
AN ARCHITECTURE EN,4BLING BLUETOOTHTM/JINITM INTEROPERABILITY

On Shun Chau, Pan Hui, Victor O.K. Li

Department of Electrial and Electronic Engineering, The University of Hong Kong, PokfiAam Rd, Hong Kong, China
Eimail: (h0118759, panhui, vli)@eee.hku.hk

Abstract - Service Discovery Protocols allow clients to
discover services without actual knowledge of the locations
or characteristics of the services. Jini' and 13luetooth SDP are
two common service discovery protocols. They may meet
each other in many environments. But there is still no
general architecture to bring them together. In this paper, we
introduce an architecture for Bluetooth client to discover Jini
services. We introduce the JINITM Profile for Bluetooth,
which runs in three modes of operations, namely, Surrogate,
Bridge, and Client. We describe the implementation of a
JiniBluetooth Surrogate as well as the Bridge which acts as
a proxy and allows a multihop connection to a Jini network.
To enable reliable end to end conriection, we also
incorporate session management into our design.

Keywords - Bluetooth, Bluetooth Service Discovery
Protocol (SDP), Jini, XML

I. INTRODUCTION

Nowadays, while there are still some debates on whether
Bluetooth [l-31 technology will be successful in the future,
many Bluetooth products have already entered the consumer
market. We can easily find Bluetooth headsets, PDAs
embedded with Bluetooth modules or CF cards. Due to its
low price and low power consumption, some people believe
that Bluetooth will be the future transmission medium
between mobile devices such as PocketPC or PDA.
Bluetooth, if viewed as a transmission medium, will play an
important role for realizing pervasive computing in the
future. Jini[4-6], built over a TCP/IIP network, is a
middleware technology that provides the Eicilities for service
discovery. The service provided may be a toaster, Mp3
player, etc. Jini allows service to be advertised in a TCP/IP
network. Services provided are recorded in a well-known
entity called Lookup Service Register (LUS) such that
clients can find available services there. This article will
study the interoperability of Bluetooth and Jini.

Jinim And BluetoothTM are trademarks of Sun
Microsystems and Bluetooth SIG respectively. To sim lify
the notation, in the rest of the paper we will use JiniT'and
Jini, and BluetoothTM and Bluetooth interchangeably.

The rest of the paper is organized as follows: First we
introduce Bluetooth Technology, and then we describe Jini
middleware technology. Section IV compares the Bluetooth
Service Discovery Protocol (SDP) and Jini Service Lookup
Protocol. Section V studies the current strategies for Jini and
Bluetooth interoperability and discusses its limitation.
Section VI introduces our system architecture. Section VI1
shows how Bluetooth clients look up Jini Service. Section
VI11 talks about route discovery and session management.
Section IX is the conclusion and description of future work.

11. BLUETOOTH SYSTEM ARCHITECTURE

Bluetooth is a short range wireless technology developed by
the Bluetooth Special Interest Group (SIC). It operates in the
unlicensed Industrial, Scientific and Medical (ISM) band,
which is centred around 2.45 GHz. It is originally designed
for the replacement of cable. Bluetooth uses fast (1600
hops/sec) frequency hopping (FH) technique with 79
channels centered at (2,402 + k)MHz where K = 0 , 1 , 2 ...
78. FH technique is employed for the sharing of the
transmission medium and for security. The maximum
asynchronous data rate in Bluetooth version 1.1 is 732
kbits/s. Each Bluetooth time slot lasts for 625ps.

