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Abstract-In this paper we derive an estimator for both time-
delay and angular channel propagation parameters of the diffuse
scattering component that is frequently observed in channel
sounding measurements. The joint angular-delay model leads
to correlation matrix with high dimensionality, which prevents
direct implementation of a maximum-likelihood (ML) estimator
using finite precision arithmetics and finite memory resources.
We derive low complexity methods for computing the ML
estimates that exploit the structure of the covariance matrices.
The estimator is based on a two step procedure: first, the
parameters of the power delay profile are estimated, as well
as measurement noise power. Then, using the estimated time-
delay parameters, the parameters of the angular distributions
are estimated. We present simulation results and compare the
estimated time-delay and angular distributions to the actual
distributions, showing that high precision estimates are obtained.

I. INTRODUCTION

In radio propagation it is usual to classify the signals that
reach the receiver as been originated by specular reflections
or scattering. The specular components usually carry most of
the power, and are modeled by a relatively large number of
deterministic signals with unknown parameters [ 1]. Scattering
is frequently regarded as noise and neglected. However, even
though each scattered wave arrives with low power, the overall
sum of scattering components can be significant, and even
dominant, especially in non line-of-sight (NLOS) situations.
This behavior has been observed in measurement campaigns
such as [2]. Also, in capacity studies of MIMO systems this
NLOS component is of high importance, and hence it is
necessary to derive estimation methods that are suitable for
the stochastic nature of this component.

Deterministic techniques for propagation parameter esti-
mation [1] commonly employ models with large number of
discrete waves. This approach leads to maximization of highly
non-linear likelihood functions with many local optima, which
causes convergence problems. The computational complexity
and variance of estimates are increased, since parameters of
a large number of waves need to be estimated. In addition, it
has been observed in [31 that, in case of diffuse scattering,
deterministic estimation techniques using the discrete ray
model may lead to some undesired artifacts. In [4], [5], a
scheme has been proposed for estimation of time-delay domain
behavior of this diffuse scattering component.

Typically isotropic scattering is employed in channel models
[6]. The channel model considered in this work is suitable for
non-isotropic scattering model, i.e., nonuniform distribution of
angles of arrival. The model stems from the MIMO channel
correlation model presented in [7], but it is also equivalent
to the channel model obtained in [8] for the system setup

being considered. The MIMO channel matrix may be de-
scribed analytically as a function of the parameters of the
underlying random processes. In [9], this model has been used
for estimation of angular channel propagation parameters, but
no information from time-delay domain channel propagation
parameters is used by the estimator.

In this paper we derive an estimator for the diffuse scattering
component that estimates both time-delay and angular channel
propagation parameters. The power-delay profile is modeled
using an exponential distribution, which is typically observed
in measurement campaigns. The power angular profile is mod-
eled using a mixture of Von Mises distributions. The mixture
distributions are employed in order to estimate the propagation
parameters in scattering environments with multiple clusters
of scatterers with high fidelity [9]. The estimation procedure
is divided in two steps. We propose a two step procedure to
estimate the power-delay profile and power-angular profile.
First, the parameters of the exponential distribution in time-
delay domain are estimated, as well as measurement noise
power. Then, using the estimated time-delay parameters, the
parameters of the angular distributions in angular domain are
estimated.
The joint angular-delay model leads to correlation matrix

with high dimensionality, which prevents direct implemen-
tation of a maximum-likelihood (ML) estimator using finite
precision arithmetics and finite memory resources. We derive
computationally efficient structures for computation of the ML
estimates that take full advantage of the structured covariance
matrices.

This paper is organized as follows: in Section II we describe
the signal model used in this article. In Section III the
technique for parameter estimation is described. Finally, in
Section IV we present simulation results and compare the
estimated time-delay and angular distributions to the actual
distributions.

