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Abstract - The paper establishes a general framework for it-
erative separate CSE in general iterative decoding networks.
Two particular cases of CSE are examined—SDD (Soft-
Decision Directed) and EM (Expectation-Maximization)
based one. Both have capabilities for exploiting the itera-
tively improved backward measure from the decoding net-
work, however both exhibit different properties and provide
different possibilities for iteration scenarios. An example
application with simple serially concatenated code with
QPSK mapping in AWGN channel with phase rotation is in-
vestigated to demonstrate differences between the algorithms
in terms of MSE, ambiguity resolution, and convergence
behavior.

I. INTRODUCTION

Iterative decoding algorithms received a considerable at-
tention over the last decade. A general background can be
found in [1], [2]. The core concept of the iterative signal
processing is the Soft-Input Soft-Output (SISO) module [3].
Only recently, the problem of possible iterative processing
was extended also for a case of the channel with unknown
channel state. There are two general approaches. The first
one modifies the SISO module to accommodate for unknown
channel state ([4], [5]). The second one uses separate channel
state estimator (CSE) utilizing the soft information measure
from the decoder ([6], [7], [8]). The form of soft measure
utilization ranges from purely ad-hoc approach to the more
systematic ways (e.g. the expectation maximization algo-
rithm). However in all cases, the mutual interaction between
the CSE and the decoding loops has not been rigorously
investigated yet.

This paper defines a rigorous general theoretical frame-
work describing all possibilities of iterative decoding with
iteratively data eliminating separate CSE. This allows to un-
derstand the mutual interactions between these two loops in a
general manner and to understand a position of the separate
iteratively data eliminating estimator from the perspective
of optimal joint CSE and decoding. We put a particular
attention on and illuminate the differences between the SDD
and EM based iterative CSE.
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II. SYSTEM MODEL

A. General encoding network

We assume raw information carrying data to be IID
(Independent Identically Distributed) symbols dn , d =
[. . . , dn, . . .]T . These data are fed into the first block C1
of a general encoding network. It is formed by arbitrary
number of arbitrarily connected functional blocks—encoders
modeled as Finite State Machine (FSM), interleavers, broad-
casters, etc. We denote these blocks (encoders) Cs , s =
1, . . . , S. Let its input and output symbol streams be cs =
[. . . , cs,n, . . .]T and qs = [. . . , qs,n, . . .]T respectively. The
input-output relation is qs = Cs[cs]. The output of the last
encoder CS is the overall output of the network and it is
fed into the channel through the signal space constellation
mapper s = s(q). These channel symbols are denoted by
q = [. . . , qn, . . .]T .

B. Channel

The continuous-time waveform channel output is assumed
to be represented by its signal space (orthonormal) expan-
sion. The encoder is observed on the receiver side through
the observation x = [. . . , xn, . . .]T . The observation (re-
ceived signal) x = x(q, θ, w) depends on channel symbols
q and it is parametrized by channel nuisance parameters—
channel state (CS) w, θ.

Random channel nuisance parameters w = [. . . , wn, . . .]T

with known a priori PDF p(w) can be eliminated from
p(x|q, θ, w) to obtain p(x|q, θ). This eliminated conditional
PDF carries all the information necessary for the construc-
tion of the detector with optimality criterion being the
average over the eliminated parameters (e.g. the average
error rate). The eliminated parameters—eliminated channel
states (ECS) are those with close to ergodic behavior with
respect to the channel observation period. Typically, this is
additive white Gaussian noise.

