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OPPORTUNISTIC SCHEDULING AND BEAMFORMING FOR MIMO-SDMA
DOWNLINK SYSTEMS WITH LINEAR COMBINING

Man-On Pun, Visa Koivunen and H. Vincent Poor

ABSTRACT

Opportunistic scheduling and beamforming schemes are pro-
posed for multiuser MIMO-SDMA downlink systems with lin-
ear combining in this work. Signals received from all anten-
nas of each mobile terminal (MT) are linearly combined to im-
prove the effective signal-to-noise-interference ratios (SINRs).
By exploiting limited feedback on the effective SINRs, the base
station (BS) schedules simultaneous data transmission on mul-
tiple beams to the MTs with the largest effective SINRs. Uti-
lizing the extreme value theory, we derive the asymptotic sys-
tem throughputs and scaling laws for the proposed schedul-
ing and beamforming schemes with different linear combining
techniques. Computer simulations confirm that the proposed
schemes can substantially improve the system throughput.

I INTRODUCTION

Multiple-input multiple-output (MIMO) technology employing
multiple transmit and receive antennas has emerged as one of
the most promising techniques for broadband data transmis-
sions in wireless communication systems [1]. In particular, re-
cent studies have shown that MIMO can substantially increase
the sum-rate capacity of a downlink system where a base sta-
tion (BS) communicates simultaneously with multiple mobile
terminals (MTs) [2]. However, the capacity achieving strat-
egy using dirty paper coding not only incurs high computa-
tional complexity but also requires perfect channel state infor-
mation available to the BS [2]. To circumvent these obstacles,
opportunistic beamforming with proportional fair scheduling
(OB-PFS) has been proposed in [3] as an effective means of
achieving the asymptotic sum-rate capacity by exploiting mul-
tiuser diversity with limited channel feedback. In OB-PFS, the
downlink transmission time is divided in slots comprised of
mini-slots. Users’ channels are assumed to be approximately
invariant during one slot but may vary from one slot to another.
In the beginning of each slot, the BS broadcasts one pilot sym-
bol weighted by a randomly generated complex vector (also
referred to as the random beam). Then, each MT evaluates the
signal-to-noise ratio (SNR) by exploiting the pilot signal and
feeds back the SNR information to the BS. Taking into account
fairness, the BS schedules data transmission to the MT with
the best normalized instantaneous channel condition through-
out the rest of the slot. Recently, some extensions of [3] em-
ploying multiple beams have been developed [4,5]. Regardless
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of the number of beams employed in [3-5], these opportunistic
schemes schedule only one MT in each slot, and so can gener-
ally be considered to be the time-sharing scheduling schemes
(TS-SS). In contrast, [6] has proposed an opportunistic space-
division multiple access-based scheduling scheme (OSDMA-
SS) employing multiple orthonormal beams to serve multiple
MTs simultaneously in each slot. Denote by M and N the
number of transmit and receive antennas, respectively. It has
been shown recently that the sum-rate of OSDMA-SS grows
linearly with M whereas that of TS-SS increases only linearly
with min(M, N) [7]. In addition to the more rapidly growing
scaling law, OSDMA-SS is particularly attractive for practi-
cal systems with stringent latency requirements since multiple
users can be served during each time slot.

In OSDMA-SS, the BS broadcasts pilot signals weighted
by multiple orthonormal beams in the beginning of each time
slot [6]. For each single-antenna MT, it evaluates the signal-to-
interference-noise ratio (SINR) on each beam and feeds back
information on its desired beam with the highest SINR. As-
suming that each beam is requested by at least one MT, the BS
awards each beam to the MT with the highest corresponding
SINR among all MTs. For MTs with multiple receive anten-
nas, [6] proposes to let each antenna compete for its desired
beam as if it were an individual MT. As a result, each beam is
assigned to a specific receive antenna of a chosen MT. Since
signals received from the undesignated antennas of a chosen
MT are discarded, [6] entails inefficient utilization of multiple
receive antennas.

