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Azimuth Spread Estimation for Slightly
Distributed Scatterers Using the Generalized
Array Manifold Model

Xuefeng Yirt, Bernard H. Fleury, Troels Pedersenand Jukka-Pekka Nuutinén

*Information and Signals Division, Department of Commutiara Technology,
Aalborg University, DK-9220 Aalborg, Denmark
TElektrobit Testing Oy, Tutkijantie 7, 90570 Oulu, Finland

Abstract—In this paper, an azimuth spread estimator (ASE) a pre-generated look-up table which compensates for the
for slightly distributed scatters (SDSs) is derived based on the inherent bias of the AS estimates. In addition, the Akaike In
generalized-array-manifold (GAM) approximation model [1].  formation Criteria (AIC) [12] or the Minimum Description
To improve the performance of this estimator we propose an L h (MDL hod 113 dtob lied bef .
array size adaptation (ASA) technique that adjusts the array -€Ngth (MDL) method [13] need to be applied before using
aperture selectively for each SDS by modifying the number of the Spread-F technique in order to estimate the number of
antennas. This technique is applied to uniform linear arrays SSs. The Spread-F technique is applicable when this number
o Ui emomatin e v eh e i 5 1ce the number of DS However tis condiion i
the combined ASA-ASE scheme. Inp particular, it is shown 0n|y.sat|sf|.ed when the AS and the spacing .between the
that this scheme outperforms the conventional Spread-ESPRIT _nommal aZI_muths_ of SDS$ are larger than certain values. For
technique. instance, simulation studies show that when an 8-element
uniform linear array (ULA) with half-a-wavelength spaced
l. INTRODUCTION elements is used, the AS of the SDSs must be largerhan
In propagation environments, situations frequently occand their nominal azimuth spacing must be larger th@h
where scatterers have a certain geometrical extent whichinsorder for the Spread-F technique to be applicable. When
small in the view of the receiver (Rx) or local scatteringhe AS and the nominal azimuth spacing are less than these
exists around a transmitter (Tx) located far away from thelues, the Spread-F technique is inapplicable. The msthod
Rx. In both cases, the received signal contributed by ealeased on the GAM model proposed in [1], [10] and [11] are
of these scatterers or clusters of local scatterers can mainly for nominal direction estimation. In this paper we
conceived as the sum of the contributions of multiple sulpropose an AS estimator (ASE) based on the estimates of
scatterers with slightly different azimuths of arrival (A®) the parameters in the GAM model. Furthermore, to improve
where only horizontal propagation is considered. We reftfte performance of this estimator a technique is introduced
to such scatterers or clusters of local scatterers as lglighvhich selectively modifies the aperture of the antenna array
distributed scatterers (SDSs) [2], [3] and [4]. The signdlly adjusting the number of elements in the As estimation
contribution of an SDS can be described by the nomintir each SDS. This technique is applied for ULAs but can
A0A (NAoA) and the azimuth spread (AS) of the SDS. be easily extended for use with two or three dimensional
Recently, different techniques for estimation of nominairrays.
azimuth and AS of SDSs have been proposed. These techThe organization of the paper is as follows. Section Il
niques can be grouped into two categories: i) methods baskxscribes the signal model. Section Il and IV introduce
on post-processing of the parameter estimates of specukspectively the ASE and the array size adaptation (ASA)
scatterers (SSs) and ii) standard estimation techniqueg ugechnique. Section V reports the simulation results. Con-
approximation models for the SDSs. cluding remarks are addressed in Section VI.
Category i) includes the methods proposed in [5], [6] and
[7]. These methods rely on visual inspection or grouping Il. SIGNAL MODEL
algorithms for identification of the SDSs based on parameterln a propagation scenario with a single SDS, the output
estimates of SSs. They are affected by the influence $ifjnal of al/-element Rx array can be viewed as composed
subjective grouping of these estimates. Furthermore, thkthe contributions of multiple sub-scatterers distréalit
heavy-tailed distribution of azimuth estimates deriveddnh with respect to the azimuth of arrival (AoA):

on the SS model [2] strongly affects the accuracy of the AS .
estimates. _ TN,

Category ii) includes the Spread-F technique derived yit) = [; aé(ﬁ)c(qﬂ_m)] s(B)+w(t), @)
based on a two-ray model [3], the COMET-EXIP [8] and the B =1ty .ty