The channel is said to have independent eliminated chan-
nel states (IECS) if p(w) = ∏

n p(wn). Additionally, the
channel is said to be a memoryless channel (MLC) if
a single component of received signal depends only on
a single channel symbol and single component of ECS
vector p(xn|q, θ, w) = p(xn|qn, θ, wn). The IECS-MLC
assumptions directly imply p(x|q, θ) = ∏

n p(xn|qn, θ).
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III. MARGINALIZED ITERATIVE DECODING NETWORK

A. Parametric Soft-Input Soft-Output module

A Parametric Soft-Input Soft-Output (PSISO) module is
a soft inversion C−s corresponding to the encoding block
b = C[a] on general input and output quantities a and b. It is
the block with two inputs and two outputs defined as follows.
Forward-in, Forward-out, Backward-in, and Backward-out
soft information measure is defined respectively MF{b, θ} =
{p(x|b(i), θ)}i,θ , MF{a, θ} = {p(x|a(i), θ)}i,θ , MB{a} =
{p(a(i))}i , MB{b} = {p(b(i))}i where x is the observa-
tion. The forward measure carries the new information on
the given quantity from the observation to the decision—
hence the forward attribute. The backward measure provides
a priori known information that is already available at the
receiver—hence the backward attribute. Notice that there
is no backward information on the uneliminated CS θ.
This is implied by the independence of data and CS θ.
However it holds only for perfect backward measure. Later
we will see that this does not hold for iterative estimation of
the backward measure based on non-parametrized forward
measure. See Fig. 1.

B. Decoding network passing marginalized soft information
measure

Marginalized PSODEM (Parametric Soft-Output Demod-
ulator) provides MF{qn, θ} = {p(x|q(i)

n , θ)}n,i,θ . Individual
PSISO C−s

s in the network has forward-in soft information
measure MF{qs,n, θ} = {p(x|q(i)

s,n, θ)}n,i,θ and forward-out
soft information measure MF{cs,n, θ} = {p(x|c(i)

s,n, θ)}n,i,θ .
The backward-out measure MB{qs,n} = {p(q(i)

s,n)}n,i pro-
vided by SISO module should be understood in a sense of
q(i)

s,n PDF consistent with the mapping (codeword structure)
p(q(i)

s,n : cs 7→ qs). In the following, we will drop this ex-
plicit notation. The SISO calculates this value from the joint
PDF respecting the codeword structure and with subsequent
marginalization for qs,n.

Decision soft information measure on cs,n (and similarly
for qs,n) is M{cs,n|θ} = {p(x, c(i)

s,n|θ)}n,i,θ . Forward and
backward measure is related to the decision measure by (and
similarly for M{qs,n|θ})

M{cs,n|θ} = MF{cs,n, θ}MB{cs,n}. (1)

IV. SEPARATE CHANNEL STATE ESTIMATOR WITH

ITERATIVELY ELIMINATED DATA

A. Data elimination in decoding network

As a alternative to the joint data detection and CSE
problem we can build a decoding network with separately
working CSE and data detector. The Maximum Likelihood
(ML) CSE is derived from the soft information measure
with eliminated random data. Assume the joint decision
measure M{d|θ} = {p(x, d(i)|θ)}i,θ . Data elimination leads
to decision measure on CS with eliminated data

M{|θ} =
{∑

d

p(x, d|θ)

}
θ

= {p(x|θ)}θ . (2)

Data d are the raw information data usually being IID
p(d) = ∏

n p(dn) with known (usually uniform) a priori
PDF.

A similar relationship holds for an arbitrary intermediate
encoding stage with codewords c

M{|θ} =
{ ∑

c:d7→c

p(x|c, θ)p(c)

}
θ

(3)

where c : d 7→ c means all c consistent with the mapping
d 7→ c, i.e. the structure of valid codewords c. Also the joint
PDF p(c) captures this implicitly. This means that the choice
of the encoding stage (codewords) over which we perform
the elimination is arbitrary, provided that we eliminate over
valid codewords, i.e. we respect the structure of the code.

The data decisions with separate CS estimator with data
elimination are then

d̂ = arg max
ď

M{ď|θ = θ̂} (4)

where ML CSE is

θ̂ = arg max
θ̌

∑
d

M{d|θ̌} = arg max
θ̌

∑
c:d7→c

p(x|c, θ̌)p(c).