In this work, we propose opportunistic beamforming and
scheduling schemes with different linear combining techniques
for MIMO-SDMA downlink systems. In contrast with [6], sig-
nals received from all antennas of a chosen MT are jointly
exploited to improve the effective SINR through the use of
low-complexity linear combining techniques. Then, the M
effective SINRs are returned to the BS and employed as the
scheduling metric. Using the extreme value theory, we prove
that the cumulative distribution functions (CDFs) of the ef-
fective signal-to-interference ratios (SIRs) obtained with dif-
ferent linear combining techniques converge asymptotically to
the Frechet-type limiting distributions. Based on the limiting
distributions, we derive the asymptotic throughput and closed-
form scaling laws for the proposed opportunistic beamforming
and scheduling schemes.

Notation: Vectors and matrices are denoted by boldface let-
ters. ||-|| represents the Euclidean norm of the enclosed vector.
Iy isthe N x N identity matrix. [a]; indicates the ith entry of
vector a. We use E {-}, (-)” and (-)" for expectation, transpo-
sition and Hermitian transposition. Finally, log and In are the
logarithms to the base 2 and e, respectively, and |-| denotes the
amplitude of the enclosed complex-valued quantity.
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II SIGNAL MODEL
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Figure 1: A block diagram of the opportunistic MIMO SDMA
downlink system under consideration.

We consider the opportunistic MIMO-SDMA downlink sys-
tem depicted in Fig. 1 where the BS is equipped with M trans-
mit antennas and each of the K’ MTs has N receive antennas
with N < M. Let {am,;m=1,2,---, M} be a vector set
containing M orthornormal beamforming vectors of length M.
We focus on a particular time slot during which a beamform-
ing vector set {a,, } has been chosen from a common codebook
shared by the BS and MTs. During the pth mini-slot, the trans-
mitted signal can be expressed as

z(p) = > amsm(p) = As(p), )

where A = [aj,as,---,ay] is the orthonormal beam-
forming matrix with A¥A = I, and s(p) =
[51(p),82(p); -+ 520 (p)] " with E { |, (p)|* } = Lis the data
vector transmitted in the pth mini-slot. Thus, the total trans-
mission power is M.

For notational simplicity, we drop the temporal index p in the
sequel. Assuming that each MT experiences independent and
identically-distributed (i.i.d.) frequency-flat Rayleigh fading,
we use hy_; to denote the 1 x M channel gain vector with the
ith entry, [hy ;],, representing the channel gain from the ith
transmit antenna of the BS to the jth receive antenna of the kth
MT. Thus, the signal received by the jth receive antenna of the
kth MT takes the following form.

Yk = hrjz+ng;, 1<j<N. 2

where ny, ; is zero-mean Gaussian noise with variance 0. ny, ;
is assumed to be statistically independent across receive anten-
nas and users.

Collecting signals received from N antennas into one vector,
we can rewrite (2) into the following matrix form.

Yr = Hyx + ny, 3

T
where  y; = Wk, Uk,2, YN » T =
[nk’l,nhg,"',nk’]\[]T and H; is the kth MT’s channel

T
matrix defined as Hy = [h;‘gl,h;‘g% X ~,h;‘gN In this
work, we assume that the each MT has obtained perfect
knowledge of its own channel matrix Hj by some means, e.g.
training. Thus, the SINR of the ith beam perceived by the jth
receive antenna of the kth MT is given as

|hi jail?

Pk.j.i Z ‘hk’jam|2 " 027
m#i

fork=1,2,---,K,57=1,2,---, Nandm =1,2,---, M. In
the sequel, py, ; ; is referred to as the measured SINR whereas
the effective SINR stands for the SINR obtained by linearly
combining signals from all receive antennas. It will become ev-
ident in the following analysis that py, ; ; is less than the effec-
tive SINR. As a result, the scheduling scheme based on py, ; ;
is suboptimal in terms of system throughput, compared to the
proposed scheme using the effective SINR.

