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Azimuth Spread Estimation for Slightly
Distributed Scatterers Using the Generalized

Array Manifold Model
Xuefeng Yin∗, Bernard H. Fleury∗, Troels Pedersen∗ and Jukka-Pekka Nuutinen†

∗Information and Signals Division, Department of Communication Technology,
Aalborg University, DK-9220 Aalborg, Denmark

†Elektrobit Testing Oy, Tutkijantie 7, 90570 Oulu, Finland

Abstract— In this paper, an azimuth spread estimator (ASE)
for slightly distributed scatters (SDSs) is derived based on the
generalized-array-manifold (GAM) approximation model [1].
To improve the performance of this estimator we propose an
array size adaptation (ASA) technique that adjusts the array
aperture selectively for each SDS by modifying the number of
antennas. This technique is applied to uniform linear arrays
but can be extended to two or three dimensional arrays.
Simulation results demonstrate the improvement achieved with
the combined ASA-ASE scheme. In particular, it is shown
that this scheme outperforms the conventional Spread-ESPRIT
technique.

I. I NTRODUCTION

In propagation environments, situations frequently occur
where scatterers have a certain geometrical extent which is
small in the view of the receiver (Rx) or local scattering
exists around a transmitter (Tx) located far away from the
Rx. In both cases, the received signal contributed by each
of these scatterers or clusters of local scatterers can be
conceived as the sum of the contributions of multiple sub-
scatterers with slightly different azimuths of arrival (AoAs)
where only horizontal propagation is considered. We refer
to such scatterers or clusters of local scatterers as slightly
distributed scatterers (SDSs) [2], [3] and [4]. The signal
contribution of an SDS can be described by the nominal
AoA (NAoA) and the azimuth spread (AS) of the SDS.

Recently, different techniques for estimation of nominal
azimuth and AS of SDSs have been proposed. These tech-
niques can be grouped into two categories: i) methods based
on post-processing of the parameter estimates of specular
scatterers (SSs) and ii) standard estimation techniques using
approximation models for the SDSs.

Category i) includes the methods proposed in [5], [6] and
[7]. These methods rely on visual inspection or grouping
algorithms for identification of the SDSs based on parameter
estimates of SSs. They are affected by the influence of
subjective grouping of these estimates. Furthermore, the
heavy-tailed distribution of azimuth estimates derived based
on the SS model [2] strongly affects the accuracy of the AS
estimates.

Category ii) includes the Spread-F technique derived
based on a two-ray model [3], the COMET-EXIP [8] and the
SIOD approaches [9] using a stochastic distribution model,
as well as the subspace-based methods [1] and the SAGE
algorithms [10] [11] derived based on the Generalized Array
Manifold (GAM) model proposed in [1]. The Spread-F
technique is less complex than the COMET-EXIP and SIOD
methods. According to [3] the Spread-F technique requires
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a pre-generated look-up table which compensates for the
inherent bias of the AS estimates. In addition, the Akaike In-
formation Criteria (AIC) [12] or the Minimum Description
Length (MDL) method [13] need to be applied before using
the Spread-F technique in order to estimate the number of
SSs. The Spread-F technique is applicable when this number
is twice the number of SDSs. However this condition is
only satisfied when the AS and the spacing between the
nominal azimuths of SDSs are larger than certain values. For
instance, simulation studies show that when an 8-element
uniform linear array (ULA) with half-a-wavelength spaced
elements is used, the AS of the SDSs must be larger than3◦

and their nominal azimuth spacing must be larger than20◦

in order for the Spread-F technique to be applicable. When
the AS and the nominal azimuth spacing are less than these
values, the Spread-F technique is inapplicable. The methods
based on the GAM model proposed in [1], [10] and [11] are
mainly for nominal direction estimation. In this paper we
propose an AS estimator (ASE) based on the estimates of
the parameters in the GAM model. Furthermore, to improve
the performance of this estimator a technique is introduced
which selectively modifies the aperture of the antenna array
by adjusting the number of elements in the As estimation
for each SDS. This technique is applied for ULAs but can
be easily extended for use with two or three dimensional
arrays.

The organization of the paper is as follows. Section II
describes the signal model. Section III and IV introduce
respectively the ASE and the array size adaptation (ASA)
technique. Section V reports the simulation results. Con-
cluding remarks are addressed in Section VI.