(5)

B. Factorization of the elimination with perfect backward
measure

The joint PDF on the channel symbols (codewords) q
(or any intermediate code c) is not directly available in
the iterative marginalized decoding network. It produces the
backward soft information marginalized measure estimate
on channel symbol qn at each iteration.

Assume for a moment that the perfect backward marginal-
ized measure MB{qn} is available. In order to apply the
elimination (3) we must (a) reconstruct the joint PDF to
respect the code structure d 7→ q or (b) use the marginalized
PDF in such a way that is equivalent to the use of the joint
PDF. The equivalent use means such that naturally leads to
marginalization even when correctly joint PDF is assumed
at the beginning. That is, if we succeed to manipulate the
elimination equation (3) in such a way that it would require
only marginalized PDF. This would be a factorized form of
the elimination.



C. Equivalence of iterative CSE with direct elimination

Assuming that the iterative CSE in the iterative decoding
network converges and we succeeded to find its factorized
form then it would not provide any performance advantage
over the direct elimination at the raw data d level (of course
both respecting the correct mapping d 7→ q).

D. Multidimensional feed-back system—State variables and
iteration index vector

The iterative decoding marginalized soft information mea-
sure passing network is formed from PSISO modules that
use on the backward-in node current estimation (state) of
the information measure provided by the previous firing of
the neighboring module. This information measure must be
stored as the feed-back network state variable. There will
be S − 1 memory blocks (a priori information on raw data
d is constant during the iterative process), i.e. the feed-back
systems will be S −1 dimensional. The iteration step of this
discrete feed-back system can be described by S − 1 dimen-
sional index m = [m1, . . . , mS−1]T . A particular iteration
index ms is increased by each update of the corresponding
s-th memory module at the backward-in input of the C−s

s
module. In the case of separate CSE, the decoding network
bases its soft information measures on the current k-th CSE
iteration. Thus, we must use overall iteration index (k, m)

where k denotes iterations over the CSE and m denotes the
iteration within the decoding network.

E. Non-parametric soft information measure in iterative
network with separate CSE

1) Forward soft information measure: The soft output
demodulator (SODEM) of the network with separate CSE
provides forward soft information measure only on channel
symbols—the measure is not parametrized, i.e. it does not
convey the information on CS for its final decision later on.

However, it was obtained by assuming CS estimation θ̂
k,m

at
current iteration step k, m in the iteration. The soft measure
at the SODEM output can be interpreted as a cut in the
2-dimensional joint measure MF{qn, θ} over the hyperplane
θ = θ̂

k,m
based on an estimate corresponding to the k, m

iteration

M̂F
k,m{qn} = {p(x|q(i)

n , θ̂
k,m

)}n,i = { p̂k,m(x|q(i)
n )}n,i . (6)

The same holds for all forward soft information measures
in the network. They are estimates of the measure only on
corresponding symbols, not on the CS. The estimates are
understood in a sense of the cut of full joint measure at the
estimate hyperplane θ = θ̂

k,m
. The forward measure changes

with all iterations over any of the iteration indices k, m.

2) Backward soft information measure: Unlike for the
perfect backward measure case (1), the backward measure
iterative estimate depends on current CSE θ̂

k,m

M̂B
k,m{cn} = M̂k,m{cn}/M̂F

k,m{cn}. (7)

This CSE determines the hyperplane cut of the PSODEM
forward measure output and therefore it affects current iter-
ation run of the detection network. The choice of the cut θ̂

k,m

should not be confused with the actual CS value θ which
is independent with data and therefore is not affecting the

backward measure. If θ̂
k,m = θ was true (perfect estimate),

than the backward measure would be independent with the
true CS value θ.

