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Abstract— Our goal is to characterize the traffic load in an
IEEE802.11 infrastructure. This can be beneficial in many do-
mains, including coverage planning, resource reservation, network
monitoring for anomaly detection, and producing more accurate
simulation models. The key issue that drives this study is traffic
forecasting at each wireless access point (AP) in an hourly time-
scale. We conducted an extensive measurement study of wireless
users on a major university campus using the IEEE802.11 wireless
infrastructure. We observed a spatial locality in the most heavily
utilized APs. We propose several traffic models that take into
account the periodicity and recent traffic history for each AP and
present a time-series forecasting methodology. Finally, we build and
evaluate these forecasting algorithms and discuss our findings.

I. INTRODUCTION

Wireless networks are increasingly being deployed and ex-
panded in airports, universities, corporations, hospitals, residen-
tial, and other public areas to provide wireless Internet access.
Furthermore, there is an increase in peer-to-peer, streaming, and
\oIP traffic over the wireless infrastructures[9], [8]. At the same
time, empirical studies and performance analysis indicate dra-
matically low performance of real-time constrained applications
over wireless LANs (such as [2] on the VoIP). Currently APs
do not perform any type of forecasting or admission control and
clients frequently experience failures and disconnections when
there is high demand in the wireless infrastructure.

The shared medium wireless LANs have more vulnerabil-
ities and bandwidth and latency constrains than their wired
counterparts. The bandwidth utilization at an AP can impact
the performance of the wireless clients in terms of throughput,
delay, and energy consumption. For quality of service provision,
capacity planning, load balancing, and network monitoring, it
is critical to understand the traffic characteristics. While there
is a rich literature characterizing traffic in wired networks ([11],
[10], [15], [7]), there are only a few studies available that
examined wireless traffic load. The key issue that drives this
study is forecasting in an hourly time scale. We aim to enable
APs to perform short-term forecasting in order to perform
better load balancing, admission control, and quality of service
provisioning. Specifically, they can use the expected traffic
estimations to decide whether or not to accept a new association
request or advise a client to associate with a neighboring AP.
In addition, the traffic models can assist in detecting abnormal
traffic patterns (e.g., due to malicious attacks, AP or client
misconfigurations and failures).
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In this paper, we study a large wireless infrastructure[1]
using a lightweight data acquisition methodology. Our data
was collected using the Simple Network Management Protocol
(SNMP), the most widely available monitoring service in wire-
less platforms. Any AP in the market supports monitoring using
SNMP, so it is important to understand how much operators
and researchers can learn from SNMP data. Furthermore, this
type of data is the most appropriate one to understand daily
and long-term trends in the usage of wireless networks, and it
provides a good foundation for traffic forecasting and capacity
planning. Other types of data, such as packet or flow level data,
are generally too detailed for this purpose, and their acquisition
is much more resource-intensive. This paper makes use of
SNMP data for analyzing traffic characteristics, such as total
load and periodicities. Then, we suggest some models and build
forecasting algorithms based on them.

We summarize our main contributions: We distinguish the
most heavily utilized APs and analyze their traffic load. We
discover that several of them exhibit spatial locality and diurnal
periodicities. We also observe diurnal periodicities at the total
traffic load of the wireless infrastructure and also at several
APs. Based on its periodicity and recent traffic history, we
propose several models for the traffic load at an AP. We build a
traffic forecasting methodology that employs these models and
evaluates their performance. To the best of our knowledge, this
is the first study on traffic forecasting using actual traces from
an IEEE802.11 infrastructure.

Section Il describes briefly the wireless infrastructure at
UNC, and data acquisition process. We define the hotspots and
discuss their spatial locality property in Section Ill. Section
IV focuses on forecasting algorithms and Section V presents
their performance evaluation. In Section VI, we discuss previous
related research. Section VII summarizes our main results and
discuss future work.

Il. BACKGROUND
A. Data acquisition

The IEEE802.11 infrastructure at the University of North
Carolina at Chapel Hill provides coverage for 729-acre campus
and a number of off-campus administrative offices. The uni-
versity has 26,000 students, 3,000 faculty members, and 9,000
staff members. Undergraduate students (16,000) are required to
own laptops, which are generally able to communicate using the
campus wireless network. A total of 488 APs were part of the
campus network at the start of our study. These APs belong to
three different series of the Cisco Aironet platform: the state-of-
the-art 1210 Series (269 APs), the widely deployed 350 Series
(188 APs) and the older 340 Series (31 APs).