Bluetooth devices can operate in one of two modes: Master
or Slave mode. Bluetooth devices are organized into
Piconets. In a particular Piconet, one Bluetooth device acts
as master, and the others as slaves. It is the Master that
schedules the data traffic over the Piconet. A collection of
Slave devices operating with one common Master is referred
to as a Piconet. The maximum allowable number of active
Bluetooth devices which may actively participate in a
particular Piconet is 8 (1 Master and 7 Slaves). Each active
member is indicated by a 3-bit number called Active
Member address (AM-ADDR). A slave can send packets to
the master only if the master has sent it a data packet. Thus,
the slaves cannot send packets to each other directly. Like
TCP and UDP in the TCP/IP protocol, there are two kinds of
link in Bluetooth communication. They are Synchronous
Connection-oriented (SCO) and Asynchronous
connectionless (ACL) links. An SCO link can be used for
transmission of voice packets which are never retransmitted.
An ACL link is used for transmitting data packets. An ACL
link supports broadcast and if there is a packet loss (may be
due to collision), an ACL packet can be retransmitted.

0-7803-8523-3/04/$20.00 02004 IEEE.
301 3

A Scatternet can be formed by linlung several Piconets
together in an ad hoc fashion to accomodate more Bluetooth
devices. The discussion of scatternet is out of the scope of
this article but our proposed architecture will assume a
scatternet environment.

Bluetooth implements Service Discovery Protocol (SDP).
The service provided by a bluetooth device is called a
profile. Bluetooth v l . 1 standardizes serveral profiles[7]. In
the upcoming v1.2 more profiles will be standardized. The
service registers itself to the SDP Database as a service
record. A service record is represented by attribute-value
pairs. Here are some important attributes for a service.

ServiceRecordHandle (0x0000) -- acts as a primary key to
identify a service in the SDP server.

ServiceID (0x0003) -- UUID that uniquely identifies a
service.

ProtocolDescriptorList(OxOOO4) -- lists the protocol required
to support the profile.

The service request procedure is done by a request-respond
scheme, through SDP Protocol Data Units (PDU). The
Bluetooth protocol stack is illustrated in Fig. 1.

I I

I

Fae4dtGI I I
Fig. 1. The Bluetooth protocol stack

111. JINI ARCHITECTURE

Java Intelligent Network Infiasbucture (Jini) is a middleware
technology built on the TCP/IP layer to implement a service
discovery protocol.

The service provider may be a computer or a hardware
device with a controllable interface. As the name "Jini"
implies, it is implemented in Java programming Language. If
the device does not have a Java Programmable interface, the
solution is to add another middleware called COBRA to
bridge the two languages.

The core component of the Jini Service Lookup Protocol is
the Lookup Service Register (LUS). The service provider
advertises its existence and availiblity by registering itself to
an LUS. Normally the LUS is the first component to be up in
a Jini community and stays in the Jini community rather
statically. The LUS advertises its existence by sending out
UDP packets with a well-known multicast address. The
interested entities will listen for the packets to determine the

existence of the LUS. Then the client will communicate with
the LUS to search for the services using an unicast discovery
protocol. When a service provider do query the LUS, the
LUS returns a registrar object (an object which acts as a
proxy for the service provider). A copy of the service object
will be placed at the LUS.

When a client wants to search for a service, it first creates a
ServiceTemplate. Service templates are used by both service
providers and the clients for service request matching. It
accepts three important parameters.

ServiceTemplate(Service1D serviceID,
java.lang.Class[] serviceTypes, Entr$l attrSetTemplates)

ServiceID: An UUID which uniquely identifies the service.

Class[]: An array of "Class" objects that defines the Class
type of the service provider.

Entry[]: An Entry object will conceptually represent the
attributes of the service in an object format. The type of the
object passed can be regarded as the type of attribute of the
service, and the value parameters that follow the Object type
are the attribute values.

If there is service match, the client will get copies of
matched service object fiom the LUS. The client can
comrriunicate with the service provider through the Remote
Method Invocation (M I) and the service provider will tell
the client where to download the service implementation
codebase.

IV. COMPARISON OF BLUETOOTH SDP AND JINI
DISCOVERY PROTOCOL

Jini and Bluetooth adopt very different architectures in
storing service records. In Jini all of the service records to be
discovered are stored in a centralized database called LUS,
though it is possible to have more than one LUS in a Jini
community. In Bluetooth, the SDP database is distributed,
and all the service records of each device are located in its
own local SDP database. It is distributed in the sense that if a
service want to find all the services available in range it has
to perform searching in all the SDP databases of all
Bluetooth devices in range.