It is worthwhile to point out an interesting remark related
to (3). Despite the similarity of (3) and the signal model
commonly used in the conventional point-to-point MIMO sys-
tems [1], the subtle difference lies in that the channel matrix in
(3) is fat (more columns than rows) whereas that in [1] is tall
(more rows than columns). As a result, the MTs in the MIMO-
SDMA systems have only NV degrees of freedom to suppress
maximum M — 1 interfering beams. Without effective inter-
ference suppression, the system performance will be degraded
significantly due to the lack of degrees of freedom for inter-
ference suppression. For systems with a large number of MTs,
this problem can be alleviated by scheduling data transmissions
to MTs whose channels are orthogonal. However, for systems
with a few MTs, effective interference suppression becomes
particularly crucial to achieving high system performance.

“4)

IIT PROPOSED SCHEME

In this section, we develop a new beamforming and schedul-
ing scheme for MIMO-SDMA by exploiting the effective SINR
obtained with linear combining techniques. In the beginning of
each time slot, each MT evaluates the effective SINR for each
beam and feeds back information about M effective SINRs to
the BS. More specifically, the effective SINRs of the ¢th beam
at the kth MT obtained with selection combining (SC), max-
imum ratio combining (MRC) and optimum combining (OC)
techniques can be computed as follows [8]:

2
(SC) |h’k7nai|
Y. = max ) (5)
ki 1<n<N Z ‘hk,nam‘z + O'}%
4
,yl(cMRC) _ |Hra;|| ©)
i = 2 )
Z |aiHH,fIHkam’ + HHkaiHQU,%
m#i
vy = al'HI'R,|Ha;, ™
where
Rk,z — k Z amQ,, 1, + OpdN- (8)
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Note that (7) performs active interference suppression by ex-
ploiting the interference structure in (8), whereas (5) and (7)
simply intend to amplify the desired signal. It will be shown
later that this characteristic interference-suppression feature of
OC enables the scheduling scheme with OC to considerably
outperform those with SC and MRC.

Upon receiving the effective SINR information from all
MTs, the BS schedules and starts data transmission to multi-
ple MTs with the largest effective SINRs on different beams
until the end of the current time slot. At each chosen MT, re-
ceived signals from all antennas are linearly combined using
one of the above linear combining techniques, followed by data
detection. It is worth noting that the probability of awarding
multiple beams to the same MT is rather small, as the number
of MTs is large. Furthermore, recall that the minimum mean
squared error (MMSE) and zero-forcing (ZF) receiver struc-
tures for MIMO receivers amount to combiners using OC and
MRC for each beam, respectively [8]. As a result, for an MT
assigned with multiple beams, it can focus on one assigned
beam at a time using the chosen combining technique while
regarding all other beams as interfering sources.

IV  THROUGHPUT ANALYSIS

Define ’Y:En = max (’yl,’ﬂu Y2,my 7’7K,’m)’ for m =
1,2,---, M. Assuming vy, for k = 1,2,--- K, are i.i.d.
with CDF F'x (), the resulting average system throughput can
be computed as [2]:

M
C = E{Zlog(lﬂm}, ©)
m=1
- M/Dolog(l—i—x)d[FX(x)]K. (10)
0

In the following, we first derive the F'x (x) functions obtained
with different combining techniques before establishing their
corresponding limiting distributions.

A CDF analysis in interference-limited environment

To keep our analysis tractable, we consider the interference-
limited scenario in which the interference power is much larger
than the additive noise power, which generally holds for M >
N. As a result, our following analysis concentrates on the ef-
fective SIR, rather than the effective SINR.

The CDFs of the effective SIRs obtained with different com-
bining techniques can be derived as follows.