The data in this paper was collected using SNMP for polling
every AP on campus every five minutes. We developed a
custom data collection system, being careful to avoid the pitfalls
described in [8]. First, the system was implemented using a non-
blocking SNMP library for polling each AP precisely every five
minutes in an independent manner. This eliminates any extra
delays due to the slow processing of SNMP polls by some of
the slower APs. The system ran in a multiprocessor system
and the CPU utilization in each of the three processors we
employed never exceeded 70%. Second, our characterization
of the workload of the APs is derived only from those clients
associated with the AP at polling time (and not from roaming
ones associated with a different AP).

The results in this paper were derived from SNMP data
collected between 9:09 AM September 29th 2004 and 12 AM
November 30th, 2004. The total number of polling operations
during the 63 days was 8,247,479. The data collection system
ran flawlessly for the entire period, but APs were sometimes
unresponsive. This is generally due to maintenance downtimes,
reboots, or overloads. If an AP did not respond to a poll, the
data collection system tried again after 5s (and if necessary,
again after 10s and 15s). It is therefore unlikely that datagram
losses created holes in our dataset.

Our dataset includes 14,712 unique MAC addresses which
were associated with one or more APs during the data collection
period. This means that the population of wireless devices at
UNC during our measurement was three times larger than the
one considered in Kotz et al.’s studies [9], [8]. We were unable
to collect association information from the oldest APs (the 31
Cisco Aironet 340s) using SNMP, so we do not consider them
in our study.

B. Traffic load notation

Based on the SNMP trace for each AP, we produce a time
series of its traffic load at hourly intervals. This traffic is the
total amount of bytes received and sent from all clients that
were associated with the AP at that time interval. In the rest of
the paper, depending on the mathematical expression, we will
use two notations for these time series. Specifically, the traffic
of the AP i during the h-th hour of day d, that corresponds to
time ¢, is T;(h,d) = X;(t).

I1l. HOTSPOTS APS AND THEIR SPATIAL LOCALITY

We would like to distinguish the most heavily utilized APs.
For that, we define the hotspots of the wireless infrastructure
based on three metrics, namely, the maximum hourly traffic,the
total traffic and the maximum daily traffic.

Hotspots based on maximum hourly traffic (set 1)

These are the top a% APs ordered by their maximum traffic
during an hour in the entire tracing period.

Hotspots based on total traffic (set 2)

These are the top a% APs ordered by their total traffic during
the tracing period.

Hotspots based on maximum daily traffic (set 3)

These are the top a% APs ordered by their maximum traffic
during a day in the entire tracing period.

Hotspot (main defi nition)

We define as a hotspot an AP that belongs in the top a% of
APs with the highest maximum hourly traffic and in the top a%
of APs with either the highest total traffic load or the highest
maximum daily traffic load (i.e., the set (set1 N (set2U set3))).
We will use this definition in the following sections.

We first investigate the spatial locality of the hotspots and
name two APs co-located, if they are placed in the same build-
ing. How likely is to find co-located hotspots in the campus?
We found that for =20, the percentage of co-located hotspots
is above 76% and 79% for the hourly and total-traffic based
definitions, respectively. 62% of the co-located APs belong in
the (setl N (set2 U set3))). For o = 10, the corresponding
percentages are about 11% smaller than their respective values
for a = 20. Note that, if using the uniform distribution, we
had randomly selected the same number of APs, the mean
percentage of co-located APs in those selections is 48%. We
are currently investigating other spatial locality properties of the
hotspots (such as visit duration, applications, number of distinct
clients, and usage patterns) and plan to report these results in a
followup study. For a = 10, there are 19 such APs.

IV. TRAFFIC LOAD MODELING AND FORECASTING

We will describe two different forecasting approaches,
namely, simple predictions based on historical means and recent
traffic and time-series forecasting. Our general methodology
consists of the following steps: (A) Time-series extraction, data
cleaning, and treatment of missing values; (B) Power spectrum
and partial autocorrelation analysis; (C) Data normalization and
traffic load modeling; and (D) Forecasting using the traffic load
models.