In order to connect to a service, the client has to connect to
the service provider by page inquiry and page scan. After
creating an L2CAP layer, the client browses or searches for
the services available. From the architecture's point of view,
the service lookup protocol of Jini is a bit more complex
than Bluetooth SDP. However, Bluetooth is Point-to-Point
communication, and service discovery is per device. In
Bluetooth, connection to the service provider is made before
service discovery, whilst in Jini, the procedure is reversed.

V. CURRENT JN/BLUETOOTH INTEROPERABILITY

Jini operates in a TCP/IP network. A solution for integrating
Bluetooth and Jini is to utilize the LAN profile or PAN

301 4

profile to create a TCP/IP Layer over a Bduetooth network
through a Bluetooth access point. One of ithe critical points
for Bluetooth devices to participate in a Jini community is
that the access point (AP) should be able to route multicast
packets in and out of the Bluetooth network (enabling
multicast discovery protocol). Though J mi also supports
unicast disocvery protocol for the LUS, it would be rather
meaningless for pervasive computing if ILUS’s IP address
has to be known in advance. (For Unicast Discovery
Protocol, the address of the LUS has to be known in
advance).

The specification of the Jini surrogate architecture (vl .0)[8]
is not released until recently. This architecture is a
framework that allows resource-constrained devices to
participate in a Jini community through a surrogate. The
surrogate host communicates with the device through the
private interconnect protocol. One of the important
requirements of the interconnect protocol is that it must be
able to tell whether the surrogate host and devices are
connected or not. The Jini surrogate specifications only give
a general architecture. It does not give implementation
details for Jini/Bluetooth interoperability and its services are
only limited to one hop. There is some work on
JiniBluetooth interoperability [9]. But again the range of the
Bluetooth client to the Jini surrogate is only limited to one
hop. Our goal is to develop an architecture which enables
Bluetooth devices to look for Jini services up to multiple
hops away.

Serveral factors affect our architecture design:

1. The limit on the range of Bluetooth radio:

Life would be easy if every Bluetooth device is just one hop
from the access point. One of the design features of the
Bluetooth device is power conservation. To limit power
consumption, the power of the bluetooth radio is rather
small. Currently most of the Bluetooth modules use Class 3
radio (ImW). The maximum range is 10m, but due to
interference, the typical range of the Class 3 radio is just 5-
6m. In the case of the PAN or LAN profiles, if the access
point is not within range of the client device, multicast
routing of packets has to be peformed over multiple hops.
This will complicate the system even though we have not
taken into account the possible leaving of intermediate
nodes. In this article, we will propose a bridge architecture
for routing of Jini service requests in a Bluetooth network.

2. The ad hoc characteristics of Bluetooth inetwork

In a Bluetooth network, it is assumed that all the nodes have
a rather high mobility; they can fieely join or leave
arbitrarily. Our proposed architecture shoiuld be able to deal
with possible changes of the Bluetooth network topology.

3. The constraint of Bluetooth device

Bluetooth is rather lightweight and simple, it is designed for
cable replacement and for embedded systems. Likewise, any

protocol built on the Bluetooth network should also have the
same quality.

VI. SYSTEM ARCHITECTURE

TCP/IP Network

Fig. 2. Architecture Overview

The proposed architecture is presented in Fig. 2. There is a
Jini community deployed on the TCP/IP network. In order
for a Bluetooth device (client) to use Jini service, it has to
connect to the Surrogate. If the Surrogate is not within range,
the client cannot connect to it directly. Instead, a bridge
device will be used to route the service request to the
Surrogate. The following will discuss how the system can be
implemented, accounting for the limitations described above.

In our proposed architecture, we build a new profile for
Bluetooth called the Jinim profile. This profile runs in three
modes of operations, namely the Surrogate, Bridge, and
Client. Fig. 3 shows the Bluetooth protocol stacks needed for
Jini Service Lookup.