II. SIGNAL MODEL

Assuming IVIr antennas at the receiver and Mt antennas at
the transmitter, the signal at the receiver is given by

Y(t) = Hw(t) * u(t) + N(t), (1)

where H is the Mll, x AMt spatial channel matrix, w(t) is the
channel impulse response, u(t) is the transmitted signal and
N(t) is zero-mean complex Gaussian noise. We can write

y(t) = hw(t) * a(t) + n(t), (2)
where y(t) = vec(Y(t)), h = vec(H), and n(t) -vec(N(t)).
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We can avoid the complexity due to the convolution between
the channel impulse response and the transmitted signal by
expressing vec(Y(t)) in the frequency domain. In frequency
domain the signal at the receiver can be expressed as

y(f) = hw(f)u(f) + n(f). (3)
We assume that the excitation signal u(f) is a multi-carrier

spread spectrum signal (MCSSS) [5], which is designed such
that u(f) is constant in the bandwidth of interest. Hence, the
expression above can be further simplified to

y(f) = hw(f) + n(f). (4)
Let Mlf be the number of observed frequency samples. We
then define the Al0 x 1 vector Y as

y(O) hw(O) + n(0)

y(if - )i1 = hw(Lh (f-1) + n(Alf-1)J
w ® h + ni,

where w = [w(O) ... W(.fA 1)]T,- ..
[nT(o) ... nT(Mf - 1)] T, A = MrMEltMlIf, and 0
denotes the tensor (Kronecker) product.
The channel sounding technique assumed in this work is

based on time division multiplexing of each transmitter and
receiver antenna, like in PropSound channel sounder [1].
This particular structure makes it possible to separate the
contribution from each transmitter and receiver antenna.
The defined channel matrix represents the combination of all

waves that impinge on the receiver array after being reflected
by the surrounding scatterers. Deterministic maximum likeli-
hood estimation techniques such as SAGE based [1] represent
the received signal as a combination of several discrete waves.
Consequently parameters from a large number of waves must
be estimated. Hence, the algorithms often have convergence
problems and the estimates contain artifacts due to local
minima in likelihood function.
The following assumptions are employed throughout this

article:
(a) if present, specular and line of sight components are esti-

mated separately and removed from the signal (Rayleigh
fading channel);

(b) the received signal Y is a zero-mean complex temporally
white circular Gaussian process;

(c) the channel is constant during one measurement cycle,
and we assume E[hj = 0 and E[w] = 0.

(d) the additive noise ni is a white zero-mean circular com-
plex Gaussian process with known covariance matrix,
Cn = E[nniHiH], and independent of w 0 h.

From assumption (b), the PDF of the received signal Y is
completely characterized by its M0I x Al0 covariance matrix

Cy =zE[yyH]=E[(w h+ii)(wohA+i)H]
= E[wwH] ® E[hhH] + E[-niH] (6)
CW (9 Ch + 'O I,

where I is the M0I x M0, identity matrix.

A. Delay and Frequency Domain Characterization
For the delay domain we use the model in [5], which is

based on the observation that the power delay profile has an
exponential decay over time and a base delay which is related
to the distance between the transmitter and receiver. The power
delay profile for infinite bandwidth is given by

0O T < Td~

+(T) = E[jw(T)j2] - cal/2, T
e BdI(TT, T>

(7)

where Bd is the coherence bandwidth, aU1 denotes the maxi-
mum power, and rd is the base delay.
The related power spectrum density is given by the Fourier

transform of (7) as

O(Af)= a t eei2fdI
f3d±J27rAf (8)

where /d = Bd/(Alffo) is the normalized coherence band-
width, and fo is the measurement center frequency. Let us
define the sampled version of the correlation function v(O,),
ow = l{a,, 3d, Td}, in frequency-domain as

e-j27(AIf -1)-r 1
... 3 j j (9)pd + j27 Alff ,

7

where Td is the normalized base delay.
Since the process is stationary in frequency domain, the

correlation between components at different frequencies is
given by

P(f1, f2) = (fi - f2), (10)
and hence the covariance matrix of the diffuse scattering is
modeled as a Toeplitz matrix

cw = toep(v(ow),v(ow)H). (1 1)

B. Angular Domain Characterization
Using the channel model in [7], [9] we can write E[hhH]

as a function of the angular parameters. It is assumed that the
receiver is surrounded by a large number of local scatterers,
and that the waves reflected by different scatterers arrive at the
array with the same power. A similar model is obtained in [8]
following a different approach, based only on the statistical
properties of the received waves, and not constrained to a
specific geometry of the distribution of scatterers.

For simplicity, we will consider the correlation at the
receiver only, and thus we assume Alt = 1. However, the
techniques can be naturally extended to double-directional
estimation. The cross-correlation between any two MIMO sub-
channels is given by

Plm - hE[hlh - J exp(blm cos(O))f(q)do, (12)

where Q is the path loss, f(0) is any angular PDF of X, blm =
j2idlm, dlm is the distance between elements 1 and m in the
receive array, and hl is the l-th element of h.