II. SIGNAL MODEL

In a propagation scenario with a single SDS, the output
signal of aM -element Rx array can be viewed as composed
of the contributions of multiple sub-scatterers distributed
with respect to the azimuth of arrival (AoA):

y(t) =
[ L∑

ℓ=1

aℓ(t)c(φ̄+φ̃ℓ)
]
·s(t)+w(t), (1)

t = t1, . . . , tN .

The components of theM -dimensional (M -D) complex
vector y(t) denote theM output signals of the Rx array
at time t, s(t) represents the complex envelope of the
transmitted signal and the noise vectorw(t) is a spatially
and temporally whiteM -D Gaussian process with compo-
nent varianceσ2

w. We assume that totallyN observation
samples are collected at time instancestn, n = 1, . . . , N .
Moreover, the total number of sub-scatterers equalsL and



the complex weight of the signal contribution from the
ℓth sub-scatterer is denoted byaℓ(t). The AoA of the
ℓth sub-scatterer is decomposed as the sum of the NAoA
φ̄ of the SDS and a small deviatioñφℓ from φ̄. Finally,
c(·) = [c1(·), . . . , cM (·)]T with [·]T denoting transposition,
is the array response. We assume thatc(φ) is such that
the space spanned by theL vectors in the sum in (1)
has dimensionM with probability one. This supposes that
L ≥ M . UsuallyL ≫ M . Additionally we assume thats(t)
is known to the Rx. Without loss of generality,s(t) = 1.

The vector-valued functionc(φ) in (1) can be approxi-
mated by its first-order Taylor series expansion atφ̄. Insert-
ing the first-order Taylor approximation for eachc(φ̄ + φ̃ℓ)
in (1) yields the so-called GAM model [1]

y(t) =

L∑

ℓ=1

aℓ(t)[c(φ̄)+φ̃ℓc
′(φ̄)] +w(t),

= α(t)c(φ̄) + β(t)c′(φ̄) + w(t), t = t1, . . . , tN , (2)

where α(t)
.
=

L

Σ
ℓ=1

aℓ(t), β(t)
.
=

L

Σ
ℓ=1

aℓ(t)φ̃ℓ, and c′(φ̄) =

∂c(φ̄)

∂φ̄
. Using matrix notation, (2) can be written asy(t) =

F (φ̄)ξ(t) + w(t) with F (φ̄) = [c(φ̄) c′(φ̄)] and ξ(t) =
[α(t), β(t)]T.

We assume that the deviations̃φ1, . . . , φ̃L are zero-
mean uncorrelated random variables with identical vari-
ance σ2

φ̃
. The weight processesa1(t), . . . , aL(t) are un-

correlated complex (zero-mean) circularly-symmetric wide-
sense stationary (WSS) processes with autocorrelation
function Ra1

(τ), . . . , RaL
(τ) respectively. The azimuth

deviations and the weight processes are uncorrelated.
As a consequence of these assumptions,α(t) and β(t)
are uncorrelated complex circularly-symmetric zero-mean
WSS processes with correlation functionsRα(τ) =∑L

ℓ=1 Raℓ
(τ) and Rβ(τ) = σ2

φ̃
Rα(τ) respectively. The

azimuth varianceσ2
φ̃

can be calculated by solving the
equation

σ2
β = σ2

α · σ2
φ̃
, (3)

where σ2
β = Rβ(0) and σ2

α = Rα(0). In this paper we
consider the case where the impinging signal power is
highly confined around the NAoA andRa1

(0) = . . . =
RaL

(0). In this particular case,σφ̃ expressed in radian
provides a close approximation of the direction spread of
the SDS [4]. We refer toσφ̃ as the AS in the sequel.
Furthermore, we consider a time-variant environment and
assume thatRα(|tn′ − tn|) = 0, n 6= n′, n, n′ = 1, . . . , N ,
or equivalently that,α(t) and β(t) are uncorrelated white
random sequences.

In a scenario withD SDSs, (2) becomes

y(t) =

D∑

d=1

αd(t)c(φ̄d) + βd(t)c
′(φ̄d) + w(t), (4)

t = t1, . . . , tN .

The signal models (2) and (4) can be easily extended to
include elevations of arrival of the sub-scatterers. In this
case, the direction spread of an SDS can be character-
ized with close accuracy by the AS, elevation spread and
azimuth-elevation correlation coefficient of the SDS. The
reader is referred to [11] for detailed information on the
estimators of the above parameters and the required model
extension.