A. Time-series extraction and treatment of missing values

While our monitoring system requested traffic load infor-
mation from each access point precisely every five minutes,
missing values are relatively frequent in our dataset. They are
due to several reasons: (1) an access point may be down for
maintenance, or in the middle of an accidental reboot; (2) an
access point may be too busy to reply to an SNMP query; (3)
the network path between our monitor and the access point
may be temporarily broken; and (4) query packets and response
packets may be lost (they are transported using UDP). While
these pathologies are expected to be infrequent, our dataset is
large enough to contain numerous instances of each of them.
Thanks to the cumulative nature of SNMP counters, we were
able to reconstruct missing values quite accurately.

The basic technique for extracting an equally-spaced time-
series X = {z1,z2,...,z,} from SNMP data is to subtract the
cumulative counters from two consecutive polling operations. In
order to detect missing values and reboots, our polling samples
include not only the cumulative counters but also the time of
each polling operation, and the cumulative time that the access
point has been running since the last reboot (up time). This
means that the ¢-th polling sample for an access point has the
form (¢;,u;, c;), where ¢; is time of the polling operation, u; is
the cumulative up time, and ¢; is some cumulative counter (i.e.,
total load in bytes). Given two consecutive polling samples,



the load z; observed between ¢;_; and ¢; is generally equal to
¢; — ¢;—1. There are two exceptions. First, SNMP counters are
represented using 32 bits, so counters often wrap-around. We
consider that a counter has wrapped around whenever ¢; < 23°
and ¢;_1 > 3%2%0, In this case, z; is equal to ¢;+(232—1—¢;_1).
Second, after a reboot, all the counters in an access points are
reset. Therefore, if a reboot occurs at some point between ¢;_4
and t;, x; is equal to ¢; and the value of ¢;_; should not be
subtracted from ¢;. Reboots can be detected by checking the
value u; in each polling sample. If u; is significantly less than
t; — t;_1, the access point has been reset, and z; is equal
to ¢;. Otherwise, z; is equal to the subtraction of the two
cumulative counters. Note that resets may create situations that
look like a wrap-around, so the detection of the reboots should
be performed before the detection of the wrap-arounds.

When all of the polling operations are succesful, ¢; — ¢;_1
is equal to the polling interval (i.e., 5 minutes). However,
when a polling operation fails, ¢; — t;—1 is a multiple of the
polling interval. If this is due to an access point reboot, the
counter ¢; only reports on the activity since the reboot operation.
Therefore, ¢; becomes the last value of the time-series. The
values between ¢;_; and ¢;, for which no polling samples were
available, are set to zero (access points have no load while off-
line). If no reboot took place, the ¢; — ¢; 1 does not correspond
to a single z; but to the m values of the time-series between
t;_1 and t;. In this case, we perform linear interpolation and
set each intermediate value of the time-series to (¢; —¢;—1)/m.
Finally, note that ¢; — ¢;—1 is not always exactly equal to
the polling interval (or a multiple of it). The most significant
cause is the retransmission mechanism in our SNMP monitor,
which retransmits unanswered requests up to three times. Each
new request is spaced by 5 seconds. Therefore, the maximum
deviation of ¢; — ¢;_1 with respect to the polling interval is
20 seconds, and our time-series extraction program takes into
account this deviation.

B. Spectrum analysis

We find that the aggregate hourly traffic for all APs in the
infrastructure exhibits diurnal and weekly periodicities. Similar
trends are observed in the hourly traffic for several APs by
autocorrelation plot and spectrum analysis. 10 out of the 19
hotspots have a clear spike at 24 hours/cycle and do not have a
high frequency variation. Also, some APs have weekly patterns
at around 168 hours/cycle.

Figure 1(a) and (b) show the time series and spectrum plots of
the hotspot AP 472. This AP exhibits strong diurnal periodicity.
There are other APs with no clear periodic pattern, for which
there is little prediction power among the historical data. Further
smoothing does not appear to be helpful, at least with our
current relatively short traces.