In channel measurements it is often found that the signal
is received as coming from a number of different clusters,
specially in bad urban scenarios. This is equivalent to a
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Fig. 1. Von Mises PDF for different values of r, with ,u = 0.

situation where the angular PDF f(0) in equation (12) is a
mixture of distributions,

p

f(f) =ECpf(), (13)
p=1

where P is the number of clusters, >P3L ep = 1, s are
unknown mixture proportions, and fp(Q) is any valid angular
PDF. An angular PDF must satisfy f(H) = f (O + 2irk) V k E
Z. Hence, a Gaussian PDF, which has infinite support, is
improper. The von Mises distribution [10] defined in angular
domain is more appropriate. It is defined as follows:

fp(0) -2o (r) exp(ncos( A-p)), (14)

where ,u is the symmetry center or "mean angle", es can be
chosen between 0 (isotropic scattering) and oo (extremely
concentrated), and Io(.) is the modified Bessel function of the
first kind of order zero. The representation power of the Von
Mises PDF for different scattering environments is illustrated
in Figure 1 for several values of ri. This representation assumes
the antenna elements are either omni-directional or that the
product of the antenna pattern and the actual angular distribu-
tion can be modeled by the mixture von Mises distributions
in (13).

Using (13) and (14), the cross correlation in (12) may be
written analytically as [7], [9]

= EEp Io({crp + blm + 2Kpblm cos(ppI)} 2 )E[hlh*j = 0( (15)
p=1

III. PARAMETER ESTIMATION
Let us denote by Ym the rn-th observation of Y, m =

1,... , M. Assuming Y is circular complex Gaussian and
that the realizations Ym are i.i.d., we can write the likelihood
function as 1M,
L (Y1,, ., YM8, )cX-log ICy -,, Ym C-Yl m X ( 16)

where XI, is the number of realizations or snapshots. We will
also assume the noise is circular complex white Gaussian with
variance ca.

In [5] a method is proposed that estimates Cw and the
noise variance assuming the input signal to be spatially white,

i.e., Ch = I. The method exploits the Toeplitz structure of
Cw, for the computation of the ML estimates, reducing the
computation complexity by avoiding the direct computation
of determinants and matrix inversions. Unfortunately it is not
possible to directly extend the method for joint estimation of
Cw, Ch, and Cn, since Cy in (6) is not Toeplitz in general.
Also, direct optimization of the likelihood function using (6)
is not feasible due to the high dimensionality of the matrices
involved. Typical values for Mlf and MIrIMt are in the range
Aif = [100, 2000], and M/lrMAlt = [4, 64], but higher values
can be used. This leads to Cy ranging from 400 x 400 to
128000 x 128000, or even higher.
We propose an estimation method that reduces the compu-

tational complexity by calculating the estimates in two steps:
(a) Optimize for the frequency-domain parameters and noise

variance using the algorithm in Section IlI-A.
(b) Optimize for the angular-domain parameters using the

procedure in Section IIl-B, with Cw as calculated in
the previous item.

With this two step procedure it is possible to exploit the
Toeplitz structure of Cw, for the computation of the ML
estimates. The covariance matrix to be manipulated in step
(b) is Ch only, which is typically much smaller than CG.

A. Frequency-Domain Parameters
An estimator for the frequency-domain parameters defined

in Section Il-A is derived in [5]. In [5] it is assumed that
the channel covariance matrix has the structure Cy = (C" +
oa2I) 0 I, i.e., the channel is assumed to be spatially white.
This is a special case of the situation depicted in equation (6).
We will use the estimator in [5] to provide an estimate

of the frequency-domain parameters prior to estimation of
angular-domain parameters. Even though we expect a loss
in performance due to correlation in angular domain, this
loss should not be significant, since the estimator has been
successfully applied to data originated from measurements,
providing reasonable estimates even in (possibly) correlated
environments.