1
F;(Measured)(x) -1— (1 " x)M_l , (11)
N
FSO@) = [1- — (12)
X W= T gyt
1
F(MRC) 1—
(@) 1+ z)MT
~( M+N-p-2 N=p 03
f M -2 (1 + x)M+N-p—1’
p:

1
(0C) _
B =1 e
N—-1 o N—p
M—-p-1 T ’ (14)
M-N-1 /) (1+z)M-»p

where (11)-(13) hold for M > N while (14) requires M > N.

Subsequently, the CDF of the maximum SIR obtained with
different combining techniques, [Fx (z)]”, can be directly
computed from (12)-(14) correspondingly.

X
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Figure 2: CDF’s of SIR obtained with different combining
techniques for M = 4 and N = 2.

Figure 2 shows the CDFs of the maximum effective SIR,
[Fx ()", derived from (11)-(14) for the case of M = 4,
N = 2 and K = 1,5. The selection of M = 4, N = 2
is due to the considerable practical interests in systems with
those parameters. Figure 2 indicates that the CDF of the effec-
tive SIR obtained with OC has a heavier tail than those obtained
with MRC and SC. As a result, it is more probable for OC to
achieve a larger effective SIR than the others for given M and
N, which leads to a higher system throughput. Furthermore,
it is evident from Fig. 2 that the tail behavior of OC improves
more significantly over MRC and SC as K increases.

It is interesting to compare the proposed scheme with SC and
that proposed in [6]. In [6], a receive antenna at each MT is re-
garded as an individual MT. Under some mild assumptions, it
has been shown in [6] that the maximum SINR over all beams
measured at a particular receive antenna is equal to the maxi-
mum SINR for that best beam measured at all N receive anten-
nas. As a result, the CDF of the maximum effective SINR for
the ¢th beam at the kth MT can be approximated by

1 NK;
(SH) _
e { i+ x)Ml] |
where K; < K is the number of requests for the ¢th beam from
the K MTs.

Comparison between (12) and (15) reveals that [6] can be
considered as a suboptimal form of the proposed scheme with

15)
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selection combining. This suboptimality is caused by the
fact that the SC-based scheduling scheme under considera-
tion requires information on all M beams whereas [6] sim-
ply feeds back information on N beams. However, as will be
shown shortly, even the performance of the SC-based schedul-
ing scheme is rather unimpressive compared to schemes em-
ploying other combining techniques.

B Asymptotic throughput

We proceed to investigate the asymptotic behavior of
Fx . (2) = [Fx (2)]" as K increases. To shed light on the
performance of the proposed opportunistic scheduling schemes
with tractable analytical complexity, we concentrate the follow-
ing analysis on a system of high practical interest, i.e. M = 4
and N = 2. The results for other values of M and N can be
obtained in a similar fashion. Due to space limitations, we will
discuss the derivation for the case of OC and provide only the
final results for the other two combining techniques.
For M =4 and N = 2, (14) becomes

1+ 3

oC
FQO(x) = 1_7(1”)3.

(16)

It is known in the context of extreme value theory that the
limiting distribution of Fx . (z) = [Fx ()], if it exists, is
one of three types [9]. Fortunately, we can easily prove that
the parent distribution given in (16) is of the Pareto type and
satisfies the following equation

(OC)
*)5@(%) =c% ¢>0 (17)
=00 ] — Fy - (cx)
which is a necessary and sufficient condition for the resulting
limiting distribution being of the Frechet type. Consequently,
Fx o (x) = [Fx (2)]™ converges to the following Frechet-
type distribution [9].

(0OC) _ 0 X § 0
FX(K)MKJC) o { exp(—z7%) x>0

; (18)

where a is a normalizing factor.

It is worth noting that the asymptotic analysis reported in [3]
and [6] has been conducted in terms of the SINR, rather than
the SIR. As shown in [3] and [6], the resulting limiting distribu-
tion in that case is of the Gumbel type since their corresponding
parent distributions are of the exponential type.