V. SOFT DECISION DIRECTED AND

EXPECTATION-MAXIMIZATION BASED CSE

A. Soft Decision Directed approach

A soft decision directed (SDD) approach (for an example
application see [8]) is an iterative implementation of the
data elimination principle (3). The encoding stage, at which
the elimination is performed, is usually directly the channel
symbols q level.

1) Approximate factorization of the elimination: At the
output to the CS estimator module, the marginalized decod-
ing network does not provide the joint PDF p(q). Instead,
it provides only marginalized iterative approximations of
M̂B

k,m{qn} = { p̂k,m(q(i)
n )}n,i at the (k, m)-th iteration. The

factorized form of the expectation (5) using the estimates
of backward measure must rely on the approximation (with
explicit and implicit notation—see Sec. III-B)

p̂k,m(q) ≈
∏

n

p̂k,m(qn : d 7→ q) =
∏

n

p̂k,m(qn). (8)

Moreover, it is additionally affected by the fact that the
backward measure is not perfect but only approximate.

2) Final iterative solution: Assuming a IECS-MLC chan-
nel from the perspective of channel symbols q and using the
approximation above, we arrive to the final iterator

θ̂
k+1,m = arg max

θ̌

∑
n

ln

(∑
qn

p(xn|qn, θ̌) p̂k,m(qn)

)
. (9)

We also applied logarithm to get the LLF. Notice that the
right-hand side of (9) depends on the iteration index k,
i.e. iterations over the CS estimate, only through p̂k,m(qn)

which is fixed for given fixed m. It therefore only make sense
to iterate simultaneously at one step both k and m index
loops. The iteration over k index loop does not change the
CS estimate. An example network with iterative elimination
and iterative decoding is on Fig. 2.
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Iterative non-parametric SDD decoding

network—multidimensional feed-back system. An example
of serial concatenated network.

B. Expectation-Maximization approach

1) Basic principle: An expectation-maximization (EM)
procedure (see [9], [10]) is an iterative method for ob-
taining maximum likelihood (ML) estimation. It is based
on the following relatively simple idea. Assume that θ is
unknown deterministic parameter that we want to build the
ML estimator for. Assume that x is available observation.
Also assume that there is observation y that is not available
to the estimator. An union of these two x ∪ y is called
a complete observation. Assume that the estimator based
on the log-likelihood function (LLF) ln p(x|θ) is feasible
however another one based on LLF ln p(x, y|θ) is easier
to build. But the observation x, y is not available hence we
replace it by an approximation marginalizing the unavailable
observation y

ln p(x, y|θ) ≈ E
y|x,θ̂

k

[
ln p(x, y|θ)] . (10)

The marginalization (expectation) can be interpreted as
obtaining the average expected value of LLF ln p(x, y|θ)

provided that we know the best currently available infor-
mation about quantities bound together by this LLF. It is
the available observation x and the current guess of the

parameter θ̂
k
. We are replacing ln p(x, y|θ) by its expected

value over unavailable observation extrapolated from the
information on available observation and current guess of
the parameter. The EM iteration is then described by

θ̂
k+1 = arg max

θ̌

E
y|x,θ̂

k

[
ln p(x, y|θ̌)

]
. (11)

2) Application to CS estimation: An application of the
EM algorithm to the CS estimation problem in data commu-
nication is usually done (see [6]) by setting the unavailable
observation equal to the data y = d. The estimator based on
observation x, d would be definitively easier to build—it is
in fact the data aided (DA) estimator. The EM approach
marginalizes the knowledge of true transmitted data by
iterations

θ̂
k+1 = arg max

θ̌

E
d|x,θ̂

k

[
ln p(x, d|θ̌)

]
. (12)

Realizing that the data are independent with the CS we get

p(x, d|θ) = p(x|d, θ)p(d|θ) = p(x|d, θ)p(d). (13)

A substitution of this result into (12) gives

θ̂
k+1 = arg max

θ̌

∑
d

ln p(x|d, θ̌)p(d|x, θ̂
k
). (14)

The averaging can be, similarly as in the data elimination
case, done at arbitrary encoding stage (e.g. at the level of
channel symbols q)

θ̂
k+1 = arg max

θ̌

∑
q:d7→q

ln p(x|q, θ̌)p(q|x, θ̂
k
). (15)

Compare the expectation in this equation with the expecta-
tion operation in (3). The averaging in EM algorithm uses
the a posteriori PDF.