III. T HE AS ESTIMATOR

Identity (3) suggests the following ASE ofσφ̃

σ̂φ̃ =

√
σ̂2

β

/
σ̂2

α. (5)

The estimateŝσ2
β and σ̂2

α can be obtained using standard
estimation techniques, such as the maximum-likelihood
estimator (MLE) derived based on the stochastic GAM
model [10]. Here the term “stochastic” means that the
unknown parametersα(t) andβ(t) in (2) are assumed to be
stochastic. Alternativelŷσ2

β and σ̂2
α can be estimated from

the MLEs of the instantaneous values ofα(t) and β(t),
t = t1, . . . , tN , derived based on the deterministic GAM
model whereα(t) andβ(t) are assumed to be deterministic
[10]. In this case these estimates read

σ̂2
β = 1

N

tN∑

t=t1

|β̂(t)− < β̂(t) > |2,

σ̂2
α = 1

N

tN∑

t=t1

|α̂(t)− < α̂(t) > |2,

with <β̂(t)>= 1
N

tN

Σ
t=t1

β̂(t) and<α̂(t)>= 1
N

tN

Σ
t=t1

α̂(t).

The ASE (5) can be applied for arbitrary array config-
urations with non-isotropic array elements and when the
transmitted signals(t) is unknown. In the latter caseα(t)
and β(t) in (2) need merely to be redefined asα(t)

.
=

L

Σ
ℓ=1

aℓ(t)s(t) andβ(t)
.
=

L

Σ
ℓ=1

aℓ(t)φ̃ℓs(t).

IV. T HE ARRAY SIZE ADAPTATION TECHNIQUE

The discussion focuses first on a single-SDS scenario.
Simulation studies show that the ASE (5) is biased for all
AS values but a certain value, which depends on the number
of array elements and the signal-to-noise ratio (SNR) (see
Fig. 2). This bias is due to the mismatch between the
approximation model (2) and the full model described by
(1). In (2) the signal space is spanned by the two vectors
c(φ̄) and c′(φ̄), while the signal space spanned by theL
vectors in the sum in (1) has usuallyM dimensions with
probability one. The covariance matrix ofy(t) generated
using the GAM model (2) has two signal eigenvectors. It
can be shown by simulations that the ratio between the
largest and the smallest eigenvalues associated with these
two signal eigenvectors is larger than a certain thresholdǫ
which depends on the SNR and the array aperture, i.e. the
numberm of antennas in the ULA. The covariance matrix
of y(t) generated using the full model (1) has usuallyM
signal eigenvectors with probability one. The ratio between
the largest and the second largest eigenvalues increase when
m decreases and vice versa. When this ratio is larger than
or equal toǫ, the signal generated by the full model (1) can
be closely approximated by the GAM model (2). The above
observation indicate that the array size can be adaptively
selected in such a way that the ratio between the largest
and second largest eigenvalues is larger than or equal toǫ.

In a D-SDS scenario where the signal contribution of
each SDS is described by the full model (1), the ratio
between the mean of theD largest eigenvalues and theD
next largest eigenvalues is calculated. A good approximation
using the GAM model to the received signal is obtained
whenm is reduced if necessary, until the ratio is larger than



or equal toǫ. Notice that in both single-SDS and multiple-
SDS scenarios, it may occur that the calculated ratio is
smaller thanǫ for all possible values ofm. In this case,
m = M is selected for the AS estimation.

The above array size adaptation (ASA) technique that
adjustsm specifically for each SDS is applied to ULAs in
this contribution, but it can be easily generalized to two
or three dimensional arrays. In the sequel, we refer to the
ASE combined with the ASA technique as “ASA-ASE”.
Similarly the MLE and the SAGE algorithm derived with
the GAM model [10], are called the GAM “ASA-MLE”
(GAM-ASA-MLE) and the GAM “ASA-SAGE” (GAM-
ASA-SAGE) algorithm respectively.

A. ASA technique using Gerschgorin Radii

The ASA technique using the calculated eigenvalues
is difficult to implement from a practical point of view
because the following reasons. First, the thresholdǫ is a
function of SNR as the eigenvalues in the calculation ofǫ
contain both signal and noise contributions. Thus, a three-
dimensional look-up table which relates the threshold and
the corresponding SNR andm need to be pre-generated.
Second, in order to use the look-up table, the SNR of the
received signal generated using the full model (1) has to
be known in advance. Moreover the number of SDSs is
assumed to be known as well. The latter two conditions
cannot be satisfied usually.