Because of the whiteness assumption, the signal received
from each antenna is considered as an independent realization
of the diffuse scattering process. Let us define the Mlf x AIiAit
matrix X' whose columns are the signals received by each
antenna Mr, mr = 1, . .. , A/,. Since for the frequency-domain
estimator the diffuse scattering is assumed spatially white,
each column of X' is considered as an independent realization
of the random process. Assuming we have M]fI independent
measurements, we define the extended MA/f x MrMtAIs matrix
X whose columns are independent realizations of the diffuse
scattering.

Based on the definitions above, the estimator in [5] is
a maximum likelihood estimator that maximizes the log-
likelihood function

Lw oc(-lMrM\,ltAlis log(det(Cw(O0) + ca2I))- (17
-tr(XH (Cw (Ow) +±2 I) - 1X)

B. Angular-Domain Parameters
Assuming the number of mixture components in angular

domain, P, is known, the angular parameters are the pa-
rameters of the mixture of von Mises distributions: Oh =
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ll1,l i,* ., cp, t{p, Ep}, p-1,..., P, with Zp=1 ep=
1. Due to the model in (6), the path loss Q is already estimated
as part of the delay-domain parameters, and hence we use the
constraint Q = 1.

For the angular-domain parameters we follow an approach
similar to [9], but using the frequency-domain parameters
calculated previously. This division in two steps simplifies the
optimization procedure, since the parameter space is reduced,
but we still have not solved the problem of calculating the
determinant and inverse of Cy at every iteration.

These computations can be simplified by writing C as a
function of its eigenvalues and eigenvectors. Let us define the
matrix V, whose columns are the eigenvectors of C;,, and
the matrix Ay containing the eigenvalues of C in its main
diagonal. We can write

Cy = VyA vHX (18)

where we have used the fact that the eigenvectors of a
Hermitian matrix are orthogonal. Similarly, we can also define
Vw, A,, Vh, and Ah, such that

CW= VWAWVH (19)
Ch = VhAhVVH (20)

Substituting (19) and (20) in (6) yields

C= (VWAWVV) VH(V/A^V ) +21
-(VW 09 Vh)(Aw 8) Ah +±n4,I)(VW o Vh (

Comparing (21) with (18) we conclude that

Vy = Vw 0 Vh
y =A'$Ah+nI.

(22)
(23)

We can exploit the Kronecker structure of the eigenvalues
and eigenvectors of Cy to simplify the optimization procedure.
This allows us to compute only the eigenvalues and eigenvec-
tors of Cw and Ch, and then obtain Vy and Ay, The logarithm
of the determinant of Cy can now be calculated as

log ICyI 10og(|Vw 0 VhjIAw 0 Ah + cTIn Vw ® Vh l)

==log fJ(Aw 0XAh +±T1M){i}
j=1

Mo

=Elog ( (A,, 08 Ah + n 1AO) {j }) ' (24)
j=l

where A, and Ah are vectors containing the eigenvalues of
Cw and Ch,, respectively, 1 is a AI, x 1 vector whose entries
are equal to 1, and ( ){j} denotes the j-th element of (-). It
is clear that the computational complexity of calculating the
determinant is reduced, but another important observation is
that the exchange of the order in which the log is computed
allows for easier implementation with finite precision, since
the eigenvalues can assume very low values, specially for A,
due to the large number of frequency samples.
The computation of Cy 1 can also be simplified using

Cy = [(Vw 0 Vh)(Aw 0 A, +uhI)(VW 0 Vt')]
- (VW 0 Vh)(Aw 0 Ah + T2I)'(Vw 0 VfH).

(25)

Further simplifications are possible if we take into account
that Cw, is fixed while optimizing for Ch. Clearly, is not
necessary to calculate VH 0 VH and the multiplication of
the resulting M, x Mo matrix by Ym at every iteration of
(16), since Vw, and Ym are fixed. In order to simplify the
problem, we will define the transformed signal

Ym = (A 1/2VH 'I0MMt)Ymn (26)

The covariance matrix of Ym is given by

CY =(AW1/2VH AIMAI,t)E[YmYm](VwAW" 0'M,M1)
(IMf 08 Vh)(IMf 0 Ah + o-.W X M1M

*(iAIf X VhH)-
(27)

The covariance matrix Cy is block diagonal, implying that
blocks of Air elements of Ym are uncorrelated. Also, there is
no Kronecker product between the eigenvalues of Cw and Ch,
what simplifies numerical implementations. Consequently, we
will estimate the angular parameters using Ym instead of Yi.
The likelihood function for Ym is given by