SIOD approaches [9] using a stochastic distribution model,

as well as the subspace-based methods [1] and the SAGB® components of thé/-dimensional {/-D) complex

algorithms [10] [11] derived based on the Generalized Arrayector y(¢) denote theM output signals of the Rx array

Manifold (GAM) model proposed in [1]. The Spread-Fat time ¢, s(¢) represents the complex envelope of the

technique is less complex than the COMET-EXIP and SlODansmitted signal and the noise vecto(t) is a spatially

methods. According to [3] the Spread-F technique requiresd temporally whitel/-D Gaussian process with compo-
. . o o nent variances?. We assume that totallv observation

This work was conducted in cooperation with Elektrobit Testing Oy, Finland n%amp|es are collected at time instan¢gsn = 1,...,N.

was partly supported by the Network of Excellence in Wireless COMmunicatio
(NEWCOM). Moreover, the total number of sub-scatterers equatnd



the complex weight of the signal contribution from the I1l. THE AS ESTIMATOR

fth sub-scatterer is denoted hy(¢). The AoA of the , : :
(th sub-scatterer is decomposed as the sum of the Naoaldentity (3) suggests the following ASE of;

¢ of the SDS and a small deviatiofy, from ¢. Finally, \/ﬁ
0.2/0.2
B

c(-) =ler(), .- em(: )] with [-]T denoting transposition, 05 =

is the array response We assume tbéi,t) is such that

the space spanned by the vectors in the sum in (1) The estlmatesr?, and 02 can be obtained using standard

has dimension\/ with probability one. This supposes thatestimation techniques, such as the maximum-likelihood

L > M. UsuallyL > M. Additionally we assume thatt) estimator (MLE) derived based on the stochastic GAM

is known to the Rx. Without loss of generality(t) = 1. model [10]. Here the term “stochastic” means that the
The vector-valued functiom(¢) in (1) can be approxi- unknown parameters(t) and (¢ ) in (2) are assumed to be

mated by its first-order Taylor series expansiombalnsert-  stochastic. Alternatively? and o2 can be estimated from
ing the first-order Taylor approximation for eaetty+¢r) the MLEs of the instantaneous values @ft) and 3(t),

(%)

in (1) yields the so-called GAM model [1] t = t1,...,tn, derived based on the deterministic GAM
model wherex(t) and3(t) are assumed to be deterministic
Zaf P)+dec (§)] +w(t), [10]. In this case these estimates read
tN
( )e(@) + B()e () +w(t), t=t1,...,tn,(2) o3 = L3 1B)- < B(t) >
L L ~ _ t=t1
where a(t) = Sa,(t), A1) = Sat)ir, and¢(5) = _ i
_ 1 A 2
822?) Using matrix notation, (2) can be written g$t) = o8 = w2 lalt)—<a(t) >,
- t=t,
[F((qb))ﬁﬁ(())ﬁ w(t) with F(¢) = [e(¢) ¢/(¢)] and £(t) =
a(t), B(t)] . . P N
We assume that the deviations,,...,¢, are zero- with <f(t)>= E ﬁ( ) and <&(t)> E O‘( )-
mean uncorrelated random variables with identical vari- The ASE (5) can be applied for arbltrary array config-
ance o2. The weight processes;(t),...,az(t) are un- urations with non-isotropic array elements and when the

correlated complex (zero-mean) crrcularly symmetricavid transmitted signak(¢) is unknown. In the latter case(t)
sense stationary (WSS) processes with autocorrelati®fd 5(t) in (2) need merely to be redefined ast) =

function R, (7),...,Ra, (7) respectively. The azimuth Zar() (t) and B(t) = Eag( )WS()
deviations and the weight processes are uncorrelatéd. =1

As a consequence of these assumption§,) and j3(t) IV. THE ARRAY SIZE ADAPTATION TECHNIQUE
are uncorrelated complex circularly-symmetric zero-mean
WSS processes with correlation functiong, (7) = The discussion focuses first on a single-SDS scenario.