To solve these problems, we use Gerschgorin Radii
(GR) calculated from the signal covariance matrix using
the unitary transformation described in [14] in the ASA
technique. It can be shown that when the number of samples
is large,i) the GR associated with a noise eigenvector equals
zero andii) the GR associated with a signal eigenvector is
independent of noise. Since the GR does not depend on the
noise components, the look-up table can be generated with
respect tom only. Thus, the SNR is not necessary to be
known in advance. In addition, as will be shown later this
technique can be also used to estimate the number of SDSs
when this number is unknown.

We first focus on the scenario where the numberD of
SDSs is known. In this scenario, the GRr(m)

i are computed,
where the superscript(m) denotes the number of the used
antennas and the valuesr(m)

i , i = 1, . . . ,m − 1 are sorted
in descending order. The ratio between the sum of the first
D GR and the sum of the secondD GR is calculated. The
array size is selected in such a way that the ratio calculated
is greater than or equal to a pre-defined thresholdτ

(m)
th .

When the number of SDSs is unknown, we may first
estimate this number by calculating

τ (m)(k) =

k∑

i=1

r
(m)
i

/ 2k∑

i=k+1

r
(m)
i , (6)

wherek ∈ [1, ⌊(m−1)/2⌋] is the possible number of SDSs
and the notation⌊·⌋ means the largest integer not larger than
the argument. The smallest value ofk satisfyingτ (m)(k) ≥

τ
(m)
th with m being the largest possible value is viewed as

an estimate of the number of SDSs. The array size used
to obtain this estimate is selected for the AS estimation.
Investigations not shown here demonstrate that this method
performs good in estimating the number of SDSs where the
SDSs differ in power by less than8 dB.

The thresholdτ
(m)
th can be determined numerically as

follows. We first randomly generate the signal of the GAM

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

(σφ̃) [◦]

m = 3

m = 4

m = 5

m = 7

τ̂
(m

)

Fig. 1. Estimatedτ(m) versusσ
φ̃

with array sizem as a parameter.

model (2) in the noiseless case and calculate the GR. The
obtained GR consist of two non-zero values,r̂

(m)
1 andr̂

(m)
2 ,

calculated respectively using the eigenvector associatedwith
the largest eigenvalue and the eigenvector corresponding to
the smallest eigenvalue. Then the ratioτ̂ (m) = r̂

(m)
1 /r̂

(m)
2

is computed. It can be shown thatτ̂ (m) depends on the
values ofm, the NAoA and the AS of the SDS, but it is
independent of the power of the SDS. Fig. 1 depicts the
graphs ofτ̂ (m) versus the ASσφ̃ with m as a parameter
when the NAoA is equal to20◦ with respect to (w.r.t.) the
boreside of the array. All the curves exhibit minimaτ̂

(m)
min

at a certain AS depending onm. Studies also show that the
values of the minimâτ (m)

min are nearly constant for a fixed
m and the NAoA within the array beam-width. Based on
these observations, we may conclude that the relationship
τ (m) ≥ τ̂

(m)
min must hold if the GAM model (2) approximates

the full signal model (1) accurately. Thus, the values of the
thresholdsτ (m)

th are set equal to the values ofτ̂
(m)
min .

B. Implementation of the ASA technique

As already mentioned, the AS value for which the ASE is
unbiased, saỹσ(m)

φ̃
, decreases whenm increases. The value

of m can be selected within the range[Mmin,M ], where
Mmin denotes the minimum array size required to estimate
the unknown parameters in the GAM model. Thus, if the
array size is selected appropriately the bias of the ASE can
be maintained within a small range, e.g.[−0.5◦,+0.5◦],
provided the true ASσφ̃ ranges in[σ̃(M)

φ̃
σ̃

(Mmin)

φ̃
]. Notice

that Mmin depends on the used ASEs. For example, when
the MLE and the SAGE algorithm derived with the deter-
ministic GAM model [10] are used, the projection matrix
Π

F (φ̄) computed in the loglikelihood function becomes an
identity matrix whenm = 2. Therefore,Mmin has to be
larger than2 to avoid this situation. The above restriction
does not apply for the MLE and the SAGE algorithm
derived with the stochastic GAM model [10] andMmin = 2
is selected.

