of the profile data [16]. Apparently, the
set of applicable types of metadata depends on the profile type
may be bound to different types of metadata elements (e.g.,

attributes like estimated accuracy and various parameters that
concern when, where and by whom this profile. However, we
have identified certain parameters (e.g., time of profile element
retrieval, administrative domain from which the profile element
was acquired) that apply to a wide range of context data and have
been employed for all the context information types that we used
in our prototype.
An important capability that is made possible by the design of
Figure 3 is the processing of context information in the course of
making intelligent context-aware adaptation decisions by
algorithms that are specific to the application/service that will be
affected by this decision. Note that different services may require
different algorithms for matching service requirements with
context parameters. As a simple example one could consider a
context parameter that is expressed in terms of dimension (e.g.,
terminal screen resolution). Two services could have the same
value in their profile as a dimension requirement, but the
algorithm for matching it with the corresponding context value
could differ (e.g., one algorithm would require the currently
supported screen resolution of the terminal to be just greater than
or equal to the value in the service profile, while another one
could additionally require that the width/height ratio would be
equal to a specific quotient). Thus, in the service profile, each
context parameter is annotated with a descriptor of the
corresponding algorithm. In the adaptation engine internal
representation of the service profiles these descriptors have the
form of ComparatorDescriptor objects that correspond to the
Comparator (Matcher or Adaptor) objects that encapsulate the
appropriate algorithm. An important feature is that these
algorithms can be specified and loaded at run-time by third-
parties (e.g., VASPs) that are this way able to tailor the context-
awareness decisions behavior of the system to their needs (e.g., to
the requirements of a particular service), without modifying the
system itself. More details on these mechanisms are beyond the
scope of the present paper and can be found in [7].

Figure 3. Context profile representation.

IV. SUMMARY – CONCLUSIONS

Support for context-aware service provision in the envisioned
heterogeneous and dynamic beyond 3G environments is a very
challenging task. This paper has proposed context management
mechanisms that constitute a basis for the incorporation of
situation-aware functionality in mobile systems and applications.
Key issues for the design of our context retrieval and processing
system have been identified, such as architectural choices,
generic profile representations as well as flexible object-oriented
design that enables run-time extensibility. The design and
implementation of the proposed scheme is greatly facilitated by
the adoption of the service provision model that is based on a
mediating middleware platform for service delivery and
management [4].

V. REFERENCES

[1] A. Jamalipour, S. Tekinay (eds.), “Fourth generation wireless networks
and interconnecting standards”, Special Issue of IEEE Personal
Communications Magazine, October 2001.

[2] J. Pereira, “Beyond third generation”, Wireless Personal Mobile
Communications (WPMC) 1999, September 22, 1999, Amsterdam, The
Netherlands.

[3] M. Dillinger, N. Alonistioti, K. Madani, “Software Defined Radio:
Architectures, Systems and Functions”, John Wiley & Sons, Jun 2003.

[4] A. Alonistioti, N. Houssos, “The need for network reconfigurability
management”, in [3].

[5] A K. Dey, “Providing Architectural Support for Building Context-Aware
Applications”, PhD thesis, College of Computing, Georgia Institute of
Technology, December 2000.

[6] E. Mohyeldin, M. Fahrmair, Christian Salzmann, “Communication
Profiles”, in [3].

[7] N. Houssos, S. Pantazis, A. Alonistioti, “Generic adaptation mechanism
for the support of context-aware service provision in 3G networks”, 4th
IEEE MWCN 2002, Stockholm, Sweden, 9-11 September 2002.

[8] UMTS Forum Report No. 9, http://www.umts-forum.org/.
[9] M. Koutsopoulou, A. Kaloxylos, A. Alonistioti, “Charging, Accounting

and Billing as a Sophisticated and Reconfigurable Discrete Service for
next Generation Mobile Networks”, Fall VTC2002, Vancouver, Canada,
September 2002.

[10] O. Fouial. K. A. Fadel, I. Demeure, “Adaptive Service Provision in
Mobile Computing Environments”, 4th IEEE MWCN 2002, Stockholm,
Sweden, 9-11 September 2002.

[11] S. Riche, G. Brebner, “Storing and Accessing User Context”, Mobile Data
Management (MDM) 2003, LNCS 2574, pp.1-12, January 2003.

[12] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design
Patterns: Elements of Reusable Object Oriented Software", Addison
Wesley Longman, Inc., 1995.

[13] RDF: Resource Description Framework, http://www.w3.org/RDF/.
[14] M. Butler, “DELI: A DElivery context LIbrary for CC/PP and UAProf”,

HP Labs Technical Report, HPL-2001-260.
[15] The jena semantic web toolkit, http://www.hpl.hp.com/semweb/jena-

top.html.
[16] K. Henricksen, J. Indulska, A. Rakotonirainy, “Modeling Context

Information in Pervasive Computing Systems”, Pervasive 2002, LNCS
2414, pp.167-180.

Adaptor

adaptElement()

<<Interface>>

Matcher

matchElements()

<<Interface>>

ConcreteMatcher1

ConcreteMatcher2

ConcreteAdaptor1

ConcreteAdaptor2

ProfileAttribute

Comparator
<<Interface>>

ComparatorDescriptor

getReference()
isReferenceAvailable()
getType()

getClassName()
getCodebase()

Profile

getIterator()

ProfileElement

match(matchElement : Profi leElement) : boolean
adapt(adaptorElement : Profi leElement) : Profi leElement

match(matchElement : ProfileElement, matcher : Matcher) : boolean
adapt(adaptorElement : ProfileElement, adaptor : Adaptor) : ProfileElement

0..*

1..*

0..*

1..*
1

1

1

m e tadata

1