L(Y1,., YMAI) c -logUCCj- ZYmCy Ym.z!) ArniS n

m=l
(28)

Let us define the Al, x Mo0 diagonal matrix A as

A = (IMf O)Ah +±2A-' ®IAI,I), (29)
and the Al0f x 1 vector A = diag(A). Now we can write the
likelihood function in (28) as

L(Yl, , YAIS) 9C- log Aj
J=1

- YrE(INIf 0 Vh)A (

(iMf Q9VH)Ym.
Let us define the Ml, x 1 vector Xm as

== (LA1 VH)Y0 (31)

A computationally efficient form for computation of Xm is
given by

X =vec(VH mat(yi,M,rAft, Alf )),
where the mat operator reshapes a vector into a matrix:

rnl x l-

mat M,AI,N = [alx1

V amxl

(32)

... aNx] . (33)

Finally, we can write L(Y1, . . . , YM) in a computationally
efficient form as

MO 1 MS
L(Y1, 7. YMJ) cx >log Aj - , E3 XfA 'Xm, (34)

j=l S=1

where it should be noted that the multiplication between a
diagonal matrix and a vector is element-wise multiplication of
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TABLE I
REDUCED COMPLEXITY ALGORITHM FOR ESTIMATION t)F FREQUENCY-

AND ANGULAR-DOMAIN PARAMETERS

the main diagonal and the vector. The ML estimates of Q0 =

{'uP ,A p}, p - 1, .. , P, are those values that maximize the
likelihood function in (34).
A further reduction of complexity is possible in the cal-

culation of the eigenvalues and eigenvectors of CG, since it
is a Toeplitz matrix, and hence it can be approximated by a

circulant matrix. A circulant matrix can be decomposed as

Rw = FDWFH, (35)

where F is the DFT matrix and Dw is a diagonal matrix with
the eigenvalues of R,. Hence, Vw, = F, and A_ = FHRWF.
The use of FF1' reduces even further the computational com-

plexity of A, and Ym in (26).
Table I summarizes the reduced complexity algorithm for

estimation of frequency- and angular-domain parameters.

IV. SIMULATION RESULTS
In this Section some simulations are presented in order

to illustrate the performance of the described optimization
procedure. The receiver has an ULA with AIr = 8 antennas
and the transmitter uses Nht = 1 antenna. The number of
frequency points is lf = 128, and AI, = 50. The received
signal is generated as

sa

c

-12
-16

0 0.2 0.4 0.6 0.8 I
Time, samples

Fig. 2. Comparison of estimated delay distribution and actual distribution.
The curves overlap almost perfectly.

100
Angle, degrees

Fig. 3. Comparison of estimated angular distribution and actual distribution.
The curves overlap almost perfectly. Also shown is the output of the Bartlett
beamformer.

y(k) = Rl/2n2(k) + n(k), (36)

where R1/2 is obtained by the Cholesky decomposition of
Cy, and n2(k) is a circular complex white Gaussian process.

For the frequency-domain parameters, typical values often
observed in channel sounding experiments are used: a2 = 0.1,
a, = 1, = 0.07, and r = 0.1. The angular-domain
parameters are defined as X {65°,90°}, r = {10,150},
= {0.5,0.5}.
In Figures 2 and 3 we compare the delay and angular

distributions plus noise obtained using the estimation proce-
dure described in this article with the actual distributions, re-

spectively. The estimator provides high-precision estimates for
both the time-delay distribution and the angular distribution.
The estimate of the angular distribution is compared to the
output of the Bartlett beamformer, showing the gain in using
a parametric approach for angular power spectrum estimation.

V. CONCLUSION
We propose a channel model for the diffuse scattering

component incorporating both frequency- and angular-domain
parameters, and derive an optimization procedure to compute
the stochastic maximum likelihood estimates with low com-

plexity. Since the estimation is done in a two-step procedure, a

performance loss is expected compared to the joint optimiza-
tion procedure. However, the simulation results show that high
precision estimates are obtained.
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1) Estimate frequency-domain parameters, 9w,? using method in
Section IIl-A.

2) Compute A_, (06) = FHR_F using FFT.
3) Compute Ym using (26) and FFT.
4) Optimize for angular-domain parameters, (Oh), using (34). For

each iteration compute:
a) Vh and Ah
b) X using (32).
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