Fig. 3. The Bluetooth Protocol Stack for Jini Service Lookup

The JiniTM profile defines the architectural components and
necessary procedures cooperating with the Jini Surrogate
architecture to allow a client in a Bluetooth network to
perform Jini service lookup.

Surrogate performs session management and parses Jini
service lookup requests fiom an XML document sent by a
device in a Bluetooth network. The Client initiates Jini
service lookup requests. The request description is put into
an XML file and transmitted through an OBEX-FTP profile.

301 5

The Bridge routes such Jini service lookup requests in a
Bluetooth network to enable multihop service discovery.

Surrogate (For Access to the Jini network)

The architecture of the Surrogate is shown in Fig. 4. It
consists of two large modules, one interfacing with the
Bluetooth network and the other the Jini community. The
Surrogate can be decomposed into serveral modules. (The
term “Surrogate” in this article is defined as Bluetooth Jini
Profile--Surrogate operation mode. This definition is
different fiom that of SUNTM; however our proposed
“Surrogate” includes the majority of the functions in
SUNTM’s definition of surrogate)

SelviceTemplate -
Translator (OEEXclient)

I

2: Service Connection From BridgelClient

J ini/Java

Jini Client T
Bluetooth Module

F E
Connection

Handler

Fig. 4. The internal structure of a Surrogate with Jini Client
included

1. Surrogate SDP Database:

The Surrogate’s SDP Database has a record Jini Profile with
“Surrogate” as the mode of operation. It allows its surrogate
service to be discovered.

2. Jini Profile Connection Handler:

It receives connection requests fiom Bridge or Client and
performs session management. It can also monitor the client
connection status.

3. XML document receiver (OBEX-Client)

It acts as the client for OBEX-Client for the XML document.
When the file is fully received, the file is stored in a
temporary place. OBEX, the Object Exchange Profile, is a
protocol allowing object push, pull and initialization of the
Object Exchange Session. It forms the basis for other
profiles such as the FTP profile which allows flat file
transfer over the Bluetooth network. We will use OBEX-

FTP for the transmission of XML documents in our
proposed architecture.

4. XML-ServiceTemplate Translator

Converts XML data to Jini ServiceTemplate (a Java object
that represent a service query). The translation process is
written in Java Programming language.

5 . Jini Client

Uses the ServiceTemplate constructed by XML-
ServiceTemplate Translator to query for service in LUS.

In this Surrogate design, we assume that every Bluetooth
device in our proposed architecture supports OBEX-File
FTP profile for the transfer of XML file. The advantage of
using XML document to represent Jini service request is that
XML document is platform independent and the
intermediate bridges that route the service requests need not
understand its contents, and it is only the Surrogate’s job to
perform the “XML to Jini service request” translation.

Bridge (An intermediate to the Surrogate)

The main task of Bridge is to route the Jini service requests
to the Surrogate. The Bridge will not register itself to the
local SDP database if it cannot find a Bridge or Surrogate
within range. Once the Bridge registers itself to the database,
there would be a path for the Jini service messages to get to
the Surrogate for further processing. The Bridge is divided
into three different modules illustrated in Fig. 5

1. Surrogate Lookup Module:

The Surrogate Lookup Module performs the job of searching
possible paths from the Bridge to the Surrogate. Decision on
routing is based on a shortest path algorithm. When a bridge
first starts up, it performs the following actions

(1) Performs SDP search for all devices within radio range
for Jini profile.

(2) For any devices running Surrogate or Bridge mode found
in range (neighbors), creates a data structure neighbor(*).
Gets the required data (neighbor-address, role and
distance-to-Surrogate) fiom its neighbors. At
initialisation, last-refi-esh-time is set to current system
time. The data structure is implemented as a list. The
Bridge will periodically send ping packets to neighbors
and listen to replies for their existence. If
(current-systemtime - last-refreshtime) is larger than
certain timeout, the neighbor entry for that neighbor will
be removed fiom the list.