L 9 Simulation studies show that the ASE (5) is biased for all
2 Fa, (1) and Ry(r) = %% Ra(7) respectively. The AS values but a certain value, which depends on the number
azrmuth varlance% can be calculated by solving theqt array elements and the signal-to-noise ratio (SNR) (see

equation Fig. 2). This bias is due to the mismatch between the
02 = o2 . g2 @) approximation model (2) and the full model described by
A @ T (1). In (2) the signal space is spanned by the two vectors

where 02 = Rg(0) and 62 = R,(0). In this paper we c(¢) andc’ (¢), while the signal space spanned by the
consider the case where the impinging signal power Y&ctors in the sum in (1) has usually’ dimensions with
highly confined around the NAoA an®,, (0) = ... = probability one. The covariance matrix @f(t) generated
R, (0). In this particular caseg; expressed in radian using the GAM model (2) has two signal eigenvectors. It
provides a close approximation of the direction spread 6&n be shown by simulations that the ratio between the
the SDS [4]. We refer tr; as the AS in the sequel.largest and the smallest eigenvalues associated with these
Furthermore, we consider a time-variant environment ati0 signal eigenvectors is larger than a certain threshold
assume thaR, (|t, —t,|) =0, n#n', n,n’ =1,...,N, which depends on the SNR and the array aperture, i.e. the
or equivalently thatn(¢) and 3(¢) are uncorrelated white numberm of antennas in the ULA. The covariance matrix
random sequences. of y(t) generated using the full model (1) has usually

In a scenario withD SDSs, (2) becomes signal eigenvectors with probability one. The ratio betwee
the largest and the second largest eigenvalues increase whe
m decreases and vice versa. When this ratio is larger than
or equal toe, the signal generated by the full model (1) can
be closely approximated by the GAM model (2). The above
observation indicate that the array size can be adaptively

The signal models (2) and (4) can be easily extended delected in such a way that the ratio between the largest
include elevations of arrival of the sub-scatterers. Irs thaind second largest eigenvalues is larger than or equal to
case, the direction spread of an SDS can be characterin a D-SDS scenario where the signal contribution of
ized with close accuracy by the AS, elevation spread aedch SDS is described by the full model (1), the ratio
azimuth-elevation correlation coefficient of the SDS. Theetween the mean of thP largest eigenvalues and tte
reader is referred to [11] for detailed information on theext largest eigenvalues is calculated. A good approxanati
estimators of the above parameters and the required modsihg the GAM model to the received signal is obtained
extension. whenm is reduced if necessary, until the ratio is larger than

Zad e(6a) + Ba()e/(G0) + w(t), (&)

t=t1,...,tN.



or equal toe. Notice that in both single-SDS and multiple-
SDS scenarios, it may occur that the calculated ratio is
smaller thane for all possible values ofn. In this case,
m = M is selected for the AS estimation. 1%
The above array size adaptation (ASA) technique that
adjustsm specifically for each SDS is applied to ULAS in
this contribution, but it can be easily generalized to two
or three dimensional arrays. In the sequel, we refer to the |
ASE combined with the ASA technique as “ASA-ASE”.
Similarly the MLE and the SAGE algorithm derived with
the GAM model [10], are called the GAM “ASA-MLE”
(GAM-ASA-MLE) and the GAM “ASA-SAGE” (GAM- o ‘ ‘ ‘ ‘ ‘ ‘
ASA-SAGE) algorithm respectively. 0 5 1o (01?) . 2 5 30

Fig. 1. Estimatedr ™) versuso 3 with array sizem as a parameter.

m=7

m=3

A. ASA technique using Gerschgorin Radii

The ASA technique using the calculated eigenvalues
is difficult to implement from a practical point of View ymoqe| (2) in the noiseless case and calculate the GR. The
because the following reasons. First, the threshold a

functlpn of SN.R as the elg_envalues_ n _the calculatiore Ofcalculated respectively using the eigenvector associgitbd
contain both signal and noise contributions. Thus, a thr

) . : ie largest eigenvalue and the eigenvector corresponding t
dimensional look-up table which relates the threshold an g g g P g