C. Forecasting using historical means and recent traffic

First, we model the traffic load at an AP during an hour.
The model facilitates the diurnal and weekly periodicity of the
traffic load. We define the historical mean hour traffic of an AP
as the mean of the traffic during that hour for each day in the
history of that AP (Vg4,ys days). We only consider weekdays.

For example, the historical mean-hour traffic for AP ¢ is defined
as

Ngays
pi(h) = (1/Nweekdays) X Y Ti(h,d) x IsAW eekday?(d),
d=1
where h = 1,...,24 and IsAWeekday?(d) is a binary indi-
cator function that specifies whether or not the d-th day is a
weekday, and Nyeekdays = o0 e’ IsAW eekday?(d).
Similarly, the historical mean hour-of-day traffic is the mean
of the traffic at such hour of day in the history of that AP. For
example, the mean hour-of-day for AP ¢ is defined as

Nda.ys

pi(h,1) = (1/nw(l)) x > IsWeekday?(k,1) x Ti(h, k),
k=1

where h =1,...,24, [ “runs” from “Mon” through “Sun”, and

Niays
nw(l) = Z IsWeekday?(k,1).

k=1
The IsWeekday?(z,l) is a binary indicator function that
specifies whether or not the z is a weekday . The nw(l) counts
the total number of weekdays [ (e.g., the number of Mondays).
For example, for the u;(2), we take the historical mean of the
traffic at AP ¢ for all days in the history at 2am. Similarly, for
the p;(2, “Mon”), we compute the mean of the traffic of all
Mondays at 2am.

We taylor two simple models based on the historical mean

hour and mean hour-of-day. Specifically, for each AP (e.g., AP
i), we define the models Z} and Z?2, as follows:

(P1) Z}(h,d) = s(h)
(P2) Z2(h,d) =

b

le{Mon,..,Sun}

To incorporate the recent traffic information in the traffic model,
we compute the mean traffic during the last w hours. For each
AP (e.g., AP %), we introduce the weighted average of the recent
traffic mean and the historical mean hour and hour-of-day, Z3
defined as
t—1
(P3) Z}(h,d)=ax (1/w) Y  X(k)+
k=t—w

b x pi(h,d) + ¢ x pi(h).

We experiment with different window sizes and weights to
evaluate the impact of the recent history and periodicity on
forecasting. Note that the P3 with weights (a,b,c) equal to (1,0,0)
and history window w has the form of an autoregressive process
of order w, AR(w). In that case, the prediction takes into
account only the recent traffic history instead of the periodicity.
We can specify the weights of the P3 using multiple linear
regression. The purpose of the multiple linear regression is
to establish the relationship among the group of predictors,
namely, the history window, historical mean hour traffic, and
the historical mean hour-of-day. This allows us to understand
which predictors have the greatest effect. The linear model takes
the form y = Xb+ e, where y is a vector of observations, X is
a matrix of independent variables (regressors/predictors) and e

IsWeekday?(d,1) x p;i(h,l).



is a vector of random disturbances. Multiple linear regression
aims to obtain the best fitting curve by minimizing the least
square errors (Y7, [y — (X)) = S0, [y — (0X)]?). P3
with weights defined using multiple linear regression is denoted
as P3-MLR.

We propose three simple prediction algorithms based on the
aforementioned models. P1 and P2 use the historical means to
compute the Z¥(h,d), k = 1,2 for P1 and P2, respectively, and
predict the traffic load of AP ¢ during the ¢-th time interval (that
corresponds to the h-hour of day d). P3 integrates the historical
means of hour and hour-of-day with the recent traffic history.
More specifically, P3 is an one-step ahead prediction algorithm,
since for the recent traffic, it uses the actual traffic values as
opposed to the predicted ones (for the next-hour prediction).

D. Normalized ARIMA based time-series forecasting

There are hotspot APs whose traffic load shows strong diurnal
periodicity. Figure 1(a) shows the time series plot of the hourly
traffic load at AP 472, from which one can observe a clear
diurnal pattern as well as a possible weekly pattern. To verify
their existence, we plot the corresponding power spectrum in
Figure 1(b). The plot indicates that the most dominate period is
the 24-hour one, with smaller ones corresponding to 12 hours
(day/night), and 168 hours (weekly period). Similar periodicities
are observed in several other APs as well. The existence of such
strong periodicities motivates us to consider forecasting traffic
load using some time series models like ARIMA. Intuitively,
one would expect such models will have a better forecasting
performance than the aforementioned three algorithms. Because
such models take into account the strong periodic patterns
as well as the auto-correlation among the hourly traffic load.
Below we propose one such time series forecasting model using
illustration with the traffic load observed at AP 472.