3) Factorization of the expectation with perfect channel
symbols measure: The expectation in (15) over the joint PDF
must be equivalently transformed (if possible) in the form
using only marginalized PDF which is the only available
quantity in marginalized iteration network.

Similarly as for the SDD case, we must assume a IECS-
MLC channel from the perspective of channel symbols q:
p(x|q, θ) = ∏

n p(xn|qn, θ). Then the expectation in (15) is∑
q:d7→q

ln p(x|q, θ̌)p(q|x, θ̂
k
)

=
∑

n

∑
qn

ln p(xn|qn, θ)
∑

q:qn,d7→q

p(q|x, θ̂
k
). (16)

In the previous equation, the marginalizing expression

p(qn|x, θ̂
k
) = ∑

q:qn,d7→q p(q|x, θ̂
k
) is due to a condition

q : qn, d 7→ q correctly respecting the code structure. This
marginalization is exactly what the SISO module provides.

The estimator is thus

θ̂
k+1 = arg max

θ̌

∑
n

∑
qn

ln p(xn|qn, θ)p(qn|x, θ̂
k
). (17)

The a posteriori PDF can be easily get from the hyperplane
θ = θ̂

k
cut of the forward joint measure MF{qn, θ} and the

backward measure on MB{qn}

p(qn|x, θ̂
k
) = p(x|qn, θ̂

k
)p(qn)∑

qn
p(x|qn, θ̂

k
)p(qn)

. (18)

4) A posteriori symbol PDF with iterative channel sym-
bols backward measure: In the iterative decoding network,
only iterative estimates of the backward measure M̂B

k,m{qn}
are available. This measure replaces the true a priori PDF
in the final iterative synchronizer. The a posteriori symbol
PDF estimate is thus

p̂k,m(qn|x, θ̂
k,m

) = p(x|qn, θ̂
k,m

) p̂k,m(qn)∑
qn

p(x|qn, θ̂
k,m

)pk,m(qn)
. (19)
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Iterative non-parametric EM decoding

network—multidimensional feed-back system. An example
of serial concatenated network.

5) Final iterative solution: The final CSE iterator is

θ̂
k+1,m = arg max

θ̌

∑
n

∑
qn

ln p(xn|qn, θ̌) p̂k,m(qn|x, θ̂
k,m

)

(20)
where the symbol a posteriori PDF estimation is given by
(19). Compare this result with SDD case (9). Unlike the SDD
case, the right-hand side depends on k even for fixed m and
the iteration loops can run independently. The possibility
of iterating over k and improving the estimation can save
the number of necessary runs of computationally expensive
decoding iteration (Forward-Backward Algorithm). An ex-
ample network with iterative EM CSE is on Fig. 3.

VI. EXAMPLE APPLICATION—SIMULATION RESULTS

A. Demonstration system description

As a demonstration system, we chose a simple serially
concatenated encoding network. The outer code d 7→ c is
defined by the output cn(d(i), σ (k)) = c(Ci,k ) and the state
equation σn+1(d(i), σ (k)) = σ (6i,k ) where C = [1, 3; 2, 4],
6 = [1, 1; 2, 2] (Matlab-like row-wise notation). The inner
code c̃ 7→ q is qn(c̃(i), σ (k)) = q(Qi,k ), σn+1(d(i), σ (k)) =
σ (6i,k ) where Q = [1, 2, 3, 4; 1, 2, 3, 4; 1, 2, 3, 4; 1, 2, 3, 4],
6 = [1, 2, 3, 4; 2, 3, 4, 1; 3, 4, 1, 2; 4, 1, 2, 3]. The codes are
separated by the UMTS340 interleaver c̃ = 5(c) directly
applied on 4-ary symbols. The signal space QPSK constel-
lation mapping is sn(q(1)) = 1, sn(q(2)) = j, sn(q(3)) =
− j, sn(q(4)) = −1. The signal is passed through the AWGN
channel with phase rotation ϕ. The noise has the complex
envelope power spectral density 2N0. The signal space
expansion model of the received signal is xn = sne jϕ + wn .
The received bit energy to N0 ratio is γB .