. the smallest eigenvalue. Then the rafig”) = #{"™ /7™
the corresponding SNR and need to be pre-generated.S computed. It can be shown thaf™ depends on the

Second, in order to use the look-up table, the SNR of the

received signal generated using the full model (1) has Sdues ofm, the NAoA and the AS of the SDS, but it is

be known in advance. Moreover the number of SDSs ||J%dependeArgt ?f the power of the .SDS' Fig. 1 depicts the
hs of7\") versus the ASs: with m as a parameter

2> drap
assumed to pe_known as well. The latter two condnmr\%hen the NAOA is equal t@0° with respect to (w.r.t.) the
cannot be satisfied usually. . R

To solve these problems, we use Gerschgorin Radipreside .Of the array. A” the curves exhibit mini
(GR) calculated from the signal covariance matrix usingt @ Certain AS quer]%'ﬂg on. Studies also show that the
the unitary transformation described in [14] in the AsAalues of the minima ;= are nearly constant for a fixed
technique. It can be shown that when the number of samplgs@nd the NAoA within the array beam-width. Based on
is large,i) the GR associated with a noise eigenvector equdfese observations, we may conclude that the relationship
zero andii) the GR associated with a signal eigenvector 8™ > #\*) must hold if the GAM model (2) approximates
independent of noise. Since the GR does not depend on the full signal model (1) accurately. Thus, the values of the
noise components, the look-up table can be generated V\IluresholdSrt(}T) are set equal to the values Qﬂf
respect tom only. Thus, the SNR is not necessary to b

known in advance. In addition, as will be shown later thi%' Impl tation of the ASA technique

technique can be also used to estimate the number of SDSAS already mentioned, the AS value for which the ASE is
when this number is unknown. unbiased, say(f”), decreases whem increases. The value
We first focus on the scenario where the numbeof of m can be selected within the rang&/,,;,, M], where
SDSs is known. In this scenario, the Gsf?”) are computed, M,,;,, denotes the minimum array size required to estimate
where the superscriftn) denotes the number of the usedhe unknown parameters in the GAM model. Thus, if the
antennas and the Va|uef;-m), i=1,...,m—1 are sorted array size is selected appropriately the bias of the ASE can
in descending order. The ratio between the sum of the filgg@ maintained within a small range, ejg-0.5°,4-0.5°],
D GR and the sum of the secorfd GR is calculated. The provided the true ASy; ranges in[&QM) &QM“““)]. Notice
array size is selected in such a way that the ratio calculatgt 1/,,;, depends on the used As‘,bEs_ ﬁbor example, when
is greater than or equal to a pre-defined threshélﬂ). the MLE and the SAGE algorithm derived with the deter-
When the number of SDSs is unknown, we may firghinistic GAM model [10] are used, the projection matrix

obtained GR consist of two non-zero valuégf) andrém),

in

estimate this number by calculating g5 computed in the loglikelihood function becomes an
& ok identity matrix whenm = 2. Therefore,M,,;, has to be

T(m)(k) = Z"Em)/ Z 7’§m)> (6) :;'zlrger than2 to avoid this situation. The above restriction

p M) oes not apply for the MLE and the SAGE algorithm

derived with the stochastic GAM model [10] add,,;,, = 2

wherek € [1, | (m—1)/2]] is the possible number of SDSsig gelected.
and the notation- | means the largest integer not larger than |t js worth mentioning that reducing: results in a lower
the argument. The smallest value/osatisfyingT("™ (k) > intrinsic azimuth resolution of the array. As a consequence
7" with m being the largest possible value is viewed age variances of the GAM parameter estimates increase. In
an estimate of the number of SDSs. The array size usedler to maintain the resolution as high as possible, in a
to obtain this estimate is selected for the AS estimatiogingle-SDS scenario we choose the array size to be the
Investigations not shown here demonstrate that this meth@@ximum value ofm which provide the ratio calculated
performs good in estimating the number of SDSs where the in Section IV-A larger than the predefined thresholds.
SDSs differ in power by less thahdB. Moreover, if the selectedr is less thanM, the original