Suppose X;(t) is the traffic load within hour ¢ at a particular
AP i (e.g., AP 472). Due to the nature of the wireless network
traffic, X472(t) has local spikes that are very hard to predict as
illustrated in Figure 1(a). In addition, it most likely has a skewed
marginal distribution. Figure 1(c) plots the normal quantile plot
of Xy72(t) for AP 472, which clearly suggests the marginal
distribution of the traffic load is heavily skewed to the right.
This calls for a suitable transformation to make the data closer
to a normal distribution. Such a transformation can reduce the
effect of those local spikes on the forecasting performance. In
addition, standard time series modelling procedures are most
suitable for situations with normal data [5]. After experimenting
with different transformations, the 1/4 power transformation,
Y(t) = Xi7/§(t), seems to give the best result. In particular,
Figure 1(d) gives the normal quantile plot for the transformed
load Y'(¢t) at AP 472. As one can see, Y (¢) is much closer to
be normally distributed, and does not have extreme outliers as
those in Figure 1(d). The following model will be performed
on Y (¢).

We first point out that Y'(¢) exhibits strong non-stationarity in
both the mean and the variance. Figure 2(a) plots the bimodal
changing patterns of its mean, median, 25-th percentile and 75-
th percentile as functions of hour-of-day (h(t)), which shows
that both the mean and the percentiles change across the day. For

example, the mean curve suggests that there is very little traffic
between midnight and 7-8AM; then the load starts to increase
until it reaches the first mode around 10AM and stays flat until
noon; after lunch-break, the load increases again to the second
mode around 3PM before it starts to decrease until midnight.
Very sensible explanations can be given for such a diurnal
pattern. Similarly, Figure 2(b) indicates the diurnal patterns for
the standard deviation and Inter Quartile Range (IQR) (i.e.,
the difference between the 25-th and 75-th percentiles). The
plot suggests that there is increasing variability in the traffic
load during 7AM-10AM and 1PM-3PM, exactly when the load
increases. In addition, the variability stays small between 10AM
and 1PM.

The above exploratory data analysis motivates us to normalize
the transformed load Y (¢) in the following way,

Y (t) — pn
Oh(t)

e(t) =

where h(t) is the corresponding hour-of-day for time #, pp ) is
the mean of Y'(¢) during those time periods with the hour-of-day
being h(t) while oy, is the standard deviation of Y'(¢) during
those time periods, and e(t) can be treated as a normalized
version of Y'(t). Note that ;) and o) have been plotted in
Figure 2(a) & (b) for AP 472.

After the normalization, we can assume e(t) to be a stationary
time series as shown in Figure 2(c). The corresponding partial
autocorrelation function (Partial ACF) (Figure 2(d)) suggests
that an AR(1) model is reasonable for the normalized time
series, e(t). Thus, we fit a family of AR(p) models to e(t)
using the Yule-Walker method and select the approximate order
p by minimizing the Akaike Information Criterion (AIC). See
Brockwell and Davis (1998) for details about the estimation
method and the model selection criterion, AIC. Note that the
order p specifies the number of lagged variables in the time
series model and the AR(p) model is written as

e(t) =are(t—1) +... 4+ ape(t — p) + n(t),

where n(t) is the model residual.
As for the load at AP 472, p is selected to be 1 and the fitted
AR(1) model is

e(t) = 0.5689%(t — 1) + n(t) @)

with the residuals n(t) being normally distributed with mean
0 and variance 0.6349. One can then use (1) to predict the
traffic load during the next hour, corresponding to time (¢ + 1),
Xar2(t+1). First, a point prediction for e(t+1) can be obtained
as

é(t+ 1) = 0.5689%¢(t);

then Y (¢ 4+ 1) can be predicted as

A~

Y(t+1) = pin(e+1) + Ongerr) X €+ 1).