The normalizing factor ay in (18) can be computed from the
so-called characteristic extreme of (16) and is given by

F®a) = 1- (19)
d2? ~ V3K —1. (20)
Thus, we have
PO (X(K) < (\/3? — 1) 9:) ~e @2
for x > 0, or equivalently,
PO (Xiey < z) me” (VRO )

Substituting (22) into (10), we have the average sum-rate ob-
tained with OC as follows.

o (V3K -1)?
C©0 4 / log(1+z)d [e_wz } , (23)
0
o0 (V3K -1)?
= 74/ log(1 +x)d [1 —e e } ,(24)
0
4 1 (V3K -1)?
1 e T 2z
L — (25)

where the last equality is obtained by using the integration by
parts. Since the closed-form expression in (25) is non-trivial,
we evaluate the average sum-rate obtained with OC by resort-
ing to numerical methods.

Similarly, we have the average sum-rates obtained with
MRC and SC as follows.

~ _ ( \S/R—l):}
cwro A [Tlme T g a6
In2 J, 142 ’
4 1oL
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Figure 3: Comparison of analytical and simulated average
throughput as a function of the number of MTs with M = 4,
N = 2and 0} = 0. The analytical and simulation results agree
well with each other.

Figure 3 compares the average throughput obtained by anal-
ysis in (25)-(27) to the simulation results. It is evident from
Fig. 3 that the analytical and simulated results are in accord
with each other. Furthermore, inspection of Fig. 3 reveals that
the throughput obtained with OC is near 50% larger than those
obtained with SC and MRC for M = 4 and N = 2 in the
noise-free scenario, which is attributed to the interference sup-
pression capability built in OC.

C  Sum-rate scaling law

To provide insights into the influence of the number of MTs, K,
on the system throughput, we investigate the scaling laws of the
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proposed schemes, assuming K is sufficiently large. Similar to
the previous Section, we concentrate on the scaling law for the
proposed scheme with OC whereas only the final results for
those with SC and MRC are provided. To derive the scaling
law of the scheme with OC, we first rewrite (25) by letting
z =1, where z € (0T, 00). Thus, we have

= - (V)

% — d 28

In2 Jo+ (1+2)z = (28)

4 iy 1 767(V3K71)222
N — dz +

In2 Jy+ (1+2)z
4 e 1

— —d 29

m2/_ =2 (1+2)z “ 9)

V3K —1

where the last approximation is obtained by exploiting the fact
that 1 —e ¢ ~ 1, for & > 4.

Taking the limit of (29) as K tends to infinity, it is easy to
show that the limit of the second term on the right hand side
(R.H.S.) takes the following form

4 o 1
n2 f —2 (142)= du
Jim VEK -1 =1, (30)

4log (\/37()

whereas the limit of the first term becomes negligibly small
as impg oo ﬁ = 0. As a result, the scaling law for the
proposed scheme with OC is given as
0
lim ———— =1.

R 1og (VAR)

Similarly, we can obtain the scaling laws for the schemes
with SC and MRC as follows.

€29}

((MRC)
lim —— = 1, 32)
KH°°4log(34K>

SO
lim —— = 1. 33)

K=o 41og ( v 2K)

Figure 4 depicts the scaling laws obtained in (31), (32) and
(33). Comparison between Figs. 3 and 4 indicates that the scal-
ing laws are approximately on par with the simulation results.

D  Fairness in scheduling

In this discussions above, we consider a homogeneous network
where the channel gains for all MTs are i.i.d. Consequently, fair
scheduling among all MTs is guaranteed. However, even for
practical systems experiencing the near-far effect, the fairness
of the proposed scheduling scheme can be shown by employing
an approach similar to that in [6]. Intuitively speaking, since
the system under consideration is interference-limited, the MT
that is closer to the BS will receive stronger interference. Con-
sequently, the effective SIR of an MT is mainly determined by
the alignment of the random beams and its instantaneous chan-
nel matrix, rather than solely by the determinant of the channel
matrix.

25

Throughput bps/Hz

I

e Analysis (OC)

= = = Analysis (MRC)
== Analysis (SC)

0 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
Number of MTs

Figure 4: Scaling laws as a function of the number of MTs with
M =4and N = 2.