B. Performance of the iterative SDD and EM CSE

We have simulated the performance of the SDD and EM
based phase estimator. A MSE (Mean Square Error) con-
vergence behavior and the capability of the phase ambiguity
resolution were investigated. The phase ambiguity is is given
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Probability of synchronization failure (ambiguity domain

resolution). True channel phase is 80 degrees.

by the rotational invariance of the QPSK constellation. If
there was no coding the invariance would be 2π/4. However
a synchronizer properly utilizing the codeword structure can
reduce this ambiguity if the valid codeword space has lower
rotational ambiguity. All numerical results for the EM case
assume 5 CSE iterations per one decoding iteration and the
initial estimate ϕ̂0,0 = 0.

1) Iteration scenarios: The combined iterative decoding
and synchronization loop can iterate over k and m indices.
In the case of SDD CSE only joint iteration is possible.
However for the EM CSE there is possible to iterate several
times over the synchronizer loop (index k) per one decoding
iteration (index m). This of course saves computationally
expensive Expectation-Maximization Algorithm runs.

2) Ambiguity resolution—synchronization failure: The
EM CSE demonstrates very strong dependence on the choice
of the initial guess. If the initial guess does not lie in the
correct ambiguity domain, the algorithm fails to correct this
even in higher iterations and remains in the wrong domain
with probability close to 1. See Fig. 4.

This behavior is caused by averaging the logarithm of
the PDF, i.e. the distances between the received signal
and rotated points of constellation, in the elimination (20).
The identity

∑M−1
i=0 ||x |e jϕ − e j ϕ̌e j 2π

M i |2 = M(|x | + 1)

holds for a PSK type constellation. This means that for
an initial iteration with uniform backward measure, the
estimator objective function (20) dependence on the phase

is caused only by the term p(x|qn, θ̂
k,m

) which strongly
depends on the initial guess amplifying the objective function
in a wrong domain. Compare the behavior of SDD and EM
CSE on Fig. 5. Especially notice the different behavior for
the synchronization failure case. The SDD algorithm has
much better chance to get into the correct ambiguity domain
unlike the EM algorithm which stays in the domain of initial
estimate with probability close to 1.

3) Mean Square Error convergence: The EM CSE has
smoother MSE convergence than SDD CSE provided that
its initial estimate was in the correct ambiguity domain. See
Fig. 5.
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Fig. 5
Numerical results for (a) SDD and (b) EM CSE. The estimator objective function for different iterations and (1) successful
ambiguity resolution, (2) synchronization failure. True channel phase is shown as a dashed line. The decoding loop iteration

number is a parameter, γB = 2 [dB]. The MSE (3) as a function of the iteration number.

VII. CONCLUSIONS

The general framework for iterative CSE was established.
We investigated MSE and the estimator objective function
behavior as a function of iteration number. The most notable
is a strong dependence of EM CSE on the initial estimate
(unlike for the SDD case) resulting in high probability of
synchronization failure if the ambiguity is not resolved a pri-
ori. On the other side, the EM CSE convergence is smoother
than in the SDD case. Important difference between SDD
and EM is also in the different possible iteration scenarios.
In the EM case, the iterations over the CSE with given fixed
iteration step of the decoding network improve the estimate
quality. It allows to save a computationally expensive runs
of expectation-maximization algorithm.
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