Finally, a point forecast for X472( + 1) is obtained by back-
transforming Y (¢ + 1),

X(t+1)=Y4t+1).

Also, we can define the e-tolerance prediction intervals for this
point prediction as described in Section V-A.
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In general, our proposed time-series forecasting approach can
be summarized as follows:

1) Transform the load in a reasonable way to make the data
more normally distributed. Note that the transformation
here is subjectively chosen, and it seems to be working
well in the current application. We intend to work out a
more automatic procedure to decide on the appropriate
transformation in the future for better generalization.

2) Investigate time-varying patterns of the mean and vari-
ability of the transformed load.

3) Normalize the transformed load if the mean and variabil-
ity are indeed time-varying.

4) Develop standard time series models like AR(p) for the
normalized series, and employ rigorous model selection
procedures like AIC to select the optimal model.

5) Perform one-step-ahead or multi-step-ahead forecasting
on the normalized series using the fitted model, and then
back-transform the forecast to the original scale.

V. EVALUATION OF THE PERFORMANCE OF THE
FORECASTING ALGORITHMS

A. Metrics: prediction error ratio and percentage of correct
predictions

To evaluate the performance of the prediction algorithms, we
compute the prediction error ratio which is the ratio of the
absolute difference of the predicted from the actual traffic over
the actual traffic (r). For the prediction of the traffic of AP ¢
at time ¢, the prediction error ratio r(¢) is defined as r(t) =
|ZF(t) — X;(t)|/ Xi(t), for prediction algorithms k = 1,2,3. A
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t Lag
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(a)Changing patterns of mean, median, and quartiles of Y'(¢). (b) Changing patterns of standard deviation (SD) and inter-quartile range of Y (¢). (c)

perfect prediction algorithm has prediction error ratio equal to
0.

The prediction algorithms apply a predicted interval based on
the historical mean and a tolerance (or precision) error level.
Specifically, we define the e-tolerance prediction interval from
a mean yu to be the interval [(1 — €) * pu, (1 + €) * u]. The
prediction algorithm computes the percentage of times that the
actual traffic is in the predicted interval. For example, in the
case of the prediction Py, k = 1,2,3, for the traffic of AP 4
during the h-th hour of day d, it computes the prediction interval

[(1 =€) * ZF(h,d),(1+¢€) * ZF(h,d)],

and checks if X;(¢) is in that interval.

A good prediction algorithm should have a high correct
prediction percentage and low prediction error ratio. A large
prediction error ratio indicates large prediction estimates and
may result in conservative prediction and resource underutiliza-
tion.

B. Forecasting using historical means and recent traffic (P1,P2,
P3)

For all the aforementioned prediction algorithms, we com-
puted the means based on the history for each AP. The history
corresponds to three weeks of the trace, excluding weekends
and starting on Monday, October 18th, 2004. We predict the
traffic for each AP, for all the hours during the weekdays of the
following week (Monday, November 8th until Friday, November
12th). We call this period forecasting period. For P3, we varied
the recent history window size to be 2, 3, 4, and 5 hours. We
evaluated P3 for various values of a,b, and c, including also
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values resulted from applying multiple linear regression for each
AP. Figures 3 show the histograms of the percentage of correct
predictions for the P1, P2, and P3 considering all APs. P3
outperforms P2 and P1 with respect to the correct predictions
percentage. P3 also outperforms P2 and P1 with respect to
the correct predictions percentage, when we only consider the
hotspots. Specifically, for a window of two hours and (a,b,c)
equal to (1,0,0), P3’s percentage of correct predictions for a
25%-tolerance prediction interval has a (mean, median, std.
deviation) equal to (34.17%, 24.17%, 22.86%).

The mean percentage of correct predictions of hotspots for
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Fig. 7. Median prediction ratio for the P3 and NAMSA forecasting algorithms
for each hotspot.

an e-tolerance is the average of the percentages of correct
predictions for that e-tolerance considering all hotspots. The
mean prediction error ratio of hotspots is the average of the
mean prediction error ratios considering all hotspots. In the
same manner, we compute their median and std. deviation.
For the same e-tolerance, P2 has a lower percentage of correct
predictions than P3 but higher than P1 (for both median and
mean prediction of correct percentages). Similarly, the median
prediction error ratio for P3 is lower than for P1 and P2 (see
Figure 5). On the other hand, P3’s mean prediction error ratio
is lower than P1’s and higher than P2’s one. The high mean



prediction error ratio of P1, P2, and P3 are due to the high
variability in the traffic.