The threshoIth(}T) can be determined numerically asarray can be partitioned into sub-arrays with the selected
follows. We first randomly generate the signal of the GAMize. Then the GAM parameter estimators and the ASE



5]
& \\11\~\\ m=3
-5 T~ m=4
w T~ -
<0 ~Z7-m=6 10
m=8 —x- GAM-ASA-ASE
-15 : : : : : : : : —o Spread-ESPRIT
0 2 4 6 8 10 12 14 16 -15 : : ,
5 10 15
15 15

RMSEHs;) [°]

- o Xo oo DT |
0 5 10 15

a5 [°]
Fig. 2. AEEE ;) (Upper plot) and RMSEE;) (Lower plot) vs. the true AS value Fig. 3. AEEE -) (Upper plot) and RMSEE;) (Lower plot) vs. the true AS value
o with the array sizen as a parameter. o at input S,\ﬁq equal td 0dB.

2

are applied with these individual sub-arrays. The obtained- e R
estimates can then be combined into the final estimate, e.cx W s m e Ly
by simple averaging. 2]
The ASA technique can be used jointly for AS estimation < _, |
in multiple-SDS scenarios. We describe here the applicatio
of this technique with the GAM-SAGE algorithms [10]. In
the initialization step of the SAGE algorithms, when the
parameters of SO d = 1,..., D are estimated, the array
size is selected in such a way that the ratio between the sur—
of the D—d+1 GR and the sum of th® —d+1 next GR is
larger than the predefined threshold. The numberan be
either known in advance, or estimated using the proposec*

AEE

(;;)

©
o
w
%]
=

method. In the iterations following the initialization ptehe 2o = o s 0 15 20
ASA technique is implemented with the same procedure as Input SNR([dB]
described in the Slngle'SDS scenario. Fig. 4. AEEE ;) (Upper plot) and RMSEE:(JD) (Lower plot) vs. the input SNR

with AS o; = 8°. The legend for the curves is given in Fig. 3.
V. SIMULATION STUDIES i ¢ g g

Monte-Carlo simulations are performed considering first
a single-SDS scenario and then a two-SDS scenario. Each ) ) )
individual SDS consists of =50 sub-scatterers. The AoAs3 and Fig. 4 respectively. For comparison purpose, the
of the sub-scatterers are independent, identically vosebti SPread-ESPRIT technique, one of the Spread-F techniques
distributed random variables centered around the NAoA Bfoposed in [3], is also implemented for A§ > 3°. Fig.
the SDS. The complex gains of the propagation paths \3adepicts the AEE{;) and RMSEE( ;) versus the true AS
the sub-scatterers have equal amplitude and independ&ptwith the input SNR equal ta0 dB. It can be observed
[0, 277)-uniformly-distributed random phases. In additionthat the GAM-ASA-ASE outperforms the GAM-ASE in
the path gain phases and the AoAs are uncorrelated. Unffns of lower absolute AEE() and RMSEE;). The
The environment is assumed to be time variant. Totalf¢" large ASs. The GAM-ASA-ASE also returns lower
N = 50 realizations are considered in one simulation rulRMSEEE ) than the Spread-ESPRIT technique. It can be
The Rx array is a 8-element ULA with half-a-wavelengtipserved from Fig. 3 that for AS; < 2°, the GAM-ASE
spaced elements. The figures shown in the subsequent@d the GAM-ASA-ASE have positive AEE(), which
generated with 100 runs. increase when the AS degreases. This _behawor is d_ue to
is assessed in a single-SDS scenario firstly. Fig. 2 depiéts in (2) are close to zero, the signal space in the full
square estimation error (RMSEE)) versus the true AS Signal space of the GAM model (2) fails to provide accurate
value o~ with the array sizen as a parameter. The input@PProximations of the signal space in the full model. As a
SNR, i.e. the SNR at individual antennas, equeisdB. Cconsequence, the varianc% is estimated to be larger than
It can be observed that the ASE is unbiased only for itg true value, resulting in a positive bias in the AS estesat
certain AS value that increases when decreases. The Fig. 4 depicts respectively AEE() and RMSEE(;)
minima of RMSEE# ;) graphs coincide pretty well with the versus the input SNR with true AS equal &. It can
zero-crossings of the respective AEEI graphs, indicating be observed that the GAM-ASA-ASE performs the best
that when the array size is selected appropriately, both tagong the three estimators. In addition the Spread-ESPRIT
absolute AEEf:) and the RMSEE}({Q can be kept at a technique shows poor performance in the low SNR region.
reasonably low level. Simulation results not shown here also demonstrate that