It is worth mentioning that reducingm results in a lower
intrinsic azimuth resolution of the array. As a consequence
the variances of the GAM parameter estimates increase. In
order to maintain the resolution as high as possible, in a
single-SDS scenario we choose the array size to be the
maximum value ofm which provide the ratio calculated
as in Section IV-A larger than the predefined thresholds.
Moreover, if the selectedm is less thanM , the original
array can be partitioned into sub-arrays with the selected
size. Then the GAM parameter estimators and the ASE
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are applied with these individual sub-arrays. The obtained
estimates can then be combined into the final estimate, e.g.
by simple averaging.

The ASA technique can be used jointly for AS estimation
in multiple-SDS scenarios. We describe here the application
of this technique with the GAM-SAGE algorithms [10]. In
the initialization step of the SAGE algorithms, when the
parameters of SDSd, d = 1, . . . ,D are estimated, the array
size is selected in such a way that the ratio between the sum
of theD−d+1 GR and the sum of theD−d+1 next GR is
larger than the predefined threshold. The numberD can be
either known in advance, or estimated using the proposed
method. In the iterations following the initialization step, the
ASA technique is implemented with the same procedure as
described in the single-SDS scenario.

V. SIMULATION STUDIES

Monte-Carlo simulations are performed considering first
a single-SDS scenario and then a two-SDS scenario. Each
individual SDS consists ofL=50 sub-scatterers. The AoAs
of the sub-scatterers are independent, identically von-Mises
distributed random variables centered around the NAoA of
the SDS. The complex gains of the propagation paths via
the sub-scatterers have equal amplitude and independent
[0, 2π)-uniformly-distributed random phases. In addition,
the path gain phases and the AoAs are uncorrelated. Under
these assumptions,α(t) and β(t) in (2) are uncorrelated.
The environment is assumed to be time variant. Totally
N = 50 realizations are considered in one simulation run.
The Rx array is a 8-element ULA with half-a-wavelength
spaced elements. The figures shown in the subsequent are
generated with 100 runs.

The performance of the ASE with different array sizes
is assessed in a single-SDS scenario firstly. Fig. 2 depicts
the AS average estimation error (AEE(σφ̃)) and root mean
square estimation error (RMSEE(σφ̃)) versus the true AS
value σφ̃ with the array sizem as a parameter. The input
SNR, i.e. the SNR at individual antennas, equals10 dB.
It can be observed that the ASE is unbiased only for a
certain AS value that increases whenm decreases. The
minima of RMSEE(σφ̃) graphs coincide pretty well with the
zero-crossings of the respective AEE(σφ̃) graphs, indicating
that when the array size is selected appropriately, both the
absolute AEE(σφ̃) and the RMSEE(σφ̃) can be kept at a
reasonably low level.

The performance in a single-SDS scenario of the GAM-
ASE and that of the GAM-ASA-ASE are reported in Fig.
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3 and Fig. 4 respectively. For comparison purpose, the
Spread-ESPRIT technique, one of the Spread-F techniques
proposed in [3], is also implemented for ASσφ̃ ≥ 3◦. Fig.
3 depicts the AEE(σφ̃) and RMSEE(σφ̃) versus the true AS
σφ̃ with the input SNR equal to10 dB. It can be observed
that the GAM-ASA-ASE outperforms the GAM-ASE in
terms of lower absolute AEE(σφ̃) and RMSEE(σφ̃). The
improvement using the ASA technique is more pronounced
for large ASs. The GAM-ASA-ASE also returns lower
RMSEE(σφ̃) than the Spread-ESPRIT technique. It can be
observed from Fig. 3 that for ASσφ̃ ≤ 2◦, the GAM-ASE
and the GAM-ASA-ASE have positive AEE(σφ̃), which
increase when the AS decreases. This behavior is due to
the fact that when the AS is very small, i.e. the deviations
φ̃ℓ in (2) are close to zero, the signal space in the full
model (1) has effectively one dimension. The 2-dimensional
signal space of the GAM model (2) fails to provide accurate
approximations of the signal space in the full model. As a
consequence, the varianceσ2

β is estimated to be larger than
its true value, resulting in a positive bias in the AS estimates.

Fig. 4 depicts respectively AEE(σφ̃) and RMSEE(σφ̃)
versus the input SNR with true AS equal to8◦. It can
be observed that the GAM-ASA-ASE performs the best
among the three estimators. In addition the Spread-ESPRIT
technique shows poor performance in the low SNR region.