C. Normalized ARIMA multi-step ahead time-series forecasting
(NAMSA)

Using the same 3-week data (as in the other prediction algo-
rithms), this normalized ARIMA multi-step ahead time series
forecasting performs as follows. As Figures 6 and 7 illustrate,
the prediction error ratio of the AP 472 (hotspot id 18) has a
mean, median, and SD of 1.42, 0.72, and 3.77, respectively. Its
correct percentages are 17.5%, 9.17%, and 6.67%, for a 25%,
10%, and 5%- tolerance prediction interval, respectively. The
corresponding percentages for P1 are 20%, 10% and 6.67%, and
for P2 20%, 18.33%, 16.67%, respectively. For a 25%-tolerance
prediction interval, P3 with a two-hour window size and (a, b,
c)=(1, 0, 0) has a 24.17% correct prediction percentage.

We apply the NAMSA algorithms (described in Section V-
D) to the 19 hotspots APs and the result is compared with
the three aforementioned algorithm below. Note that the order
of the AR(p) model is adaptively selected using AIC for each
AP separately. Figures 6 and 7 illustrate the mean and median
prediction error ratio of the P3 with weights (a,b,c)= (1,0,0),
P3 with weights fitted using multiple linear regression, and
NAMSA forecasting algorithm for all hotspots. Compared to
the simple prediction algorithms P1, P2, and P3, the NAMSA
algorithm results in better values for the mean and the SD of the
error ratio (Figure 6). On the other hand, the median of its error
ratio is a bit worse than that of the P3 algorithm (Figure 7). This
forecasting algorithm is a multi-step-ahead forecasting. That is,
to predict a value, apart from the traffic model, the multi-step-
ahead forecasting uses the recent predicted values instead of the
actual ones. This makes the prediction even harder than the one-
step ahead forecasting that uses the actual recent values like P3.
We expect better performance when we use this algorithm for
one-step ahead forecasting.

Note that P3 with weights fitted using multiple linear re-
gression performs worse than P3 and NAMSA (with respect to
both mean and median error ratio). This is due to the difference
in the metrics used: The prediction error ratio (as defined in
Section V-A) is the ratio of the absolute difference of the
predicted from the actual traffic over the actual traffic, whereas
the multiple regression minimizes the square difference. When
we use as metric the difference of the predicted from the
actual traffic in square, we can observe that the mean of
the overall improvement of P3 (with multiple regression) for
hotspots reaches 26%. Furthermore, we found that the dominant
regressor in the weighted sum of P3 is history (for all hotspots).
Specifically, in average, the recent history predictor participates
in P3 with a percentage of 43.8% while historical mean hour and
historical mean hour-of-day percentages are 41.1% and 15.1%,
respectively.

VI. RELATED WORK

There is only a small number of measurements studies
that have examined the workload of 802.11 APs in produc-
tion environments. In general, these studies have considered
a wider range of issues, such as overall usage of a wireless

infrastructure, and client mobility patterns, providing only a
limited picture of the utilization of APs. Our work characterizes
the workload of APs in a more systematic manner, and the
results should have implications for the design of new wireless
equipment and its evaluation.

Tang and Baker [14] used tcpdump traces and SNMP data
to study a building WLAN with 12 access points and 74 users.
Their only AP-specific results have to do with the variability
in the maximum number users (between 3 and 12), and small
number of handoffs (at most five within a five-minute period).
Balazinska and Castro [4] used SNMP to characterize a much
larger wireless network in three IBM buildings (177 APs). Their
study examined the maximum number of simultaneous users
per AP (mostly between 5 and 15), total load and throughput
distributions. Two interesting observations found in this paper
are that offered load and number of users are weakly correlated,
and that user transfer rates are dependent on the location of
the AP. Balachandran et al. [3] performed measurements in
a three-day conference setting, also focusing on the offered
network load and global AP utilization. They characterized
wireless users and their workload and addressed the network
capacity planning problem. The overall bursty behaviour and
peaks and troughs are similar at all APs, though the absolute
peak throughout at each AP varies. They observed that offered
load is more sensitive to individual client traffic characteristics
rather than just the total number of clients.