Note: neighbor denotes a neighboring device running
Surrogate or Bridge Mode, neighbor denotes the data
structure representing a neighbor.
struct{

bd-ad& neighbor-address; // 48 b i t hardware address of the
neighbor

301 6

int role // 0 if the neighbor is Surrogate, 1 for Bridge

int distance-to-Surrogate; // number of hops to Surrogate

Time last-refiresh-time; // last time the neighbor responds with a
“ping”

} neighbor;

(3) If the number of neighbors found (we call it neighbor) is
larger than 0, the Bridge registers its service to the local SDP
Database, scans the list generated in (1)1, finds the least
distanceto-Surrogate, sets its “distance to Surrogate” to
distance-to-Surrogate + 1. If there is no neighbor found,
terminates the action. Then restarts fkom (1 :) periodically.

The routing decision is that the Bridge will route the first
incoming request of a session to the neighbor with the
smallest value of distance-to-Surrogate. For later messages,
the path chosen will follow the first routing decision made
and the Session Manager described below v d l manage it.

2. Session Manager:

In our proposed architecture, the Surrogate is a well-known
entity as it is configured to be discoverable by SDP.
However, the Client is not configured to be discoverable by
other entities in the SDP database. Also we use request-
response scheme for Client-Surrogate communication
(shown in Fig. 6) . In order to allow the response messages to
be routed back to the Client, and allow the path session
condition along the path to be monitored, we introduce
session management along the Bridges:

When a packet with a new route creates a data structure with
format [fiomneighbor-bdaddr ; session-ID ;
to-neighborbdaddr ; last renewal time 3 (*).

(a) horn-neigbourbdaddr is the 48-bit hardware
address of the neighbor which sends the request.

(b) toneighbor-bd-addr is the ha1 dware address of
the neighbor which the request is routed to.

(c) session-ID, is a unique id created by the client.
The session-ID’S format can be the Client’s
timestamp appended with the Client’s hardware
address. It is used to uniquely identify a session.
The session-ID is generated by the Client and is
associated with each Client’s request.

(d) last-renewaltime represents the time at which a
message with a session-ID pass through this node.

The procedure is repeated until the request is routed to a
Surrogate. It allows the request and response messages to
flow along the same path.

3. OBEX-FTP module:

The OBEX-FTP module utilizes the OBEX-FTP profile. It is
used for routing Jini service description files (in XML
format). The routing of the file uses the PUSH command for

file transfer. When the Bridge receives files, it acts as the
Server. When forwarding it acts as the Client.

Bridge’s Internal
Structure

Fig. 5. The internal structure of a Bridge

Client

1. The Client performs SDP search for Jini Profile on all the
Bluetooth devices within range.

2. For each Surrogate or Bridge found, records its ID on the
list of neighbors.

3. Connects to the neighbor with the smallest
distanceto-Surrogate value.

4. Starts to send the XML service description document if a
successful response is received.

VII. HOW BLUETOOTH CLIENT LOOKS UP JINI
SERVICES

Assumptions:
(a) The Client will not leave during the process. If the

Client leaves, the handoff issues should be considered
and this is now not yet incorporated into OUT design.

(b) The routing path has already been set up.
(c) The Jini LUS has already been set up
(d) The XML document describing the service is valid.
(e) All the entities in the Bluetooth network in direct

communication are connected after the page inquiry and
page scan procedure.

Look up procedure:

(1) The client searches its neighbors for any Jini profile in
Bridge mode or Surrogate mode.

(2) The Bridge’s SDP replies with ServiceRecordHandles.

(3) Knowing that there is Bridge Service (by doing SDP
service search when the Bridge is up), the client connects to
the service.

(4) The Bridge knows that there is a Surrogate in vincinity,
and requests for connection.

(5) The Surrogate gets the request, and creates a session

301 7

(6) Session creation is successful, the Surrogate replies with
a success message.

(7) The Bridge returns a message signalling success to the
client, creating a session.

(8) The client starts to send the XML service description
document (service.xm1) through OBEX-FTP profile.