Simulation results not shown here also demonstrate that
by simple averaging of the NAoA estimates obtained using
individual sub-arrays, the GAM-ASA-MLE shows perfor-
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mance similar to that of the GAM-MLE. When the AS
is large and the SNR is high, the GAM-ASA-MLE even
performs slightly better than the GAM-MLE. Moreover, the
Spread-ESPRIT technique returns large RMSEE for NAoA
estimates in the case of small ASs and low SNRs. Both the
GAM-MLE and GAM-ASA-MLE perform better than the
Spread-ESPRIT technique in estimating the NAoA.

In the two-SDS scenario, the NAoAs of the first SDS
(SDS1) and the second SDS (SDS2) equal respectivelȳφ1 =
30◦ andφ̄2 = −30◦ w.r.t. the array boreside. The two SDSs
have identical AS ranging from0.1◦ to 9◦. The input SNRs
for SDS1 and SDS2 are13 dB and10 dB respectively, i.e.
we assume a difference of3 dB in power. The GAM-SAGE
algorithm derived with the deterministic GAM model [10]
and the GAM-ASA-SAGE algorithm are applied to estimate
the NAoAs and the ASs for the two SDSs using 4 iterations.
The performance of the Spread-ESPRIT technique is also
reported. Each element in the pair of the computed NAoA
estimates, say( ˆ̄φ′, ˆ̄φ′′), is assigned to one of the two SDSs
according to

( ˆ̄φ1,
ˆ̄φ2) = arg min

(φ′,φ′′)∈

{( ˆ̄φ′, ˆ̄φ′′),( ˆ̄φ′′, ˆ̄φ′)}

‖(φ′, φ′′) − (φ̄1, φ̄2)‖,

where‖ · ‖ is the Euclidean norm.
Fig. 5 depicts the RMSEE of the NAoA (RMSEE(φ̄2))

and RMSEE(σφ̃2
) versus the true AS for the weaker SDS

(SDS2). The result is similar for the stronger SDS. It can
be observed that forσφ̃ ≥ 3◦ the GAM-SAGE and GAM-
ASA-SAGE algorithms perform similarly in estimating the
NAoA, while the latter performs better than the former in
estimating the AS. Both schemes outperform the Spread-
ESPRIT technique. Notice that the improvement by using
the ASA technique is less significant than in the single-SDS
scenario. This is because the model mismatch between the
GAM model (2) and the full model (1) cannot be completely
removed even though the GAM approximation is more
accurate when the ASA technique is used. The hidden data
estimated in the E-step of the GAM-ASA-SAGE algorithm
[10] still contains part of the signal contribution from
the other SDS. This residual interference deteriorates the
performance of the AS estimation, leading to a higher
RMSEE(σφ̃) compared to that resulting in the single-SDS
scenario.

VI. CONCLUSIONS

In this paper, we proposed an azimuth spread (AS) esti-
mator (ASE) for slightly distributed scatters (SDSs) based

on the generalized-array-manifold (GAM) approximation
model proposed in [1]. This ASE is biased for all AS values
but one value depending on the number of antennas and
the SNR. This bias is due to the mismatch between the
signal described by the GAM model and the “real” signal
contributed by a SDS. To improve the performance of the
ASE, we proposed a technique which adapts the aperture of
the used uniform linear array (ULA) to each SDS selectively
by changing the array size, i.e. the number of antennas.
In this method, the array size is selected for each SDS
in such a way that the GAM model provides a close
approximation of the signal contribution of this SDS. As
a result, the ASE exhibits smaller bias and lower root mean
squared estimation error. This array size adaptation (ASA)
technique is applied to ULAs in this contribution but it can
be generalized to two or three dimensional arrays. It can
be implemented jointly with standard estimation schemes,
like the SAGE algorithm, for estimating the ASs of multiple
SDSs.

Simulation studies demonstrate that using the ASA tech-
nique improves the performance of the ASE. This improve-
ment is more pronounced in a single-SDS scenario when
the AS is large. In particular, the method outperforms the
conventional Spread-ESPRIT technique in both single-SDS
and two-SDS scenarios.

The proposed technique has low complexity and can be
easily generalized to estimate the spreads in multiple disper-
sive dimensions (delay, azimuth and elevation of departure,
azimuth and elevation of arrival, Doppler frequency) of the
SDSs.
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