In an earlier study [6], we evaluated the performance of
different caching paradigms in a wireless infrastructure. For
example, we found tha unlike other measurement studies in
wired networks in which 25% to 40% of documents draw 70%
of web access, our traces indicate that 13% of unique URLS
draws this number of web accesses.

Kotz et al. [9], [8] studied the wireless network at Dartmouth
College using syslog, SNMP, and tcpdump traces. Their first
study [9] reported the distribution of average daily traffic for
451 APs, which ranged from 39 MB to more than 2 GB, and
observed that maximum daily traffic was far larger than the
average daily traffic. In their follow-up study [8], they reported
the average number of active cards per active AP per day (2-
3 in 2001, and 6-7 in 2003/2004), and average daily traffic
per AP by category (2-3 times higher in 2003/2004; twice or
thrice more inbound than outbound traffic). A subset of the
same data (syslog messages and tcpdump traces from 31 APs
in 5 buildings) was revisited by Meng et al. [12] for flow
modeling purposes. The authors proposed a two-tier (Weibull
regression) model for the arrival of flows at APs and a Weibull
model for flow residing times, and they also observed high
spatial similarity within the same building. This paper makes a
compelling case against Poisson modeling of wireless flows (at
least for busy APs). They discovered that the flow size can be
best approximated by a lognormal distribution.

Recently, Papagiannaki et al. [13] modeled the evolution
of aggregated IP backbone traffic at large time scales, and
developed long-term (up to 6-month ahead) forecasting models
that can be used for capacity planning purposes. In particular,
they analyzed eight inter-PoP aggregate demand time series
from October 2000 to July 2002 with a granularity level of 90
minutes. Wavelet multi-resolution analysis (MRA) and ANOVA



techniques are employed to pick out two dominant signals in
the traces, the overall long-term trend and the 24-hour diurnal
periodicity. Linear time series models are then proposed on the
weekly-aggregated long-term trend and deviation to perform
traffic forecasting.

There are some similarities between their study and our
current work. Both studies make use of the daily/weekly
periodicity in the traces, and propose time series forecasting
models. However, our current work uses wireless traffic load
measurement, and focuses on short (or middle) term forecasting
(2-week ahead) on individual APs. As a result, there is no
obvious long-term trend in our traces. In addition, our traces
are much shorter (63-days) and less aggregated, which results in
a much larger variability and a harder prediction task. Another
difference is that we use the tolerance interval as a performance
measure, which is usually much narrower than the variance-
based prediction confidence interval. This explains partly the
seemingly bad coverage property in Sections IV and IV-D.

VII. CONCLUSIONS AND FUTURE WORK

We noticed in the APs’s traffic some hours with unexpectedly
low (compared to the historical means) values. In the current
work, we proceed with the prediction without pre-processing
these values. A more rigorous approach is to impute those
entries with some estimates, such as the mean traffic load during
the same hour-of-day from the other days. We expect that it will
improve the prediction performances of the algorithms and plan
to investigate this further. We intend to study more systemati-
cally the spatial correlations of APs and classify APs based on
various parameters (e.g., traffic characteristics, building type,
number of associations, and distinct clients). Furthermore, we
aim to explore the impact of the above parameters and spatial
correlations on forecasting.

The trace collection is still ongoing. We plan to investi-
gate forecasting in various time-scales. Shorter-term forecasting
(e.g., next minute) can assist in designing more energy-efficient
clients. Long-term forecasting is essential for capacity planning
and understanding the evolution of the wireless traffic and
networks. For that, we will study the performance of MRA on
a longer trace once it becomes available, and compare that with
[13].

This research is a part of a comparative analysis study on
wireless access patterns in various environments, such as a
medical center, research institute, campus, and a public wireless
network. We intend to analyze traces from testbeds in these
environments and contrast their traffic models. We believe that
understanding and forecasting the traffic of APs can have a
dominant impact on the operation of wireless APs and clients
and this study sets a direction for exploring further these issues.
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