V  SIMULATION RESULTS

In this section, we use computer simulation to confirm the
performance of the proposed scheduling and beamforming
schemes in noisy environments. Unless otherwise specified,
the noise variance is set to o,% =1fork=1,2,---, K.

T T
M=4,N=2

Total transmission power =4
o

Throughput bps/Hz
©»
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Total transmission power =2
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—3%— Simulation (MRC)
—O— Simulation (SC)

2 I I I I T T

I | T
0 5 10 15 20 25 30 35 40 45 50
Number of MTs

Figure 5: Average throughput as a function of the number of
MTs with M = 2,4, N =2 and 0} = 1.

Figure 5 shows the average throughput of the proposed
schemes with M = 2,4 and N = 2. Fig. 5 indicates that
the throughput of OC represents an impressive 20% and 10%
increase compared to that of SC and MRC, respectively, at
K = 50. Note that the total transmission power for M = 4
is twice of that for M = 2 in Fig. 5. As a result, the average
SNR for each beam is approximately constant.

In contrast, Figure 6 depicts the average throughput of the
proposed schemes with M = 2,4 and N = 2 for a fixed to-
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tal transmission power of 2. It is evident from Fig. 6 that the
throughput with M = 4 is higher than that with M = 2 for
the same amount of total transmission power. This is because
the effect of an increasing M on the average throughput is two-
fold. On the one hand, a larger M creates more interference to a
specific desired beam, which incurs loss of SINR. On the other
hand, a larger M also linearly increases the system throughput
as indicated in (10), which outweighs the throughput loss due
to a reduced SINR as shown in Fig. 6.

Total transmission power = 2

55k &7

Throughput bps/Hz
IS
T

—&— Simulation (OC, M=2)
—%¥— Simulation (MRC, M=2)
—O— Simulation (SC, M=2) i
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— % — Simulation (MRC, M=4)

25+ - © - Simulation (SC, M=4) E

2 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
Number of MTs

Figure 6: Average throughput as a function of the number of
MTs with M = 2,4, N = 2, 07 = 1 and a fixed total trans-
mission power of 2.

In the last experiment, we consider a system with M = 4 and
N = 2, serving a smaller number of MTs, i.e. K = 5. Fig-
ure 7 shows the average throughput of the proposed scheduling
schemes as functions of SNR defined as 1/07. We can ob-
serve a substantial throughput gain provided by OC compared
to SC and MRC. This is because the small number of MTs
reduces the probability that several users’ channel vectors are
perfectly aligned to different orthogonal beams. As a result,
the existence of stronger interference entails substantial SINR
loss. Then, a receiver employing OC can provide more effec-
tive interference suppression, which results in considerable per-
formance improvement over those with SC and MRC.

VI CONCLUSION

Opportunistic scheduling and beamforming schemes for
MIMO-SDMA downlink systems with linear combining have
been proposed in this work. Using the extreme value theory, we
have shown that the limiting distribution of the effective SIRs
obtained with linear combining is of the Frechet type. Further-
more, the system throughput and scaling laws for the proposed
schemes are derived. In particular, for practical systems with
M = 4and N = 2, it has been shown that the throughput of the

proposed scheme with OC scales like 4 log (\/ 3K ) whereas

Throughput bps/Hz

E —&— Simulation (OC)
—%¥— Simulation (MRC)
4(7 —&E— Simulation (SC) a
3 I I I I I
0 5 10 15 20 25 30
SNR (dB)

Figure 7: Average throughput as a function of SNR with M =
4, N =2and K =5.

those with MRC and SC are governed by 4 log (\3/ 4K ) and

4log (\3/ 2K ) , respectively. It has been demonstrated through

asymptotic analysis and computer simulation that incorporat-
ing low-complexity linear combining techniques into the de-
sign of scheduling schemes for MIMO-SDMA downlink sys-
tems can substantially increase the system throughput.
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