(9) According to the session setup, the Bridge routes the file
to the Surrogate.

(1 0) The Surrogate performs XML-Jini ServiceTemplate
translation.

(1 1) The Surrogate performs Jini service look up at the LUS.

It is optional that the Surrogate first performs service search
in advance and stores the service objects in its data structure.
ServiceTemplate matching may be performed locally in the
Surrogate if the Surrogate itself has a module which
performs ServiceTemplate matching. In this case, procedure
(1 1) mentioned above can be omitted.

The actual application is not limited to one intermediate
bridge, as in this case. The Bridge will choose the shortest
Path to route to the
Surrogate.

Fig. 6. Chronological Sequence of the Service Look up
Procedure

VIII. ROUTE DISCOVERY AND SESSION
MANAGEMENT

The route from the Client to the Surrogate may pass through
several bridges. These bridges may be highly mobile and
hence the wireless network connection may break easily. To
enable reliable service and to minimize retransmissions, we
introduce a session management protocol [lo] into our
design. A session is a reliable message exchange, conducted
between any two communication applications. The design of
the SM protocol is based on the Open System
Interconnection (OSI) Session layer protocol. The Session
layer activity and checkpointing procedure are incorporated
into the protocol. If the transport and wireless network

connections are dropped, then the SM entity will re-establish
the transport as well as the wireless network connection.
Data transfer will resume at the point of disruption.

IX. CONCLUSION AND FUTURE WORK

This paper proposes an architecture for the a Bluetooth client
to look up Jini services. We describe the implementation
details of the Jini/Bluetooth Surrogate. It should be noted
that the Bridge and the Client do not require Jini class
package to be installed. We suggest using XML which is a
system independent data exchange method. We also propose
a bridge architecture for a bridge to route Jini service request
to the surrogate host machine in the Bluetooth network. Our
fbture work includes designing the protocol for Jini network
to search for Bluetooth services. This will enable complete
Jini/Bluetooth interoperability.

ACKNOWLEDGEMENT

This research is supported in part by the Areas of Excellence
Scheme established under the University Grants Committee
of the Hong Kong Special Administrative Region, China
(Project No.AoE/E-0 1/99).

REFERENCES
Bluetooth Special Interest Group, “The Bluetooth
Specification,”
http:/!’ww\~.bluetooth.comidevelopers/specification/speci
fication.asp, April 2000.
J. Bray and C.F. Sturman, Bluetooth: Connect Without
Cables, Prentice Hall PTR, Upper Saddle River, New
Jersey, 200 1.
C . Bisdikian, “An Overview of the Bluetooth Wireless
Technology,” IEEE Communication Magazine, vol. 39,
pp. 86-94, December 2001.
Jini Network Technology, “Jini Specifications V2.0,”
http:~i~~s.sun.com/softwareliiniispecs/index.html,
June 2003.
S. Oaks and H. Wong, Jini In A Nutshell, O’Reilly,
March 2000.
J. Allard, V. Chinta, S. Gundala and G.G. Richard 111,
“Jini meets UPnP: An architecture for Jini/UPnP
interoperability,” Proc. Symposium on Applications and
the Internet 2003, January 2003.
Palowireless, “Bluetooth Tutorial-Profiles,”
http:::wwn.palowireless.com!infotooth!t~itorial/pro~iles.asp.
The JiniTM Technology Suwogate Architecture
Specijkation version 1 .o Standard,
http:lisurrogate.iini.org, October 2003.
S. Kasper and L. Buhrer, “Jini Discovers Bluetooth,”
http:l/~ww.tik.ee.ethhz.ch/-beutellp~o~ects~sada/2002ss s
a Vincent bt iini.pdf, Summer 2002.

[lo]A.C.C. Lo, V. Chandrasekaran, W.K.G. Seah, and C.P.
Soh, “A session management protocol for mobile
computing,” in Proc. of IEEE GLOBECOM, vol. 5 , pp.
2592-2598. Nov.1998.

301 8

http:lisurrogate.iini.org