The performance in a single-SDS scenario of the GAMyy simple averaging of the NAOA estimates obtained using
ASE and that of the GAM-ASA-ASE are reported in Figindividual sub-arrays, the GAM-ASA-MLE shows perfor-
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Fig. 5. RMSEE of the NAoA (Upper) and RMSEE() (Lower) for SDS, i.e. the
SDS with weaker power.

on the generalized-array-manifold (GAM) approximation
model proposed in [1]. This ASE is biased for all AS values
but one value depending on the number of antennas and
the SNR. This bias is due to the mismatch between the
signal described by the GAM model and the “real” signal
contributed by a SDS. To improve the performance of the
ASE, we proposed a technique which adapts the aperture of
the used uniform linear array (ULA) to each SDS selectively
by changing the array size, i.e. the number of antennas.
In this method, the array size is selected for each SDS
in such a way that the GAM model provides a close
approximation of the signal contribution of this SDS. As
a result, the ASE exhibits smaller bias and lower root mean
squared estimation error. This array size adaptation (ASA)
technique is applied to ULAs in this contribution but it can
be generalized to two or three dimensional arrays. It can
be implemented jointly with standard estimation schemes,

mance similar to that of the GAM-MLE. When the ASjjq the SAGE algorithm, for estimating the ASs of multiple

is large and the SNR is high, the GAM-ASA-MLE eve

"SpSs.

performs slightly better than the GAM-MLE. Moreover, the - gjmjation studies demonstrate that using the ASA tech-
Spread-ESPRIT technique returns large RMSEE for NAO&iq e improves the performance of the ASE. This improve-
estimates in the case of small ASs and low SNRs. Both thent is more pronounced in a single-SDS scenario when
GAM-MLE and GAM-ASA-MLE perform better than the he AS s large. In particular, the method outperforms the

Spread-ESPRIT technique in estimating the NAOA. conventional Spread-ESPRIT technique in both single-SDS

In the two-SDS scenario, the NAoAs of the first SDS 4 two-SDS scenarios.

(SDS) and the second SDS (SBP&qual respectively; =
30° and¢y =

for SDS, and SDS are13 dB and10 dB respectively, i.e.
we assume a difference 8fdB in power. The GAM-SAGE
algorithm derived with the deterministic GAM model [10]
and the GAM-ASA-SAGE algorithm are applied to estimate
the NAoOAs and the ASs for the two SDSs using 4 iterationgy)
The performance of the Spread-ESPRIT technique is also
reported. Each element in the pair of the computed NA0Ay;
estimates, say¢’, ¢"'), is assigned to one of the two SDSs

according to 3]

(¢1,02) =arg min [(¢',¢") — (1,62
(¢",9")e

{(6,0"),(8" ¢}

where|| - || is the Euclidean norm.

Fig. 5 depicts the RMSEE of the NAoA (RMSEf))
and RMSEKo ;) versus the true AS for the weaker SDS
(SDS,). The result is similar for the stronger SDS. It can
be observed that for; > 3° the GAM-SAGE and GAM-
ASA-SAGE algorithms perform similarly in estimating the
NAOA, while the latter performs better than the former in
estimating the AS. Both schemes outperform the Spread
ESPRIT technique. Notice that the improvement by using
the ASA technique is less significant than in the single-SD$!

(4]

5]

(6]

[7]

The proposed technique has low complexity and can be

nd¢, = —30° w.r.t. the array boreside. The two SDSgqily generalized to estimate the spreads in multipleedisp
have identical AS ranging from.1° to 9°. The input SNRS ;e dimensions (delay.

azimuth and elevation of departure

azimuth and elevation of arrival, Doppler frequency) of the
SDSs.
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